Clinical Outcomes of Transplanted Kidneys from Deceased Donors Using Different Generic Preservation Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Groups
2.2. Kidney Graft Function
2.3. Patient and Graft Outcomes
2.4. Statistical Analysis
3. Results
3.1. Study Groups
3.2. Early Kidney Graft Function
3.3. Patient and Graft Outcomes during the Follow-Up Period
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kosieradzki, M.; Rowiński, W. Ischemia/reperfusion injury in kidney transplantation: Mechanisms and prevention. Transpl. Proc. 2008, 40, 3279–3288. [Google Scholar] [CrossRef] [PubMed]
- Parsons, R.F.; Guarrera, J.V. Preservation solutions for static cold storage of abdominal allografts: Which is best? Curr. Opin. Organ Transpl. 2014, 19, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shi, J.; Xia, T.C.; Xu, R.; He, X.; Xia, Y. Preservation solutions for kidney transplantation: History, advances and mechanisms. Cell Transpl. 2019, 28, 1472–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavaillé-Coll, M.; Bala, S.; Velidedeoglu, E.; Hernandez, A.; Archdeacon, P.; Gonzalez, G.; Neuland, C.; Meyer, J.; Albrecht, R. Summary of FDA Workshop on ischemia reperfusion injury in kidney transplantation. Am. J. Transpl. 2013, 13, 1134–1148. [Google Scholar] [CrossRef] [PubMed]
- Serur, D.; Saal, S.; Wang, J.; Sullivan, J.; Bologa, R.; Hartono, C.; Dadhania, D.; Lee, J.; Gerber, L.M.; Goldstein, M.; et al. Deceased-donor kidney transplantation: Improvement in long-term survival. Nephrol. Dial. Transpl. 2011, 26, 317–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosello-Catafau, J.; Panisello-Rosello, A.; Pasut, G.; Navasa, M.; Pirenne, J.; Adam, R. Original and generic preservation solutions in organ transplantation. A new paradigm? Acta Cir. Bras. 2020, 35, e202000101. [Google Scholar] [CrossRef] [PubMed]
- Maathuis, M.-H.J.; Ottens, P.J.; van Goor, H.; Zwaagstra, J.J.; Wiersema-Buist, J.; Schuurs, T.A.; Ploeg, R.J.; Leuvenink, H.G.D. Static cold storage preservation of ischemically damaged kidneys. A comparison between IGL-1 and UW solution. Transpl. Int. 2008, 21, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Legeai, C.; Durand, L.; Savoye, E.; Macher, M.-A.; Bastien, O. Effect of preservation solutions for static cold storage on kidney transplantation outcomes: A National Registry Study. Am. J. Transpl. 2020, 20, 3426–3442. [Google Scholar] [CrossRef] [PubMed]
- Szilagyi, A.L.; Matrai, P.; Hegyi, P.; Tuboly, E.; Pecz, D.; Garami, A.; Solymár, M.; Pétervári, E.; Balaskó, M.; Veres, G.; et al. Compared efficacy of preservation solutions on the outcome of liver transplantation: Meta-analysis. World J. Gastroenterol. 2018, 24, 1812–1824. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Koo, E.H.; Ha, S.H.; Park, J.H.; Jang, H.R.; Lee, J.E.; Park, J.B.; Kim, S.J.; Jung, S.H.; Kim, Y.G.; et al. The impact of slow graft function on graft outcome is comparable to delayed graft function in deceased donor kidney transplantation. Int. Urol. Nephrol. 