Effects of Alcohol Consumption on Oxidative Stress in a Sample of Patients Recruited in a Dietary Center in a Southern University Hospital: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Federazione delle Società Italiane di Nutrizione in Collaborazione con Segretariato Sociale RAI. Roma. 2010. Available online: https://sinu.it/wp-content/uploads/2019/07/Glossario-FeSIN-Alimentazione-e-nutrizione-in-parole.pdf (accessed on 16 November 2021).
- Shield, K.D.; Parry, C.; Rehm, J. Chronic diseases and conditions related to alcohol use. Alcohol Res. 2013, 35, 155–173. [Google Scholar] [PubMed]
- Di Castelnuovo, A.; Costanzo, S.; Bagnardi, V.; Donati, M.B.; Iacoviello, L.; De Gaetano, G. Alcohol dosing and total mortality in men and women: An updated meta-analysis of 34 prospective studies. Arch. Intern. Med. 2006, 166, 437–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Castelnuovo, A.; Rotondo, S.; Iacoviello, L.; Donati, M.B.; De Gaetano, G. Meta-analysis of wine and beer consumption in relation to vascular risk. Circulation 2002, 105, 2836–2844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marmot, M.; Brunner, E. Alcohol and cardiovascular disease: The status of the U shaped curve. BMJ 1991, 303, 565–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsson, S.; Hammar, N.; Grill, V. Alcohol consumption and type 2 diabetes Meta-analysis of epidemiological studies indicates a U-shaped relationship. Diabetologia 2005, 48, 1051–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehm, J.; Baliunas, D.; Borges, G.L.G.; Graham, K.; Irving, H.; Kehoe, T.; Parry, C.D.; Patra, J.; Popova, S.; Poznyak, V.; et al. The relation between different dimensions of alcohol consumption and burden of disease: An overview. Addiction 2010, 105, 817–843. [Google Scholar] [CrossRef] [Green Version]
- Beulens, J.W.J.; van der Schouw, Y.T.; Bergmann, M.M.; Rohrmann, S.; Schulze, M.B.; Buijsse, B.; Grobbee, D.E.; Arriola, L.; Cauchi, S.; Tormo, M.J.; et al. Alcohol consumption and risk of type 2 diabetes in European men and women: Influence of beverage type and body size The EPIC-InterAct study. J. Intern. Med. 2012, 272, 358–370. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, S.; Di Castelnuovo, A.; Donati, M.B.; Iacoviello, L.; De Gaetano, G. Cardiovascular and overall mortality risk in relation to alcohol consumption in patients with cardiovascular disease. Circulation 2010, 121, 1951–1959. [Google Scholar] [CrossRef]
- Costanzo, S.; Di Castelnuovo, A.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Wine, beer or spirit drinking in relation to fatal and non-fatal cardiovascular events: A meta-analysis. Eur. J. Epidemiol. 2011, 26, 833–850. [Google Scholar] [CrossRef]
- Costanzo, S.; Mukamal, K.J.; Di Castelnuovo, A.; Bonaccio, M.; Olivieri, M.; Persichillo, M.; De Curtis, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; et al. Alcohol consumption and hospitalization burden in an adult Italian population: Prospective results from the Moli-sani study. Addiction 2019, 114, 636–650. [Google Scholar] [CrossRef]
- Levi, F.; Pasche, C.; Lucchini, F.; Ghidoni, R.; Ferraroni, M.; La Vecchia, C. Resveratrol and breast cancer risk. Eur. J. Cancer Prev. 2005, 14, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Tramacere, I.; Negri, E.; Bagnardi, V.; Garavello, W.; Rota, M.; Scotti, L.; Islami, F.; Corrao, G.; Boffetta, P.; La Vecchia, C. A meta-analysis of alcohol drinking and oral and pharyngeal cancers. Part 1: Overall results and dose-risk relation. Oral. Oncol. 2010, 46, 497–503. [Google Scholar] [CrossRef]
