Decreased Activity of Erythrocyte Catalase and Glutathione Peroxidase in Patients with Schizophrenia
Abstract
:1. Introduction
2. Material and Methods
2.1. Subjects
2.2. Methods
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chelikani, P.; Fita, I.; Loewen, P.C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 2004, 61, 192–208. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, H.; Moosavi-Movahed, A.A. Catalase and its mysteries. Prog. Biophys. Mol. Biol. 2018, 140, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Chance, B. The Enzymes; Boyer, P.D., Ed.; Academic Press: New York, NY, USA, 1951; Volume 2, pp. 428–453. [Google Scholar]
- Guemouri, L.; Artur, Y.; Herbeth, B.; Jeandel, C.; Cuny, G.; Siest, G. Biological variability of superoxide dismutase, glutathione peroxidase and catalase in blood. Clin. Chern. 1991, 37, 1932–1937. [Google Scholar] [CrossRef]
- Gaetani, G.F.; Ferraris, A.M.; Rolfo, M.; Mangerini, R.; Arena, S.; Kirkman, H.N. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 1996, 87, 1595–1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulsen, C.E.; Carroll, K.S. Cysteine-mediated redox signaling: Chemistry, biology, and tools for discovery. Chem. Rev. 2013, 113, 4633–4679. [Google Scholar] [CrossRef] [PubMed]
- Marzo, N.D.; Chisci, E.; Giovannoni, R. The role of hydrogen peroxide in redox-dependent signaling: Homeostatic and pathological responses in mammalian cells. Cells 2018, 7, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halliwell, B.; Gutteridge, J.M. Oxidative stress: Adaptation, damage, repair and death. In Free Radicals in Biology and Medicine, 3rd ed.; Oxford Science Publications: New York, NY, USA, 1999; Chapter 2; pp. 36–104. [Google Scholar]
- Trujillo, M.S.; Zeida, C.A.; Radi, R. Comparative analysis of hydrogen peroxide and peroxynitrite reactivity with thiols. In Hydrogen Peroxide Metabolism in Health and Disease; Vissers, M.C.M., Hampton, M., Kettle, A.J., Eds.; CRC Press: BocaRaton, FL, USA, 2017; pp. 49–79. [Google Scholar]
- Mahaseth, T.; Kuzminov, A. Potentiation of hydrogen peroxide toxicity: From catalase inhibition to stable DNA-iron complexes. Mutat. Res. 2017, 773, 274–281. [Google Scholar] [CrossRef]
- Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox. Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef]
- Shao, L.; Martin, M.V.; Watson, S.J.; Schatzberg, A.; Akil, H.; Myers, R.M.; Jones, E.G.; Bunney, W.E.; Vawter, M.P. Mitochondrial involvement in psychiatric disorders. Ann. Med. 2008, 40, 281–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.H.; Lane, H.Y. Early identifcation and intervention of schizophrenia: Insight from hypotheses of glutamate dysfunction and oxidative stress. Front. Psychiatry 2019, 10, 93. [Google Scholar] [CrossRef] [PubMed]
- Bienert, G.P.; Møller, A.L.B.; Kristiansen, K.A.; Schulz, A.; Møller, I.M.; Schjoerring, J.K.; Jahn, T.P. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 2007, 282, 1183–1192. [Google Scholar] [CrossRef] [Green Version]
- Holmström, K.M.; Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 2014, 15, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Ermakov, E.A.; Dmitrieva, E.M.; Parshukova, D.A.; Kazantseva, D.V.; Vasilieva, A.R.; Smirnova, L.P. Oxidative stress-related mechanisms in schizophrenia pathogenesis and new treatment perspectives. Oxidative Med. Cell Longev. 2021, 2021, 8881770. [Google Scholar] [CrossRef]
- Murray, A.J.; Rogers, J.C.; Katshu, M.Z.U.H.; Liddle, P.F.; Upthegrove, R. Oxidative stress and the pathophysiology and symptom profile of schizophrenia spectrum disorders. Front. Psychiatry 2021, 12, 703452. [Google Scholar] [CrossRef] [PubMed]
