Concurrent Aerobic Plus Resistance Training Elicits Different Effects on Short-Term Blood Pressure Variability of Hypertensive Patients in Relation to Their Nocturnal Blood Pressure Pattern
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parati, G.; Ochoa, J.E.; Lombardi, C.; Bilo, G. Assessment and management of blood-pressure variability. Nat. Rev. Cardiol. 2013, 10, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Cremer, A.; Doublet, J.; Boulestreau, R.; Gaudissard, J.; Tzourio, C.; Gosse, P. Short-term blood pressure variability, arterial stiffness, and cardiovascular events: Results from the Bordeaux cohort. J. Hypertens. 2021, 39, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Luo, X.; Jia, H.; Yu, B. The Effect of Blood Pressure Variability on Coronary Atherosclerosis Plaques. Front. Cardiovasc. Med. 2022, 15, 803810. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA. Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. JACC 2018, 71, e127–e248. [Google Scholar] [CrossRef]
- Caminiti, G.; Mancuso, A.; Raposo, A.F.; Fossati, C.; Selli, S.; Volterrani, M. Different exercise modalities exert opposite acute effects on short-term blood pressure variability in male patients with hypertension. Eur. J. Prev. Cardiol. 2019, 26, 1028–1031. [Google Scholar] [CrossRef]
- Smolensky, M.H.; Hermida, R.C.; Castriotta, R.J.; Portaluppi, F. Role of sleep-wakecycle on blood pressure circadian rhythms and hypertension. Sleep Med. 2007, 8, 668–680. [Google Scholar] [CrossRef]
- Ingelsson, E.; Björklund-Bodegård, K.; Lind, L.; Arnlöv, J.; Sundström, J. Diurnal blood pressure pattern and risk of congestive heart failure. JAMA 2006, 295, 2859–2866. [Google Scholar] [CrossRef] [Green Version]
- Kario, K.; Pickering, T.G.; Matsuo, T.; Hoshide, S.; Schwartz, J.E.; Shimada, K. Strokeprognosis and abnormal nocturnalblood pressure falls in older hypertensives. Hypertension 2001, 38, 852–857. [Google Scholar] [CrossRef] [Green Version]
- ABC-H Investigators Roush, G.C.; Fagard, R.H.; Salles, G.F.; Pierdomenico, S.D.; Reboldi, G.; Verdecchia, P.; Eguchi, K.; Kario, K.; Hoshide, S.; Polonia, J.; et al. Prognostic impact from clinic, daytime, and night-time systolic blood pressure in nine cohorts of 13,844 patients with hypertension. J. Hypertens. 2014, 32, 2332–2340. [Google Scholar] [CrossRef]
- Fagard, R.H.; Celis, H.; Thijs, L.; Staessen, J.A.; Clement, D.L.; De Buyzere, M.L.; De Bacquer, D.A. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension 2008, 51, 55–61. [Google Scholar] [CrossRef]
- Ohkubo, T.; Hozawa, A.; Yamaguchi, J.; Kikuya, M.; Ohmori, K.; Michimata, M.; Matsubara, M.; Hashimoto, J.; Hoshi, H.; Araki, T.; et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: The Ohasama study. J. Hypertens. 2002, 20, 2183–2189. [Google Scholar] [CrossRef] [PubMed]
- Salles, G.F.; Reboldi, G.; Fagard, R.H.; Cardoso, C.R.; Pierdomenico, S.D.; Verdecchia, P.; Roush, G.C. Prognostic effect of the nocturnal blood pressure fall in hypertensive patients: The ambulatory blood pressure collaboration in patients with hypertension (ABC-H) meta-analysis. Hypertension 2016, 67, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Palatini, P.; Reboldi, G.; Saladini, F.; Angeli, F.; Mos, L.; Rattazzi, M.; Vriz, O.; Verdecchia, P. Dipping pattern and short-term blood pressure variability are stronger predictors of cardiovascular events than average 24-h blood pressure in young hypertensive subjects. Eur. J. Prev. Cardiol. 2022, 5, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, S.; Garofalo, C.; Gabbai, F.B.; Chiodini, P.; Signoriello, S.; Paoletti, E.; Ravera, M.; Bussalino, E.; Bellizzi, V.; Liberti, M.E.; et al. Dipping Status, Ambulatory Blood Pressure Control, Cardiovascular Disease, and Kidney Disease Progression: A Multicenter Cohort Study of CKD. Am. J. Kidney Dis. 2022. Corrected proof, published online, In press. [Google Scholar] [CrossRef]