- Mostofsky, E.; Chahal, H.S.; Mukamal, K.J.; Rimm, E.B.; Mittleman, M.A. Alcohol and Immediate Risk of Cardiovascular Events: A Systematic Review and Dose-Response Meta-Analysis. Circulation 2016, 133, 979–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engler, P.A.; Ramsey, S.E.; Smith, R.J. Alcohol use of diabetes patients: The need for assessment and intervention. Acta Diabetol. 2013, 50, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theodoratou, E.; Timofeeva, M.; Li, X.; Meng, X.; Ioannidis, J.P. Nature, Nurture, and Cancer Risks: Genetic and Nutritional Contributions to Cancer. Annu. Rev. Nutr. 2017, 37, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Glass, L.; Mattson, S.N. Fetal Alcohol Spectrum Disorders: A Case Study. J. Pediatr. Neuropsychol. 2017, 3, 114–135. [Google Scholar] [CrossRef]
- DeBattista, C.; Eisendrath, S.J. Psychiatric disorders. In Current Medical Diagnosis & Treatment, 55th ed.; Papadakis, M.A., McPhee, S.J., Eds.; McGraw-Hill Education: New York, NY, USA, 2016; pp. 1074–1078. [Google Scholar]
- Schuckit, M.A. Alcohol-use disorders. Lancet 2009, 373, 492–501. [Google Scholar] [CrossRef]
- Varela-Rey, M.; Woodhoo, A.; Martinez-Chantar, M.L.; Mato, J.M.; Lu, S.C. Alcohol, DNA methylation, and cancer. Alcohol Res. 2013, 35, 25–35. [Google Scholar]
- La Fauci, V.; Squeri, R.; Spataro, P.; Genovese, C.; Laudani, N.; Alessi, V. Young people, young adults and binge drinking. J. Prev. Med. Hyg. 2019, 60, E376–E385. [Google Scholar]
- Foltran, F.; Gregori, D.; Franchin, L.; Verduci, E.; Giovannini, M. Effect of alcohol consumption in prenatal life, childhood, and adolescence on child development. Nutr. Rev. 2011, 69, 642–659. [Google Scholar] [CrossRef]
- National Institute of Aging (NHI). Available online: https://www.nia.nih.gov/health/facts-about-aging-and-alcohol#:~:text=Lead%20to%20some%20kinds%20of,memory%20loss%20and%20mood%20disorders (accessed on 16 November 2021).
- Liu, J.; Lewis, G.; Evans, L. Understanding aggressive behaviour across the lifespan. J. Psychiatr. Ment. Health Nurs. 2013, 20, 156–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metro, D.; Cernaro, V.; Santoro, D.; Papa, M.; Buemi, M.; Benvenga, S.; Manasseri, L. Beneficial effects of oral pure caffeine on oxidative stress. J. Clin. Transl. Endocrinol. 2017, 10, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Metro, D.; Muraca, U.; Manasseri, L. Role of green tea in oxidative stress prevention. Clin. Ter. 2006, 157, 507–510. [Google Scholar] [PubMed]
- Metro, D.; Cernaro, V.; Papa, M.; Benvenga, S. Marked improvement of thyroid function and autoimmunity by Aloe barbadensis miller juice in patients with subclinical hypothyroidism. J. Clin. Transl. Endocrinol. 2018, 11, 18–25. [Google Scholar] [CrossRef]
- Visioli, F.; Grande, S.; Bogani, P.; Galli, C. The role of antioxidants in the mediterranean diets: Focus on cancer. Eur. J. Cancer Prev. 2004, 13, 337–343. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; Dugo, G.; Ruberto, G.; Leto, C.; Napoli, E.M.; Cicero, N.; Gervasi, T.; Virga, G.; Leone, R.; Licata, M.; et al. Study of quantitative and qualitative variations in essential oils of Sicilian Rosmarinus officinalis L. Nat. Prod. Res. 2015, 29, 1928–1934. [Google Scholar] [CrossRef]
