Functional Outcomes of Cochlear Implantation in Children with Bilateral Cochlear Nerve Aplasia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Audiological Evaluation
2.3. Electrically Evoked Compound Action Potential and Mapping
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. The Natural Course of Auditory Performance after Surgery
3.3. Prognostic Value of CAP Score at 1 Year
3.4. Intraoperative ECAP
3.5. Mapping
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casselman, J.W.; Offeciers, F.E.; Govaerts, P.J.; Kuhweide, R.; Geldof, H.; Somers, T.; D’Hont, G. Aplasia and hypoplasia of the vestibulocochlear nerve: Diagnosis with MR imaging. Radiology 1997, 202, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Yousef, M.; Mesallam, T.A.; Almasaad, A.; Alhabib, S.; Hagr, A.; Alzhrani, F. Cochlear implantation versus auditory brainstem implantation in children with auditory nerve deficiencies. Eur. Arch. Oto-Rhino-Laryngol. 2021, 279, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Adunka, O.F.; Roush, P.A.; Teagle, H.F.; Brown, C.J.; Zdanski, C.J.; Jewells, V.; Buchman, C.A. Internal auditory canal morphology in children with cochlear nerve deficiency. Otol. Neurotol. 2006, 27, 793–801. [Google Scholar] [CrossRef]
- Nakano, A.; Arimoto, Y.; Matsunaga, T. Cochlear nerve deficiency and associated clinical features in patients with bilateral and unilateral hearing loss. Otol. Neurotol. 2013, 34, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Birman, C.S.; Powell, H.R.; Gibson, W.P.; Elliott, E.J. Cochlear implant outcomes in cochlea nerve aplasia and hypoplasia. Otol. Neurotol. 2016, 37, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Vesseur, A.; Free, R.; Snels, C.; Dekker, F.; Mylanus, E.; Verbist, B.; Frijns, J. Hearing restoration in cochlear nerve deficiency: The choice between cochlear implant or auditory brainstem implant, a meta-analysis. Otol. Neurotol. 2018, 39, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.H.; Lee, M.J.; Lee, K.Y.; Lee, S.H.; Jang, J.H. Prediction of Cochlear Implant Outcomes in Patients With Prelingual Deafness. Clin. Exp. Otorhinolaryngol. 2016, 9, 220–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.-Y.; Choi, B.Y. Potential Implications of Slim Modiolar Electrodes for Severely Malformed Cochleae: A Comparison With the Straight Array With Circumferential Electrodes. Clin. Exp. Otorhinolaryngol. 2021, 14, 287. [Google Scholar] [CrossRef]
- Song, M.H.; Kim, S.C.; Kim, J.; Chang, J.W.; Lee, W.S.; Choi, J.Y. The cochleovestibular nerve identified during auditory brainstem implantation in patients with narrow internal auditory canals: Can preoperative evaluation predict cochleovestibular nerve deficiency? Laryngoscope 2011, 121, 1773–1779. [Google Scholar] [CrossRef] [PubMed]
- Brotto, D.; Manara, R.; Gallo, S.; Sorrentino, F.; Bovo, R.; Trevisi, P.; Martini, A. Comments on “hearing restoration in cochlear nerve deficiency: The choice between cochlear implant or auditory brainstem implant, a meta-analysis”. Otol. Neurotol. 2019, 40, 543–544. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, S.V.; Nair, G.; Paramasivan, V.K.; Goyal, S.; Murali, S.; Kameswaran, M. A Study of Outcome of Pediatric Cochlear Implantation in Patients with Cochleovestibular Nerve Deficiency. J. Int. Adv. Otol. 2020, 16, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Yousef, M.; Mesallam, T.A.; Garadat, S.N.; Almasaad, A.; Alzhrani, F.; Alsanosi, A.; Hagr, A. Audiologic Outcome of Cochlear Implantation in Children With Cochlear Nerve Deficiency. Otol. Neurotol. 2021, 42, 38–46. [Google Scholar] [CrossRef]