- Rimoldi, S.F.; Scherrer, U.; Messerli, F.H. Secondary arterial hypertension: When, who, and how to screen? Eur. Heart J. 2014, 35, 1245–1254. [Google Scholar] [CrossRef] [Green Version]
- Mezue, K.; Isiguzo, G.; Madu, C.; Nwuruku, G.; Rangaswami, J.; Baugh, D.; Madu, E. Nocturnal Non-dipping Blood Pressure Profile in Black Normotensives Is Associated with Cardiac Target Organ Damage. Ethn. Dis. 2016, 26, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Nami, R.; Mondillo, S.; Agricola, E.; Lenti, S.; Ferro, G.; Nami, N.; Tarantino, M.; Glauco, G.; Spanò, E.; Gennari, C. Aerobicexercise training fails to reduce blood pressure in nondipper-typehypertension. Am. J. Hypertens. 2000, 13, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Boa Sorte Silva, N.C.; Gregory, M.A.; Gill, D.P.; McGowan, C.L.; Petrella, R.J. The Impact of Blood Pressure Dipping Status on Cognition, Mobility, and Cardiovascular Health in Older Adults Following an Exercise Program. Gerontol. Geriatr. Med. 2018, 4, 2333721418770333. [Google Scholar] [CrossRef] [Green Version]
- Brooks, D.; Solway, S.; Gibbons, W.J. ATS statement on six-minute walk test. Am. J. Respir. Crit. Care Med. 2003, 167, 1287. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Mena, L.; Pintos, S.; Queipo, N.V.; Aizpúrua, J.A.; Maestre, G.; Sulbarán, T. A reliable index for the prognostic significance of blood pressure variability. J. Hypertens. 2005, 23, 505–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, L.E.; Weir, J.P. ASEP Procedures Recommendation I: Accurate Assessment of Muscular Strength and Power. J. Exerc. Physiol. 2001, 4, 1–21. [Google Scholar]
- Pagonas, N.; Dimeo, F.; Bauer, F.; Seibert, F.; Kiziler, F.; Zidek, W.; Westhoff, T.H. The impact of aerobic exercise on blood pressurevariability. J. Hum. Hypertens. 2014, 28, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Caminiti, G.; Iellamo, F.; Mancuso, A.; Cerrito, A.; Montano, M.; Manzi, V.; Volterrani, M. Effects of 12 weeks of aerobic versus combined aerobic plus resistance exercise training on short-term blood pressure variability in patients with hypertension. J. Appl. Physiol. 2021, 130, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Matias, L.A.S.; Mariano, I.M.; Batista, J.P.; de Souza, T.C.F.; Amaral, A.L.; Dechichi, J.G.C.; de Lima Rodrigues, M.; Carrijo, V.H.V.; Cunha, T.M.; Puga, G.M. Acute and chronic effects of combined exercise on ambulatory blood pressure and its variability in hypertensive postmenopausal women. Chin. J. Physiol. 2020, 63, 227–234. [Google Scholar]
- Routledge, F.S.; McFetridge-Durdle, J.A.; Dean, C.R. Stress, menopausal status and nocturnal blood pressure dipping patterns among hypertensive women. Can. J. Cardiol. 2009, 25, e157–e163. [Google Scholar] [CrossRef] [Green Version]
- Mitu, O.; Roca, M.; Gurzu, B.; Magdalena, M.; Constantin, L.; Jitaru, A.; Al Namat, R.; Gavril, R.S.; Mitu, F. Predictors of the blood pressure non-dipping profile innewly diagnosed hypertensive patients. J. Hypertens. Res. 2016, 2, 121. [Google Scholar]