- Cacciola, F.; Beccaria, M.; Oteri, M.; Utczas, M.; Giuffrida, D.; Cicero, N.; Dugo, G.; Dugo, P.; Mondello, L. Chemical characterisation of old cabbage (Brassica oleracea L. var. acephala) seed oil by liquid chromatography and different spectroscopic detection systems. Nat. Prod. Res. 2016, 30, 1646–1654. [Google Scholar]
- Gervasi, T.; Oliveri, F.; Gottuso, V.; Squadrito, M.; Bartolomeo, G.; Cicero, N.; Dugo, G. Nero d’Avola and Perricone cultivars: Determination of polyphenols, flavonoids and anthocyanins in grapes and wines. Nat. Prod. Res. 2016, 30, 2329–2337. [Google Scholar] [CrossRef]
- Alesci, A.; Salvo, A.; Lauriano, E.R.; Gervasi, T.; Palombieri, D.; Bruno, M.; Pergolizzi, S.; Cicero, N. Production and extraction of astaxanthin from Phaffia rhodozyma and its biological effect on alcohol-induced renal hypoxia in Carassius auratus. Nat. Prod. Res. 2015, 29, 1122–1126. [Google Scholar] [CrossRef]
- Corsaro, C.; Cicero, N.; Mallamace, D.; Vasi, S.; Naccari, C.; Salvo, A.; Giofrè, S.; Dugo, G. HR-MAS and NMR towards Foodomics. J. Food Res. Int. 2016, 89, 1085–1094. [Google Scholar] [CrossRef]
- Corsaro, C.; Mallamace, D.; Vasi, S.; Ferrantelli, V.; Dugo, G.; Cicero, N. H HR-MAS NMR Spectroscopy and the Metabolite Determination of Typical Foods in Mediterranean Diet. J. Anal. Methods Chem. 2015, 2015, 175696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benameur, Q.; Gervasi, T.; Pellizzeri, V.; Pľuchtová, M.; Tali-Maama, H.; Assaous, F.; Guettou, B.; Rahal, K.; Gruľová, D.; Dugo, G.; et al. Antibacterial activity of Thymus vulgaris essential oil alone and in combination with cefotaxime against blaESBL producing multidrug resistant Enterobacteriaceae isolates. Nat. Prod. Res. 2019, 33, 2647–2654. [Google Scholar] [CrossRef] [PubMed]
- Metro, D.; Tardugno, R.; Papa, M.; Bisignano, C.; Manasseri, L.; Calabrese, G.; Gervasi, T.; Dugo, G.; Cicero, N. Adherence to the Mediterranean diet in a Sicilian student population. Nat. Prod. Res. 2018, 32, 1775–1781. [Google Scholar] [CrossRef] [PubMed]
- Metro, D.; Papa, M.; Manasseri, L.; Gervasi, G.; Campone, L.; Pellizzeri, V.; Tardugno, R.; Dugo, G. Mediterranean diet in a Sicilian student population. Second part: Breakfast and its nutritional profile. Nat. Prod. Res. 2020, 34, 2255–2261. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; et al. Clinical relevance of biomarkers of oxidative stress. Antioxid. Redox Signal. 2015, 23, 1144–1170. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, V.; Cornelius, C.; Leso, V.; Trovato-Salinaro, A.; Ventimiglia, B.; Cavallaro, M.; Scuto, M.; Rizza, S.; Zanoli, L.; Neri, S.; et al. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim. Biophys. Acta 2012, 1822, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [Green Version]
- Ruggeri, P.; Metro, D.; Fedele, N.; Manasseri, L. Effects of Ethanol acute administration on the lipid peroxidation and on the antioxidant systems in rat brain areas. Ital. J. Bioc. 1997, 46, 184–188. [Google Scholar]
- Lauterburg, B.H.; Velez, M.E. Glutathione deficiency in alcoholics: Risk factor for paracetamol hepatotoxicity. Gut 1988, 29, 1153–1157. [Google Scholar] [CrossRef] [Green Version]
