Behavioral and Dietary Habits That Could Influence Both COVID-19 and Non-Communicable Civilization Disease Prevention—What Have We Learned Up to Now?
Abstract
:1. Introduction
2. Structure of SARS-CoV-2: Mechanism of SARS-CoV-2 Invasion into Host Cells
3. Host Response to SARS-CoV-2
4. Aim
5. COVID-19 Impact on Individual’s Physical Health and Ways to Improve It
6. Mental Health in COVID-19 Pandemics
7. Regular and Adequate Sleep
8. Exercise as a Source to Prevent COVID-19
9. Hygiene in COVID-19 Pandemic
10. Dietary Habits That Could Help in Prevention of COVID-19
11. Hydration
12. Vitamin D
13. Vitamin C
14. Vitamin E
15. Selenium and Zinc
16. Mediterranean Diet
17. Vegetarian Diet
18. Green Tea
19. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuki, K.; Fujiogi, M.; Koutsogiannaki, S. COVID-19 pathophysiology: A review. Clin. Immunol. 2020, 215, 108427. [Google Scholar] [CrossRef] [PubMed]
- Brodeur, A.; Gray, D.; Islam, A.; Bhuiyan, S.J. A Literature Review of the Economics of COVID-19; GLO Discussion Paper No. 601; Global Labor Organization (GLO): Essen, Germany, 2020; ISSN 2365-9793. [Google Scholar]
- Qiu, H.; Wu, J.; Hong, L.; Luo, Y.; Song, Q.; Chen, D. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: An observational cohort study. Lancet Infect. Dis. 2020, 20, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early transmission dynamics in Wuhan, China, of Novel Coronavirus-infected pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Fong, M.W.; Gao, H.; Wong, J.Y.; Xiao, J.; Shiu, E.Y.C.; Ryu, S.; Cowling, B.J. Nonpharmaceutical Measures for Pandemic Influenza in Nonhealthcare Settings—Social Distancing Measures. Emerg. Infect. Dis. 2020, 26, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. China Medical Treatment Expert Group for COVID-19. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 9, 1404–1412. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Mu, J.; Li, K.; Wang, Y.; Jin, L.; Lin, F.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Han, X.; Jiang, N.; Cao, Y.; Alwalid, O.; Gu, J.; Fan, Y.; Zheng, C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect. Dis. 2020, 20, 425–434. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, B.; Zheng, X.; Wang, D.; Zhao, C.; Qi, Y.; Sun, R.; Tian, Z.; Xu, X.; Wei, H. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl. Sci. Rev. 2020, 7, 998–1002. [Google Scholar] [CrossRef] [Green Version]
- Knittel, C.R.; Ozaltun, B. What Does and Does Not Correlate with COVID-19 Death Rates; NBER Working Paper No. 27391; National Bureau of Economic: Cambridge, MA, USA, 2020; Available online: http://www.nber.org/papers/w27391 (accessed on 10 September 2022).