- Ramirez-Jimenez, M.; Morales-Palomo, F.; Moreno-Cabañas, A.; Alvarez-Jimenez, L.; Ortega, J.F.; Mora-Rodriguez, R. Aerobic exercise training improves nocturnal blood pressure dipping in medicated hypertensive individuals. Blood Press. Monit. 2022, 27, 272–275. [Google Scholar] [CrossRef]
- Takeda, A.; Toda, T.; Fujii, T.; Matsui, N. Bedtime administration of long-acting antihypertensive drugs restores normal nocturnal blood pressure fall in nondippers with essential hypertension. Clin. Exp. Nephrol. 2009, 13, 467–472. [Google Scholar] [CrossRef]
- Park, S.; Jastremski, A.C.; Wallace, J.P. Time of day for exercise on blood pressure reduction in dipping and nondipping hypertension. J. Human Hypertens. 2005, 19, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, L.E.; Gamboa, A.; Shibao, C.; Black, B.K.; Diedrich, A.; Raj, S.R.; Robertson, D.; Biaggioni, I. Nocturnal blood pressure dipping in the hypertension of autonomic failure. Hypertension 2009, 53, 363–369. [Google Scholar] [CrossRef] [Green Version]
- de la Sierra, A.; Redon, J.; Banegas, J.R.; Segura, J.; Parati, G.; Gorostidi, M.; de la Cruz, J.J.; Sobrino, J.; Llisterri, J.L.; Alonso, J.; et al. Spanish Society of Hypertension Ambulatory Blood Pressure Monitoring Registry Investigators. Prevalence and factors associated with circadian blood pressure patterns in hypertensive patients. Hypertension 2009, 53, 466–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Routledge, F.; McFetridge-Durdle, J. Nondipping blood pressure patterns among individuals with essential hypertension: A review of the literature. Eur. J. Cardiovasc. Nurs. 2007, 6, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Mousa, T.; el-Sayed, M.A.; Motawea, A.K.; Salama, M.A.; Elhendy, A. Association of blunted nighttime blood pressure dipping with coronary artery stenosis in men. Am. J. Hypertens. 2004, 17, 977–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, B.; Sun, L.; Gao, Y.; Guo, Q.; Guo, L.; Wang, X.; Wang, G. Blood pressure reverse dipping may associate with stable coronary artery disease in patients with essential hypertension: A cross-sectional study. Sci. Rep. 2016, 6, 25410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsioufis, C.; Andrikou, I.; Thomopoulos, C.; Syrseloudis, D.; Stergiou, G.; Stefanadis, C. Increased nighttime blood pressure or nondipping profile for prediction of cardiovascular outcomes. J. Hum. Hypertens. 2011, 25, 281–293. [Google Scholar] [CrossRef]
Overall Population (n = 64) | Non-Dipper (n = 35) | Dipper (n = 29) | |
---|---|---|---|
Age, y Males/females, n (%) | 66.1 ± 12.7 46 (71.8)/18 (28.2) | 68.6 ± 13.4 * 22 (62.8)/13 (37.2) | 62.7 ± 15.2 24 (82.7)/5(17.2) |
BMI, Kg/m2 | 27.6 ± 7.1 | 28.4 ± 8.3 * | 26.2 ± 7.8 |
Resting HR, bpm | 68.7 ± 13.4 | 68.9 ± 11.1 | 69.0 ± 17.2 |
Office systolic BP, mmHg | 123.3 ± 44.5 | 122.9 ± 39.2 | 123.7 ± 34.2 |
Office diastolic BP, mmHg | 83.5 ± 11.8 | 84.6 ± 16.3 | 82.0 ± 14.1 |
Previous CABG/PCI | 23 (35.9)/48 (75.0) | 14 (40.0)/27 (77.1) | 9 (31.1)/21 (72.4) |
Comorbidities | |||
Diabetes, n (%) | 11 (17.1) | 6 (17.1) | 5 (17.2) |
COPD, n (%) | 19 (29.6) | 11 (34.4) | 8 (27.5) |
OSAS, n (%) | 15 (23.4) | 11 (31.4) * | 4 (13.7) |
Carotid artery disease, n (%) | 28 (43.7) | 15 (42.8) | 13 (44.8) |
History of smoke, n (%) | 39 (60.9) | 21 (60.0) | 18 (62.0) |