- Han, J.J.; Suh, M.-W.; Park, M.K.; Koo, J.-W.; Lee, J.H.; Oh, S.H. A predictive model for cochlear implant outcome in children with cochlear nerve deficiency. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Archbold, S.; Lutman, M.; Marshall, D. Categories of auditory performance. Ann. Otol. Rhinol. Laryngology. Suppl. 1995, 166, 312–314. [Google Scholar]
- Botros, A.; van Dijk, B.; Killian, M. AutoNRT: An automated system that measures ECAP thresholds with the Nucleus Freedom cochlear implant via machine intelligence. Artif. Intell. Med. 2007, 40, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Vlastarakos, P.V.; Nikolopoulos, T.P.; Pappas, S.; Buchanan, M.A.; Bewick, J.; Kandiloros, D. Cochlear implantation update: Contemporary preoperative imaging and future prospects—The dual modality approach as a standard of care. Expert Rev. Med. Devices 2010, 7, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.M.; Lee, L.A.; Chen, C.K.; Chan, K.C.; Tsou, Y.T.; Ng, S.H. Impact of cochlear nerve deficiency determined using 3-dimensional magnetic resonance imaging on hearing outcome in children with cochlear implants. Otol. Neurotol. 2015, 36, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özdoğmuş, Ö.; Sezen, O.; Kubilay, U.; Saka, E.; Duman, U.; Şan, T.; Çavdar, S. Connections between the facial, vestibular and cochlear nerve bundles within the internal auditory canal. J. Anat. 2004, 205, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.-y.; Xu, D.-c.; Huang, D.-l.; Liao, H.; Huang, M.-X. The topographical relationships and anastomosis of the nerves in the human internal auditory canal. Surg. Radiol. Anat. 2008, 30, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Noij, K.S.; Kozin, E.D.; Sethi, R.; Shah, P.V.; Kaplan, A.B.; Herrmann, B.; Remenschneider, A.; Lee, D.J. Systematic Review of Nontumor Pediatric Auditory Brainstem Implant Outcomes. Otolaryngol. Head Neck Surg. 2015, 153, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Aslan, F.; Ozkan, H.B.; Yucel, E.; Sennaroglu, G.; Bilginer, B.; Sennaroglu, L. Effects of Age at Auditory Brainstem Implantation: Impact on Auditory Perception, Language Development, Speech Intelligibility. Otol. Neurotol. 2020, 41, 11–20. [Google Scholar] [CrossRef]
- Jeon, E.K.; Brown, C.J.; Etler, C.P.; O’Brien, S.; Chiou, L.K.; Abbas, P.J. Comparison of electrically evoked compound action potential thresholds and loudness estimates for the stimuli used to program the Advanced Bionics cochlear implant. J. Am. Acad. Audiol. 2010, 21, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Holstad, B.A.; Sonneveldt, V.G.; Fears, B.T.; Davidson, L.S.; Aaron, R.J.; Richter, M.; Matusofsky, M.; Brenner, C.A.; Strube, M.J.; Skinner, M.W. Relation of electrically evoked compound action potential thresholds to behavioral T- and C-levels in children with cochlear implants. Ear Hear. 2009, 30, 115–127. [Google Scholar] [CrossRef] [PubMed]
- van Eijl, R.H.; Buitenhuis, P.J.; Stegeman, I.; Klis, S.F.; Grolman, W. Systematic review of compound action potentials as predictors for cochlear implant performance. Laryngoscope 2017, 127, 476–487. [Google Scholar] [CrossRef]
- Buchman, C.A.; Teagle, H.F.; Roush, P.A.; Park, L.R.; Hatch, D.; Woodard, J.; Zdanski, C.; Adunka, O.F. Cochlear implantation in children with labyrinthine anomalies and cochlear nerve deficiency: Implications for auditory brainstem implantation. Laryngoscope 2011, 121, 1979–1988. [Google Scholar] [CrossRef]