- Rabi, F.A.; Al Zoubi, M.S.; Kasasbeh, G.A.; Salameh, D.M.; Al-Nasser, A.D. SARS-CoV-2 and Coronavirus disease 2019: What we know so far. Pathogens 2020, 9, 231. [Google Scholar] [CrossRef]
- Bosch, B.J.; Van der Zee, R.; De Haan, C.A.; Rottier, P.J. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J. Virol. 2003, 77, 8801–8811. [Google Scholar] [CrossRef]
- Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426, 450–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, H.P.; Look, D.C.; Shi, L.; Hickey, M.; Pewe, L.; Netland, J.; Farzan, M.; Wohlford-Lenane, C.; Perlman, S.; McCray, P.B., Jr. ACE2 receptor expression and severe acute respiratory syndrome corona virus infection depend on differentiation of human airway epithelia. J. Virol. 2005, 79, 14614–14621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, I.; Pan, J.; Takizawa, T.; Nakanishi, Y. Virus clearance through apoptosis dependent phagocytosis of influenza A virus-infected cells by macrophages. J. Virol. 2020, 74, 3399–3403. [Google Scholar] [CrossRef] [Green Version]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Ma, K.; Shang, K.; Wang, W.; Tian, D.S. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, S.; Jiang, T.; Fan, R.; Zhang, Z.; Jinsong, M.; Li, K.; Wang, Y.; Jin, L.; Lin, F.; et al. High levels of circulating GM-CSF(+)CD4(+) T cells are predictive of poor outcomes in sepsis patients: A prospective cohort study. Cell. Mol. Immunol. 2019, 16, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, T.; Hill, T.; Li, K.; Peters, C.J.; Tseng, C.T. Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages anddendritic cells. J. Virol. 2009, 83, 3039–3048. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Su, X.; Pan, P.; Zhang, L.; Hu, Y.; Tan, H.; Wu, D.; Liu, B.; Li, H.; Li, H.; et al. Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Sci. Rep. 2016, 6, 37252. [Google Scholar] [CrossRef] [Green Version]
- Small, B.A.; Dressel, S.A.; Lawrence, C.W.; Drake, D.R., 3rd; Stoler, M.H.; Richard, I.; Enelow, R.I.; Braciale, T.J. CD8+ T cell-mediated injury in vivo progresses in the absence of effector T cells. J. Exp. Med. 2001, 194, 1835–1846. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Pappas, C.; Belser, J.A.; Houser, K.V.; Zhong, W.; Wadford, D.A.; Stevens, T.; Balczon, R.; Katz, J.M.; Tumpey, T.M. Human pulmonary microvascular endothelial cells support productive replication of highly pathogenic avian influenza viruses: Possible involvement in the pathogenesis of human H5N1 virus infection. J. Virol. 2012, 86, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Lovren, F.; Pan, Y.; Quan, A.; Teoh, H.; Wang, G.; Shukla, P.C.; Levitt, K.S.; Oudit, G.Y.; Al-Omran, M.; Stewart, D.J.; et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H1377–H1384. [Google Scholar] [CrossRef]
- Chatterji, P.; Li, Y. Effects of the COVID-19 Pandemic on Outpatient Providers in the US; NBER Working Paper No. 27173; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Alé-Chilet, J.; Atal, J.P.; Dominguez-Rivera, P. Where Are the Missing Emergencies? Lockdown and Health Risk during the Pandemic. PIER Working Paper 20-016. 2020. Available online: https://economics.sas.upenn.edu/system/files/working-papers/20016%20PIER%20Paper%20Submission%20_NEW.pdf (accessed on 10 September 2022).
- Copaja-Corzo, C.; Miranda-Chavez, B.; Vizcarra-Jiménez, D.; Hueda-Zavaleta, M.; Rivarola-Hidalgo, M.; Parihuana-Travezaño, E.G.; Taype-Rondan, A. Sleep Disorders and Their Associated Factors during the COVID-19 Pandemic: Data from Peruvian Medical Students. Medicina 2022, 58, 1325. [Google Scholar] [CrossRef] [PubMed]
- Percudani, M.; Porcellana, M.; Di Bernardo, I.; Limosani, I.; Negri, A.; Zerbinati, L.; Morganti, C. The Impact of COVID-19 Lockdowns in a Sample of Outpatients in a Mental Health Department of a Metropolitan Hospital in Milan. Medicina 2022, 58, 1274. [Google Scholar] [CrossRef] [PubMed]