Anti-hypertensive treatment Anti-hypertensive drugs, n ACE-i/ARBs, n (%) Calcium-channel antagonists, n (%) Beta-blockers, n (%) Thiazide diuretics, n (%) Aldosteron-antagonists, n (%) Clonidine, n (%) Nitrates, n (%) Aliskiren, n (%) | 3.4 ± 1.1 58 (90.6) 39 (60.9) 28 (43.7) 46 (71.8) 15 (23.4) 7 (10.9) 21 (32.8) 3 (4.6) | 4.2 ± 1.7 * 31 (88.5) 22 (66.8) 18 (51.4) 25 (71.4) 8 (22.8) 5 (14.2) 13 (37.1) 3 (8.5) | 2.5 ± 0.9 27(93.1) 17 (58.6) 10 (34.4) 21 (72.4) 7 (24.1) 2 (6.8) 8 (27.5) 0 |
Non-Dipping Pattern | Dipping Pattern | |||
---|---|---|---|---|
Baseline | 12-Weeks | Baseline | 12-Weeks | |
Exercise tolerance | ||||
Time at ergometric test, s | 413.2 ± 44 | 567.2 ± 44 ⴕ | 407.8 ± 44 | 571.5 ± 39 ⴕ |
Distance at 6MWT, m | 395.6 ± 65 | 449.3 ± 71 ⴕ | 378.6 ± 555 | 439.9 ± 70 ⴕ |
Borg’s scale | 10.8 ± 1.7 | 7.9 ± 1.6 ⴕ | 10.2 ± 1.9 | 7.3 ± 1.1 ⴕ |
Blood Pressure | ||||
24/h SBP, mmHg | 121.6 ± 28.5 | 120.4 ± 32.4 | 123.7 ± 36.2 | 115.3 ± 29.7 ⴕ * |
Daytime SBP, mmHg | 124.3 ± 30.6 | 123.6 ± 34.0 | 130.6 ± 28.5 | 122.1 ± 31.3 ⴕ * |
Nighttime SBP, mmHg | 118.8 ± 123.3 | 116.8 ± 26.1 | 111.7 ± 22.3 | 110.0 ± 24.8 |
24/h DBP, mmHg | 70.3 ± 16.3 | 69.3 ± 18.1 | 70.8 ± 15.4 | 69.4 ± 19.4 |
Daytime DBP, mmHg | 73.4 ± 22.0 | 73.3 ± 18.4 | 77.3 ± 22.3 | 75.8 ± 17.9 |
Nighttime DBP, mmHg | 67.1 ± 20.5 | 64.9 ± 17.5 | 65.7 ± 19.6 | 63.0 ± 23.6 |
BP Variability | ||||
24/h SBPV, mmHg | 8.8 ± 2.0 | 8.6 ± 1.7 | 9.3 ± 2.1 | 8.1 ± 1.8 ⴕ * |
Daytime SBPV, mmHg | 8.5 ± 1.6 | 8.4 ± 1.2 | 9.4 ± 2.2 | 8.0 ± 2.0 ⴕ * |
Nighttime SBPV, mmHg | 9.4 ± 2.4 | 9.2 ± 2.0 | 9.4 ± 1.7 | 9.2 ± 1.9 |
24/h DBPV, mmHg | 6.9 ± 1.1 | 6.7 ± 0.8 | 6.5 ± 1.3 | 6.3 ± 1.5 |
Daytime DBPV, mmHg | 6.7 ± 0.7 | 6.5 ± 1.2 | 6.6 ± 0.7 | 6.2 ± 0.9 |
Nighttime DBPV, mmHg | 7.1 ± 1.9 | 7.5 ± 1.3 | 6.5 ± 0.8 | 6.7 ± 0.6 |
Heart rate | ||||
24/h, bpm | 63.8 ± 25.6 | 63.1 ± 23.2 | 61.1 ± 18.5 | 60.5 ± 27.8 |
Daytime, bpm | 65.2 ± 21.2 | 64.6 ± 19.4 | 62.9 ± 19.7 | 61.4 ± 22.6 |
Nighttime, bpm | 62.5 ± 28.3 | 61.8 ± 21.1 | 58.6 ± 26.2 | 59.7 ± 19.9 |
F | p | |
---|---|---|
Age | 1.44 | 0.14 |
BMI | 2.31 | 0.08 |
OSAS | 0.46 | 0.19 |
Nocturnal BP pattern | 5.36 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caminiti, G.; Iellamo, F.; Perrone, M.A.; Marazzi, G.; Gismondi, A.; Cerrito, A.; Franchini, A.; Volterrani, M. Concurrent Aerobic Plus Resistance Training Elicits Different Effects on Short-Term Blood Pressure Variability of Hypertensive Patients in Relation to Their Nocturnal Blood Pressure Pattern. Medicina 2022, 58, 1682. https://doi.org/10.3390/medicina58111682
Caminiti G, Iellamo F, Perrone MA, Marazzi G, Gismondi A, Cerrito A, Franchini A, Volterrani M. Concurrent Aerobic Plus Resistance Training Elicits Different Effects on Short-Term Blood Pressure Variability of Hypertensive Patients in Relation to Their Nocturnal Blood Pressure Pattern. Medicina. 2022; 58(11):1682. https://doi.org/10.3390/medicina58111682
Chicago/Turabian StyleCaminiti, Giuseppe, Ferdinando Iellamo, Marco Alfonso Perrone, Giuseppe Marazzi, Alessandro Gismondi, Anna Cerrito, Alessio Franchini, and Maurizio Volterrani. 2022. "Concurrent Aerobic Plus Resistance Training Elicits Different Effects on Short-Term Blood Pressure Variability of Hypertensive Patients in Relation to Their Nocturnal Blood Pressure Pattern" Medicina 58, no. 11: 1682. https://doi.org/10.3390/medicina58111682
APA StyleCaminiti, G., Iellamo, F., Perrone, M. A., Marazzi, G., Gismondi, A., Cerrito, A., Franchini, A., & Volterrani, M. (2022). Concurrent Aerobic Plus Resistance Training Elicits Different Effects on Short-Term Blood Pressure Variability of Hypertensive Patients in Relation to Their Nocturnal Blood Pressure Pattern. Medicina, 58(11), 1682. https://doi.org/10.3390/medicina58111682