2016, 48, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Hall, I.E.; Reese, P.P.; Doshi, M.D.; Weng, F.L.; Schroppel, B.; Asch, W.S.; Ficek, J.; Thiessen-Philbrook, H.; Parikh, C.R. Delayed graft function phenotypes and 12-month kidney transplant outcomes. Transplantation 2017, 101, 1913–1923. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Park, T.H.; Choi, J.Y.; Lim, J.H.; Jung, H.Y.; Choi, J.Y.; Park, S.H.; Kim, C.D.; Kim, Y.L.; Kim, H.K.; et al. Analysis of clinical outcomes according to the definition of slow graft function in deceased donor kidney transplantation. Transpl. Proc. 2019, 51, 2587–2592. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, E.; Fernandez-Fresnedo, G.; Ruiz, J.C.; Pinera, C.; Palomar, R.; Gonzalez-Cotomuelo, J.; Zubimendi, J.A.; De Francisco, A.L.; Sanz de Castro, S.; Arias, M. Similar effect of slow and delayed graft function on renal allograft outcome and function. Transpl. Proc. 2005, 37, 1431–1432. [Google Scholar] [CrossRef] [PubMed]
- Humar, A.; Ramcharan, T.; Kandaswamy, R.; Gillingham, K.; Payne, W.D.; Matas, A.J. Risk factors for slow graft function after kidney transplants: A multivariate analysis. Clin. Transpl. 2002, 16, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.J.; Tuffaha, A.; Phadnis, M.A.; Mahnken, J.D.; Wetmore, J.B. Association of slow graft function with long-term outcomes in kidney transplant recipients. Ann. Transpl. 2018, 23, 224–231. [Google Scholar] [CrossRef]
- Humar, A.; Johnson, E.M.; Payne, W.D.; Wrenshall, L.; Sutherland, D.E.; Najarian, J.S.; Gillingham, K.J.; Matas, A.J. Effect of initial slow graft function on renal allograft rejection and survival. Clin. Transpl. 1997, 11, 623–627. [Google Scholar]
- Nel, D.; Vodel, J.; Muller, E.; Barday, Z.; Kahn, D. Slow early graft function: A neglected entity after renal transplantation. Nephron. Clin. Pract. 2012, 120, c200–c204. [Google Scholar] [CrossRef] [PubMed]
SPS-1 N = 167 | StoreProtect Plus N = 168 | p | |
---|---|---|---|
Recipient and transplant characteristics | |||
Age (years) | 50.0 (48.1–51.8) | 49.6 (47.7–51.5) | 0.80 |
Sex (M/F) | 90/77 | 103/65 | 0.17 |
BMI (kg/m2) | 25.3 (24.7–25.9) | 25.6 (25.0–26.3) | 0.39 |
Dialysis vintage (months) * | 35 (22–62) | 30 (18–45) | <0.05 |
Residual diuresis (mL) * | 300 (0–1000) | 500 (50–1500) | <0.05 |
Hypertension (n (%)) | 151 (90.4) | 158 (94.0) | 0.62 |
Diabetes (n (%)) | 18 (10.8) | 21 (12.5) | 0.62 |
ESRD cause (n) Glomerulonephritis Diabetes Pyelonephritis ADPKD Hypertensive nephropathy Other Unknown | 63 14 14 21 26 10 19 | 67 13 11 33 13 7 24 | 0.20 |
HLA class I mismatch | 2.3 (2.1–2.4) | 2.3 (2.2–2.4) | 0.65 |
HLA class II mismatch | 0.61 (0.52–0.70) | 0.58 (0.50–0.65) | 0.57 |
PRA max (%) * | 0 (0–10) | 0 (0–3) | 0.11 |