- Górny, M.; Bilska-Wilkosz, A.; Iciek, M.; Hereta, M.; Kamińska, K.; Kamińska, A.; Chwatko, G.; Rogóż, Z.; Lorenc-Koci, E. Alterations in the antioxidant enzyme activities in the neurodevelopmental rat model of schizophrenia induced by glutathione deficiency during early postnatal life. Antioxidants 2020, 9, 538. [Google Scholar] [CrossRef]
- Stahl, S.M. Stahl’s Essential Psychopharmacology. Neuroscientific Basis and Practical Applications; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Albayrak, Y.; Beyazyuz, M.; Kufeciler, T.; Bulut, L.; Unsal, C.; Baykal, S.; Akyol, E.S.; Kuloglu, M.; Hashimoto, K. Increased serum levels of apoptosis in deficit syndrome schizophrenia patients: A preliminary study. Neuropsychiatr. Dis. Treat. 2016, 12, 1261–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beutler, E. Catalase. In Cell Metabolism Mannual and Biochemical Method; Beutler, E., Ed.; Grune and Stratton: New York, NY, USA, 1982; pp. 105–106. [Google Scholar]
- Djordjevic, V.V.; Lazarević, D.; Ćosić, V.; Knežević, M.Z.; Djordjević, B.V. Age-related changes of superoxide dismutase activity in patients with schizophrenia. Vojnosanit. Pregl. 2016, 74, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Li, X.R.; Xiu, M.H.; Guan, X.N.; Wang, Y.C.; Wang, J.; Leung, E.; Zhang, X.Y. Altered antioxidant defenses in drug-naïve first episode patients with schizophrenia are associated with poor treatment response to risperidone: 12-week results from a prospective longitudinal study. Neurotherapeutics 2021, 18, 1316–1324. [Google Scholar] [CrossRef]
- Raffa, M.; Atig, F.; Mhalla, A.; Kerkeni, A.; Mechri, A. Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naïve first-episode schizophrenic patients. BMC Psychiatry 2011, 11, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langbein, K.; Hesse, J.; Gussew, A.; Milleit, B.; Lavoie, S.; Amminger, G.; Gaser, C.; Wagner, G.; Reichenbach, J.; Hipler, U.-C.; et al. Disturbed glutathione antioxidative defense is associated with structural brain changes in neuroleptic-naive frst-episode psychosis patients. Prostaglandins Leukot. Essent. Fatty Acids 2018, 136, 103–110. [Google Scholar] [CrossRef]
- Okusaga, O.O. Accelerated aging in schizophrenia patients: The potential role of oxidative stress. Aging Dis. 2014, 4, 256–262. [Google Scholar] [CrossRef]
- Sirota, P.; Gavrieli, R.; Wolach, B. Overproduction of neutrophil radical oxygen species correlates with negative symptoms in schizophrenic patients: Parallel studies of neutrophil chemotaxis, superoxide production and bactericidal activity. Psychiatry Res. 2003, 121, 123–132. [Google Scholar] [CrossRef]
- Do, K.Q.; Trabesinger, A.H.; Kirsten-Krüger, M.; Lauer, C.J.; Dydak, U.; Hell, D.; Holsboer, F.; Boesiger, P.; Cuénod, M. Schizophrenia: Glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur. J. Neurosci. 2000, 12, 3721–3728. [Google Scholar] [CrossRef] [PubMed]
- Do, K.Q.; Trabesinger, J.H.; Frank, A.; Steullet, P.; Cuenod, M. Redox disregulation, neurodevelopment, and schizophrenia. Curr. Opin. Neurobiol. 2009, 19, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.K.; Leonard, S.; Reddy, R.D. Increased nitric oxide radicals in postmortem brain from patients with schizophrenia. Schizophr. Bull. 2004, 30, 923–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.K.; Reddy, R.; McElhinny, L.G.; van Kammen, D.P. Effects of haloperidol on antioxidant defense system enzymes in schizophrenia. J. Psychiatry. Res. 1998, 32, 385–391. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhou, D.F.; Cao, L.Y.; Zhang, P.Y.; Wu, G.Y. Elevated blood superoxide dismutase in neuroleptic-free schizophrenia: Association with positive symptoms. Psychiatry Res. 2003, 117, 85–88. [Google Scholar] [CrossRef]