- Jeong, S.W.; Kim, L.S. Auditory neuropathy spectrum disorder: Predictive value of radiologic studies and electrophysiologic tests on cochlear implant outcomes and its radiologic classification. Acta Otolaryngol. 2013, 133, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Teagle, H.F.; Roush, P.A.; Woodard, J.S.; Hatch, D.R.; Zdanski, C.J.; Buss, E.; Buchman, C.A. Cochlear implantation in children with auditory neuropathy spectrum disorder. Ear Hear. 2010, 31, 325–335. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Chao, X.; Wang, R.; Luo, J.; Xu, L.; Teagle, H.F.B.; Park, L.R.; Brown, K.D.; Shannon, M.; Warner, C.; et al. Recommendations for Measuring the Electrically Evoked Compound Action Potential in Children with Cochlear Nerve Deficiency. Ear Hear. 2020, 41, 465–475. [Google Scholar] [CrossRef]
- Peng, K.A.; Kuan, E.C.; Hagan, S.; Wilkinson, E.P.; Miller, M.E. Cochlear nerve aplasia and hypoplasia: Predictors of cochlear implant success. Otolaryngol. Head Neck Surg. 2017, 157, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Archbold, S.; Lutman, M.E.; Nikolopoulos, T. Categories of auditory performance: Inter-user reliability. Br. J. Audiol. 1998, 32, 7–12. [Google Scholar] [CrossRef]
Patients (n = 21, 37 Ears) | |
---|---|
Age at CI (months) | |
Mean (SD) | 17.71 (6.99) |
Range | 10–37 |
Sex | |
Male | 10 (47.6%) |
Female | 11 (52.4%) |
Laterality | |
Unilateral, right | 2 (9.5%) |
Unilateral, left | 3 (14.3%) |
Bilateral, simultaneous | 16 (76.2%) |
Manufacturer | |
Cochlear | 15 (71.4%) |
Medel | 5 (23.8%) |
Advanced bionics | 1 (4.8%) |
Approach | |
Round window | 16 (76.2%) |
Cochleostomy | 5 (23.8%) |
Inner ear anomaly | |
With anomaly * | 8 (38.1%) |
Without anomaly | 13 (61.9%) |
CAP Score ≤ 1 (n = 10) | CAP Score > 1 (n = 11) | p-Value | |
---|---|---|---|
Sex (M:F) | 6:4 | 4:7 | 0.519 |
Age (Mean ± SD, months) | 17.4 ± 5.2 | 18 ± 8 | 0.94 |
Side (Unilateral:Bilateral) | 3:7 | 2:9 | 0.903 |
Approach (RW:Cochleostomy) | 9:1 | 7:4 | 0.366 |
Inner ear anomaly | 4 (40%) | 4 (36.4%) | 1.00 |
CAP score at baseline | 0 | 0.55 ± 0.66 | 0.02 |
CAP score at 3 months | 0.4 ± 0.5 | 1 ± 0.7 | 0.048 |
CAP score at 6 months | 0.5 ± 0.5 | 2.2 ± 1.2 | 0.001 |
CAP score at 12 months | 0.7 ± 0.5 | 3.5 ± 1.0 | <0.001 |
CAP score at 24 months | 0.8 ± 0.9 | 4.1 ± 0.7 | <0.001 |
CAP score at 36 months | 1 ± 0.8 | 4.2 ± 0.6 | <0.001 |
Positive ECAP ratio (%) | 37.3 ± 39.6 | 57.4 ± 29.4 | 0.25 |
T-Level | C-Level | Dynamic Range | |
---|---|---|---|
Post-CI 3 months | 91.8 ± 59.8 | 150.4 ± 67.7 | 58.6 ± 17.7 |
Post-CI 6 months | 98.5 ± 59.8 | 160.1 ± 59.7 | 61.5 ± 19 |
Post-CI 12 months | 93.8 ± 61.9 | 159.6 ± 59.8 | 65.9 ± 24 |
Post-CI 24 months | 88.4 ± 60.3 | 161 ± 57.9 | 72.6 ± 33.6 |
Post-CI 36 months | 96.7 ± 63.4 | 173.1 ± 52.2 | 76.4 ± 46.7 |
p-value | 0.99 | 0.82 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choe, G.; Kim, Y.S.; Oh, S.-H.; Lee, S.-Y.; Lee, J.H. Functional Outcomes of Cochlear Implantation in Children with Bilateral Cochlear Nerve Aplasia. Medicina 2022, 58, 1474. https://doi.org/10.3390/medicina58101474
Choe G, Kim YS, Oh S-H, Lee S-Y, Lee JH. Functional Outcomes of Cochlear Implantation in Children with Bilateral Cochlear Nerve Aplasia. Medicina. 2022; 58(10):1474. https://doi.org/10.3390/medicina58101474
Chicago/Turabian StyleChoe, Goun, Young Seok Kim, Seung-Ha Oh, Sang-Yeon Lee, and Jun Ho Lee. 2022. "Functional Outcomes of Cochlear Implantation in Children with Bilateral Cochlear Nerve Aplasia" Medicina 58, no. 10: 1474. https://doi.org/10.3390/medicina58101474
APA StyleChoe, G., Kim, Y. S., Oh, S.-H., Lee, S.-Y., & Lee, J. H. (2022). Functional Outcomes of Cochlear Implantation in Children with Bilateral Cochlear Nerve Aplasia. Medicina, 58(10), 1474. https://doi.org/10.3390/medicina58101474