Retransplantation (n (%)) | 34 (20.4) | 25 (14.9) | 0.19 |
CIT (h) | 18.0 (17.0–18.9) | 17.3 (16.4–18.2) | 0.32 |
CIT > 18 h (n (%)) | 79 (47.3) | 79 (47.0) | 0.88 |
Induction therapy (n (%)) | 101 (60.5) | 167 (99.4) | <0.001 |
Induction structure No induction IL-2RA (%) ATG (%) | 66 55 46 | 1 102 65 | <0.001 |
Donor characteristics | |||
Age (years) | 46.6 (44.6–48.5) | 45.4 (43.5–47.3) | 0.39 |
Sex (M/F) | 99/68 | 110/58 | 0.24 |
BMI (kg/m2) | 25.0 (24.5–25.5) | 26.4 (25.8–26.9) | <0.001 |
SBP *† (mmHg) | 127 (120–140) | 130 (120–140) | 0.85 |
DBP *† (mmHg) | 78 (70–85) | 80 (70–80) | 0.62 |
ECD status (n (%)) | 45 (27.0) | 56 (33.3) | 0.22 |
Scr > 1.5 mg/dL *† (n (%)) | 37 (22.2) | 58 (34.5) | 0.02 |
Hypertension (n (%)) | 34 (20.4) | 52 (31.0) | <0.05 |
Cardiac arrest (n (%)) | 28 (16.8) | 36 (21.4) | 0.28 |
Cause of death (n) CVD Trauma Other | 86 61 20 | 109 46 13 | <0.05 |
KDRI * | 1.164 (0.930–1.434) | 1.217 (0.935–1.472) | 0.72 |
SPS-1 | StoreProtect Plus | p | |
---|---|---|---|
Early kidney graft function | |||
IGF (n (%)) | 40 (24.0) | 66 (39.3) | <0.01 |
SGF (n (%)) | 86 (51.5) | 65 (38.7) | <0.05 |
DGF (n (%)) | 39 (23.4) | 33 (19.6) | 0.41 |
PGN (n (%)) | 2 (1.2) | 4 (2.4) | 0.41 |
DGF duration (days) | 6 (3–9) | 8 (4–11) | 0.41 |
Serum creatinine level (mg/dL) | |||
3rd POD | 6.1 (3.1–9.3) N = 164 | 4.1 (2.2–7.3) N = 164 | <0.001 |
7th POD | 3.0 (1.5–6.3) N = 165 | 1.8 (1.1–5.0) N = 163 | <0.001 |
Discharge day | 1.6 (1.2–2.2) N = 159 | 1.3 (1.1–1.9) N = 162 | <0.001 |
3-month | 1.3 (1.1–1.5) N = 154 | 1.3 (1.0–1.5) N = 160 | 0.89 |
6-month | 1.2 (1.0–1.5) N = 153 | 1.3 (1.1–1.5) N = 156 | 0.48 |
12-month | 1.2 (1.0–1.5) N = 147 | 1.2 (1.0–1.5) N = 155 | 0.22 |
12-month eGFR (mL/min/1.73 m2) | 58.8 (46.2–73.3) | 59.0 (48.9–69.4) | 0.74 |
18-month | 1.2 (1.0–1.5) N = 147 | 1.3 (1.0–1.5) N = 152 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolonko, A.; Słabiak-Błaż, N.; Król, R.; Więcek, A. Clinical Outcomes of Transplanted Kidneys from Deceased Donors Using Different Generic Preservation Solutions. Medicina 2022, 58, 1579. https://doi.org/10.3390/medicina58111579
Kolonko A, Słabiak-Błaż N, Król R, Więcek A. Clinical Outcomes of Transplanted Kidneys from Deceased Donors Using Different Generic Preservation Solutions. Medicina. 2022; 58(11):1579. https://doi.org/10.3390/medicina58111579
Chicago/Turabian StyleKolonko, Aureliusz, Natalia Słabiak-Błaż, Robert Król, and Andrzej Więcek. 2022. "Clinical Outcomes of Transplanted Kidneys from Deceased Donors Using Different Generic Preservation Solutions" Medicina 58, no. 11: 1579. https://doi.org/10.3390/medicina58111579
APA StyleKolonko, A., Słabiak-Błaż, N., Król, R., & Więcek, A. (2022). Clinical Outcomes of Transplanted Kidneys from Deceased Donors Using Different Generic Preservation Solutions. Medicina, 58(11), 1579. https://doi.org/10.3390/medicina58111579