- Raffa, M.; Mechri, A.; Othman, L.B.; Fendri, C.; Gaha, L.; Kerekeni, A. Decreased glutathione levels and antioxidant enzyme activities in untreated and treated schizophrenic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Virit, O.; Altindag, A.; Yumru, M.; Dalkilic, A.; Savas, H.A.; Selek, S.; Erel, O.; Herken, H. A defect in the antioxidant defense system in schizophrenia. Neuropsychobiology 2009, 60, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Zheng, Y.L.; Xiu, M.H.; Chen, D.C.; Kosten, T.R.; Zhang, X.Y. Reduced plasma total antioxidant status in first-episode drug-naïve patients with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 1064–1067. [Google Scholar] [CrossRef] [PubMed]
- Akyol, Ö.; Herken, H.; Uz, E.; Fadıllıoǧlu, E.; Ünal, S.; Söǧüt, S.; Özyurt, H.; Savaş, H.A. The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients. The possible role of oxidant/antioxidant imbalance. Prog. Neuropsychopharmacol. Biol. Psychiatry 2002, 26, 995–1005. [Google Scholar] [CrossRef]
- Dietrich-Muszalska, A.; Kontek, B. Lipid peroxidation in patients with schizophrenia. Psychiatry Clin. Neurosci. 2010, 64, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Padurariu, M.; Ciobica, A.; Dobrin, I.; Stefanescu, C. Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics. Neurosci. Lett. 2010, 479, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Berk, M.; Copolov, D.; Dean, O.; Lu, K.; Jeavons, S.; Schapkaitz, I.; Anderson-Hunt, M.; Judd, F.; Katz, F.; Katz, P.; et al. N-acetyl cysteine as a glutathione precursor for schizophrenia—A double-blind, randomized, placebo-controlled trial. Biol. Psychiatry 2008, 64, 361–368. [Google Scholar] [CrossRef]
- Conus, P.; Seidman, L.J.; Fournier, M.; Xin, L.; Cleusix, M.; Baumann, P.S.; Ferrari, C.; Cousins, A.; Alameda, L.; Gholam-Rezaee, M.; et al. N-acetylcysteine in a double-blind randomized placebo-controlled trial: Toward biomarker-guided treatment in early psychosis. Schizophr. Bull. 2018, 44, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Hsu, M.-C.; Huang, Y.-S.; Ouyang, W.-C. Beneficial effects of omega-3 fatty acid supplementation in schizophrenia: Possible mechanisms. Lipids Health Dis. 2020, 19, 159. [Google Scholar] [CrossRef]
- Palaniyappan, L.; Park, M.T.M.; Jeon, P.; Limongi, R.; Yang, Y.; Sawa, A.; Théberge, J. Is there glutathione centered redox dysregulation subtype of schizophrenia? Antioxidants 2021, 10, 1703. [Google Scholar] [CrossRef] [PubMed]
- Saherbao, P.M.; Yao, J.K. Phospholipids in schizophrenia. In Textbook of Schizophrenia; Lieberman, J.A., Stroup, T.S., Perkins, D.O., Eds.; The American Psychiatric Publishing Inc.: Washington, DC, USA; London, UK, 2006; pp. 117–135. [Google Scholar]
- Zhu, X.; Cabungcal, J.H.; Cuenod, M.; Uliana, D.L.; Do, K.Q.; Grace, A.A. Thalamic reticular nucleus impairments and abnormal prefrontal control of dopamine system in a developmental model of schizophrenia: Prevention by N-acetylcysteine. Mol. Psychiatry 2021, 26, 7679–7689. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, V.V.; Lazarevic, D.; Cosic, V.; Knezevic, M.Z.; Djordjevic, B.V.; Stojanovic, I. Diagnostic accuracy of brain-derived neurotrophic factor and nitric oxide in patients with schizophrenia: A pilot study. J. Med. Biochem. 2016, 35, 7–16. [Google Scholar] [CrossRef]