- Mišík, M.; Hoelzl, C.; Wagner, K.-H.; Cavin, C.; Moser, B.; Kundi, M.; Simic, T.; Elbling, L.; Kager, N.; Ferk, F.; et al. Impact of paper filtered coffee on oxidative DNA-damage: Results of a clinical trial. Mutat. Res. 2010, 692, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Pan, J.H.; Kim, S.H.; Lee, J.H.; Park, J.W. Chlorogenic acid ameliorates alcohol-induced liver injuries through scavenging reactive oxygen species. Biochimie 2018, 150, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Takasaki, W.; Yamoto, T.; Manabe, S.; Sato, I.; Tsuda, S. Effect of glutathione (GSH) depletion on DNA damage and blood chemistry in aged and young rats. J. Toxicol. Sci. 2008, 33, 421–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebrin, I.; Sohal, R.S. Pro-oxidant shift in glutathione redox state during aging. Adv. Drug Deliv. Rev. 2008, 60, 1545–1552. [Google Scholar] [CrossRef]
- Dinçer, Y.; Akçay, T.; Alademir, Z.; Ilkova, H. Assessment of DNA base oxidation and glutathione level in patients with type 2 diabetes. Mutat. Res. 2002, 505, 75–81. [Google Scholar] [CrossRef]
- Dincer, Y.; Akcay, T.; Alademir, Z.; Ilkova, H. Effect of oxidative stress on glutathione pathway in red blood cells from patients with insulin-dependent diabetes mellitus. Metabolism 2002, 51, 1360–1362. [Google Scholar] [CrossRef]
- Margutti, P.; Matarrese, P.; Conti, F.; Colasanti, T.; Delunardo, F.; Capozzi, A.; Garofalo, T.; Profumo, E.; Riganò, R.; Siracusano, A.; et al. Autoantibodies to the C-terminal subunit of RLIP76 induce oxidative stress and endothelial cell apoptosis in immune-mediated vascular diseases and atherosclerosis. Blood 2008, 111, 4559–4570. [Google Scholar] [CrossRef] [Green Version]
- Seven, A.; Güzel, S.; Aslan, M.; Hamuryudan, V. Lipid, protein, DNA oxidation and antioxidant status in rheumatoid arthritis. Clin. Biochem. 2008, 41, 538–543. [Google Scholar] [CrossRef]
- Resende, R.; Moreira, P.I.; Proença, T.; Deshpande, A.; Busciglio, J.; Pereira, C.; Oliveira, C.R. Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radic. Biol. Med. 2008, 44, 2051–2057. [Google Scholar] [CrossRef] [Green Version]
- Lang, A.E. The progression of Parkinson disease: A hypothesis. Neurology 2007, 68, 948–952. [Google Scholar] [CrossRef]
- Cornelli, U.; Cornelli, M.; Terranova, R.; Luca, S.; Belcaro, G. Importanza dello stress ossidativo come fattore di rischio per la morbilità. Med. Biol. 2000, 1, 13–18. [Google Scholar]
- Mukhopadhyay, P.; Eid, N.; Abdelmegeed, M.A.; Sen, A. Interplay of Oxidative Stress, Inflammation, and Autophagy: Their Role in Tissue Injury of the Heart, Liver, and Kidney. Oxid. Med. Cell Longev. 2018, 2018, 2090813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzaga, N.A.; Vale, G.T.D.; Parente, J.M.; Yokota, R.; De Martinis, B.S.; Casarini, D.E.; Castro, M.M.; Tirapelli, C.R. Ethanol withdrawal increases blood pressure and vascular oxidative stress: A role for angiotensin type 1 receptors. J. Am. Soc. Hypertens. 2018, 12, 561–573. [Google Scholar] [CrossRef]
- Vale, G.T.D.; Simplicio, J.A.; Gonzaga, N.A.; Yokota, R.; Ribeiro, A.A.; Casarini, D.; De Martinis, B.; Tirapelli, C.R. Nebivolol prevents vascular oxidative stress and hypertension in rats chronically treated with ethanol. Atherosclerosis 2018, 274, 67–76. [Google Scholar] [CrossRef]