- Xiu, M.H.; Li, Z.; Chen, D.C.; Chen, S.; Curbo, M.; Wu, H.E.; Tong, Y.S.; Tan, S.P.; Zhang, X.Y. Interrelationships between BDNF, superoxide dismutase, and cognitive impairment in drug-naive first-episode patients with schizophrenia. Schizophr. Bull. 2020, 46, 1498–1510. [Google Scholar] [CrossRef]
- Kuloglu, M.; Ustundag, B.; Atmaca, M.; Canatan, H.; Tezcan, A.E.; Cinkilinc, N. Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem. Funct. 2002, 20, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Dakhale, G.; Khanzode, S.; Khanzode, S.; Saoji, A.; Khobragade, L.; Turankar, A. Oxidative damage and schizophrenia: The potential benefit by atypical antipsychotics. Neuropsychobiology 2004, 49, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Barthwal, M.K.; Dalal, P.K.; Agarwal, A.K.; Nag, D.; Srimal, R.C.; Seth, P.K.; Dikshit, M. Nitrite content and antioxidant enzyme levels in the blood of schizophrenia patients. Psychopharmacology 2001, 158, 140–145. [Google Scholar] [CrossRef]
- Fraguas, D.; Díaz-Caneja, C.M.; Rodríguez-Quiroga, A.; Arango, C. Oxidative stress and inflammation in early onset first episode psychosis: A systematic review and meta-analysis. Int. J. Neuropsychopharmacol. 2017, 20, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Ranjekar, P.K.; Hinge, A.; Hegde, M.V.; Ghate, M.; Kale, A.; Sitasawad, S.; Wagh, U.V.; Debsikdar, V.B.; Mahadik, S.P. Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry Res. 2003, 121, 109–122. [Google Scholar] [CrossRef]
- Ben Othmen, L.; Mechri, A.; Fendri, C.; Bost, M.; Chazot, G.; Gaha, L.; Kerkeni, A. Altered antioxidant defense system in clinically stable patients with schizophrenia and their unaffected siblings. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 155–159. [Google Scholar] [CrossRef]
- Berry, T. A selenium transport protein model of a sub-type of schizophrenia. Med. Hypotheses 1994, 43, 409–414. [Google Scholar] [CrossRef]
- Dietrich-Muszalska, A.; Olas, B. Modification of blood platelet proteins of patients with schizophrenia. Platelets 2009, 20, 90–96. [Google Scholar] [CrossRef]
- Ivanova, S.A.; Smirnova, L.P.; Shchigoreva, Y.G.; Boiko, A.S.; Semke, A.V.; Uzbekov, M.G.; Bokhan, N.A. Glucose-6-phosphate dehydrogenase and catalase activities in erythrocytes of schizophrenic patients under pharmacotherapy with traditional antipsychotics. Neurochem. J. 2014, 8, 66–70. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhou, D.F.; Shen, Y.C.; Zhang, P.Y.; Zhang, W.F.; Liang, J.; Chen, D.C.; Xiu, M.H.; Kosten, T.A.; Kosten, T.R. Efects of risperidone and haloperidol on superoxide dismutase and nitric oxide in schizophrenia. Neuropharmacology 2012, 62, 1928–1934. [Google Scholar] [CrossRef]
- Demirci, K.; Özçankaya, R.; Yilmaz, H.R.; Yiğit, A.; Uğuz, A.C.; Karakuş, K.; Demirdaş, A.; Akpınar, A. Paliperidone regulates intracellular redox system in rat brain: Role of purine mechanism. Redox. Rep. 2015, 20, 170–176. [Google Scholar] [CrossRef]
- Liu, H.; Liu, H.; Jiang, S.; Su, L.; Lu, Y.; Chen, Z.; Li, X.; Li, X.; Wang, X.; Xiu, M.; et al. Sex-specific association between antioxidant defense system and therapeutic response to risperidone in schizophrenia: A prospective longitudinal study. Curr. Neuropharmacol. 2021, 20, 1793–1803. [Google Scholar] [CrossRef] [PubMed]
- Fendri, C.; Mechri, A.; Khiari, G.; Othman, A.; Kerkeni, A.; Gaha, L. Oxidative stress involvement in schizophrenia pathophysiology: A review. Encephale 2006, 32, 244–252. [Google Scholar] [CrossRef]