- Hopps, E.; Noto, D.; Caimi, G.; Averna, M.R. A novel component of the metabolic syndrome: The oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 72–77. [Google Scholar] [CrossRef]
- Moussa, S.A. Oxidative stress in diabetes mellitus. Rom. J. Biophys. 2008, 18, 225–236. [Google Scholar]
- Bandeira, S.d.M.; Guedes, G.d.S.; da Fonseca, L.J.; Pires, A.S.; Gelain, D.P.; Moreira, J.C.F.; Rabelo, L.A.; Vasconcelos, S.M.L.; Goulart, M.O.F. Characterization of blood oxidative stress in type 2 diabetes mellitus patients: Increase in lipid peroxidation and SOD activity. Oxid. Med. Cell Longev. 2012, 2012, 819310. [Google Scholar] [CrossRef] [Green Version]
- Das, J.; Vasan, V.; Sil, P.C. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. Toxicol. Appl. Pharmacol. 2012, 258, 296–308. [Google Scholar] [CrossRef]
T0 | T1 | p | |
---|---|---|---|
Age | 24.6 ± 2.4 | - | |
Gender | |||
Male | 31 (59.6) | 31 (59.6) | |
Female | 21 (40.4) | 21 (40.4) | |
Education | |||
LOOH | 2.1 (1.74–2.2) | 4.2 (3.9–4.42) | <0.001 * |
MDA | 0.95 (0.88–1.0) | 2.35 (2.3–2.6) | <0.001 * |
TAC | 407.5 (390–418.5) | 230 (225–244) | <0.001 * |
GSH | 12.1 (10.77–14.9) | 6.45 (5.9–6.8) | <0.001 * |
GSSH | 2.81 (2.55–3.09) | 4.3 (3.9–4.7) | <0.001 * |
Male | Female | |||
---|---|---|---|---|
Median (I–III Quartile) | Median (I–III Quartile) | p | ||
LOOH | T0 | 2.15 (1.74–2.20) | 1.98 (1.6–2.1) | <0.001 * |
T1 | 4.1 (3.9–4.4) | 4.3 (4.1–4.6) | <0.001 * | |
p | 0.17 | 0.1 | ||
MDA | T0 | 0.95 (0.87–1.01) | 0.95 (0.9–0.99) | <0.001 * |
T1 | 2.3 (2.26–2.35) | 2.7 (2.55–2.8) | <0.001 * | |
p | 0.84 | <0.001 * | ||
TAC | T0 | 412 (390–418) | 407 (395–420) | <0.001 * |
T1 | 238 (228–249) | 225 (219–230) | <0.001 * | |
p | 0.65 | 0.0002 * | ||
GSH | T0 | 13.9 (11.05–15.9) | 11.4 (10.3–12.1) | <0.001 * |
T1 | 6.7 (6.35–6.85) | 5.9 (5.8–6.4) | <0.001 * | |
p | 0.004 * | 0.0005 * | ||
T0 | 2.85 (2.7–3.1) | 2.64 (2.45–2.97) | <0.001 * | |
GSSH | T1 | 4.5 (4.12–4.65) | 4.1 (3.7–4.7) | <0.001 * |
p | 0.05 * | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metro, D.; Corallo, F.; Fedele, F.; Buda, M.; Manasseri, L.; Buono, V.L.; Quartarone, A.; Bonanno, L. Effects of Alcohol Consumption on Oxidative Stress in a Sample of Patients Recruited in a Dietary Center in a Southern University Hospital: A Retrospective Study. Medicina 2022, 58, 1670. https://doi.org/10.3390/medicina58111670
Metro D, Corallo F, Fedele F, Buda M, Manasseri L, Buono VL, Quartarone A, Bonanno L. Effects of Alcohol Consumption on Oxidative Stress in a Sample of Patients Recruited in a Dietary Center in a Southern University Hospital: A Retrospective Study. Medicina. 2022; 58(11):1670. https://doi.org/10.3390/medicina58111670
Chicago/Turabian StyleMetro, Daniela, Francesco Corallo, Francesco Fedele, Martina Buda, Luigi Manasseri, Viviana Lo Buono, Angelo Quartarone, and Lilla Bonanno. 2022. "Effects of Alcohol Consumption on Oxidative Stress in a Sample of Patients Recruited in a Dietary Center in a Southern University Hospital: A Retrospective Study" Medicina 58, no. 11: 1670. https://doi.org/10.3390/medicina58111670
APA StyleMetro, D., Corallo, F., Fedele, F., Buda, M., Manasseri, L., Buono, V. L., Quartarone, A., & Bonanno, L. (2022). Effects of Alcohol Consumption on Oxidative Stress in a Sample of Patients Recruited in a Dietary Center in a Southern University Hospital: A Retrospective Study. Medicina, 58(11), 1670. https://doi.org/10.3390/medicina58111670