- Emiliani, F.E.; Sedlak, T.W.; Sawa, A. Oxidative stress and schizophrenia: Recent breakthroughs from an old story. Curr. Opin. Psychiatry 2014, 27, 185–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, H.; Du, X.; Huang, X.; Qi, L.; Jia, Q.; Yin, G.; Xiao, C.; Huang, X.-F.; Ning, Y.; Cassidy, R.M.; et al. Obesity, altered oxidative stress, and clinical correlates in chronic schizophrenia patients. Translat. Psychiatry 2018, 8, 258. [Google Scholar] [CrossRef] [PubMed]
Patients Controls | |
---|---|
__ | |
Male/Female (n) | 29/39 27/32 |
Age (years) | 32.7 ± 9.4 30.9 ± 6.9 |
Heredity (+/−) | 20 |
Age of disease manifestation: | |
Before 20 years (n) | 19 |
Between 20 and 24 years (n) | 16 |
Between 25 and 29 years (n) | 18 |
Between 30 and 34 years (n) | 15 |
Duration of psychiatric disease (years): | |
<1 | 8 |
1–3 | 16 |
3–5 | 18 |
>5 | 26 |
Number of episodes (one/more than one, n) | 26/42 |
PANSS positive scores predominant (>3) (n) | 24.5 ± 6.9 (27) |
PANSS negative scores predominant (<−8) (n) | 24.7 ± 9.1 (19) |
PANSS positive and negative scores almost equally expressed (>−8 < 3) (n) | (22) |
PANSS general psychopathology | 48.9 ± 9.1 |
PANSS total score | 98.1 ± 25.1 |
FGA (haloperidol-treated, n) | 22 |
SGA (risperidone- or olanzapine-treated, n) FGA- and SGA-treated, n | 20 26 |
Patients | Controls | |||
---|---|---|---|---|
Cat | GPx | Cat | GPx | |
Total | 9.1 ± 3.8 ** | 40.8 ± 8.9 * | 12.7 ± 3.6 | 46.4 ± 8.3 |
Male | 6.2 ± 1.1 | 35.5 ± 8.2 A | 14.5 ± 3.3 A | 47.2 ± 9.1 |
Female | 6.6 ± 1.6 | 43.2 ± 6.6 | 11.5 ± 3.1 | 46.9 ± 6.7 |
Heredity (+) | 10.5 ± 4.6 B | 43.8 ± 8.4 | - | - |
Heredity (−) | 8.6 ± 3.4 C | 39.7 ± 7.9 ** | - | - |
Age of onset (before 24 y) | 8.6 ± 3.89 ** | 39.6 ± 6.8 ** | - | - |
Age of onset (after 24 y) | 9.96 ± 3.98 * | 41.2 ± 11.4 B | - | - |
Number of episodes (one) | 8.5 ± 4.1 ** | 42.7 ± 8.9 | - | - |
Number of episodes (more than one) | 9.8 ± 3.8 ** | 39.0 ± 9.5 ** | - | - |
Disease duration (to one year) | 9.1 ± 2.7 * | 45.1 ± 10.6 | - | |
Disease duration (less than 5 years) | 9.5 ± 4.4 * | 38.9 ± 9.7 * | - | |
Disease duration (more than 5 years) | 9.1 ± 8.1 ** | 39.4 ± 8.1 * | - |
Patients | Controls | |||
---|---|---|---|---|
Catalase (U/gHb × 104 ) | GPx (U/gHb) | Catalase ((U/gHb × 104) | GPx (U/gHb) | |
PANSS (+) | 10.4 ± 4.2 A | 42.1 ± 8.1 A | 12.7 ± 3.6 | 46.4 ± 8.3 |
PANSS (−) | 10.1 ± 3.6 A | 38.2 ± 8.3 B | - | - |
PANSS (+/−) | 6.9 ± 2.9 *,**, B | 38.9 ± 10.4 A | - | - |
FGA | 10.4 ± 4.6 ¶,A | 42.9 ± 8.9 | - | - |
SGA | 10.1 ± 3.7 ¶,A | 39.0 ± 10.8 A | - | - |
FGA and SGA | 7.9 ± 2.7 B | 39.2 ± 8.7 B | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djordjević, V.V.; Kostić, J.; Krivokapić, Ž.; Krtinić, D.; Ranković, M.; Petković, M.; Ćosić, V. Decreased Activity of Erythrocyte Catalase and Glutathione Peroxidase in Patients with Schizophrenia. Medicina 2022, 58, 1491. https://doi.org/10.3390/medicina58101491
Djordjević VV, Kostić J, Krivokapić Ž, Krtinić D, Ranković M, Petković M, Ćosić V. Decreased Activity of Erythrocyte Catalase and Glutathione Peroxidase in Patients with Schizophrenia. Medicina. 2022; 58(10):1491. https://doi.org/10.3390/medicina58101491
Chicago/Turabian StyleDjordjević, Vladimir V., Jelena Kostić, Žilijeta Krivokapić, Dane Krtinić, Milica Ranković, Milan Petković, and Vladan Ćosić. 2022. "Decreased Activity of Erythrocyte Catalase and Glutathione Peroxidase in Patients with Schizophrenia" Medicina 58, no. 10: 1491. https://doi.org/10.3390/medicina58101491
APA StyleDjordjević, V. V., Kostić, J., Krivokapić, Ž., Krtinić, D., Ranković, M., Petković, M., & Ćosić, V. (2022). Decreased Activity of Erythrocyte Catalase and Glutathione Peroxidase in Patients with Schizophrenia. Medicina, 58(10), 1491. https://doi.org/10.3390/medicina58101491