- AlSaif, H.I.; Alenezi, M.N.; Asiri, M.; Alshaibani, K.O.; Alrasheed, A.A.; Alsaad, S.M.; Batais, M.A. Empathy among Saudi Residents at a Tertiary Academic Center during the COVID-19 Pandemic and Its Association with Perceived Stress. Medicina 2022, 58, 1258. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.A.; O’Connor, R.C.; Perry, V.H.; Tracey, I.; Wessely, S.; Arseneault, L.; Ballard, C.G.; Christensen, H.; Cohen Silver, R.; Everall, I.; et al. Multidisciplinary research priorities for the COVID-19 pandemic: A call for action for mental health science. Lancet Psychiatry 2020, 7, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Holt-Lunstad, J.; Smith, T.B.; Baker, M.; Harris, T.; Stephenson, D. Loneliness and Social Isolation as Risk Factors for Mortality: A Meta-Analytic Review. Perspect. Psychol. Sci. 2015, 10, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Groarke, J.M.; Berry, E.; Graham-Wisener, L.; McKenna Plumley, P.E.; McGlinchey, E.; Armour, C. Loneliness in the UK during the COVID-19 pandemic: Cross-sectional results from the COVID-19 Psychological Wellbeing Study. PLoS ONE 2020, 15, e0239698. [Google Scholar] [CrossRef]
- Reynolds, D.L.; Garay, J.R.; Deamond, S.L.; Moran, M.K.; Gold, W.; Styra, R. Understanding, compliance and psychological impact of the SARS quarantine experience. Epidemiol. Infect. 2008, 136, 997–1007. [Google Scholar] [CrossRef]
- Béland, L.P.; Brodeur, A.; Mikola, D.; Wright, T. The Short-Term Economic Consequences of COVID-19: Occupation Tasks and Mental Health in Canada; IZA 57 Discussion Paper No. 13254; Institute of Labor Economics: Bonn, Germany, 2020; Available online: http://ftp.iza.org/dp13254.pdf (accessed on 10 September 2022).
- Etheridge, B.; Spantig, L. The Gender Gap in Mental Well-Being During the COVID-19 Outbreak: Evidence from the UK; ISER Working Paper Series No. 2020–08; Institute for Social and Economic Research: Colchester, UK, 2020; Available online: https://www.iser.essex.ac.uk/research/publications/working-papers/iser/2020-08.pdf (accessed on 10 September 2022).
- Armbruster, S.; Klotzbücher, V. Lost in Lockdown? COVID-19, Social Distancing, Andmental Health in Germany; Discussion Paper No. 2020–04; University of Freiburg, Wilfried Guth Endowed Chair for Constitutional Political Economy and Competition Policy: Freiburg, Germany, 2020. [Google Scholar] [CrossRef]
- Golubovic, S.T.; Zikic, O.; Nikolic, G.; Kostic, J.; Simonovic, M.; Binic, I.; Gugleta, U. Possible impact of COVID-19 pandemic and lockdown on suicide behavior among patients in Southeast Serbia. Open Med. 2020, 17, 1045–1056. [Google Scholar] [CrossRef]
- Alschuler, L.; Weilb, A.; Horwitza, R.; Paul Stamets, P.; Chiassona, A.M.; Robert Crocker, R.; Maizes, V. Integrative considerations during the COVID-19 pandemic. Explore 2020, 16, 354–356. [Google Scholar] [CrossRef]
- Black, D.; Slavich, G.M. Mindfulness meditation and the immune system: A systematic review of randomized controlled trials. Ann. N. Y. Acad. Sci. 2016, 1373, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Abascal, K.; Yarnell, E. Herbal treatments for pandemic influenza: Learning from the eclectics’ experience. Altern. Complement. Ther. 2006, 12, 214–221. [Google Scholar] [CrossRef]
- Gupta, R.; Grover, S.; Basu, A.; Krishnan, V.; Tripathi, A.; Subramanyam, A.; Nischal, A.; Hussain, A.; Mehra, A.; Ambekar, A.; et al. Changes in sleep pattern and sleep quality during COVID-19 lockdown. Indian J. Psychiatry 2020, 62, 370–378. [Google Scholar] [CrossRef]
- Voitsidis, P.; Gliatas, I.; Bairachtari, V.; Papadopoulou, K.; Papageorgiou, G.; Parlapani, E.; Syngelakis, M.; Holeva, V.; Diakogiannis, I. Insomnia during the COVID-19 pandemic in a Greek population. Psychiatry Res. 2020, 289, 113076. [Google Scholar] [CrossRef]
- Borbély, A.A.; Daan, S.; Wirz-Justice, A.; Deboer, T. The two-process model of sleep regulation: A reappraisal. J. Sleep Res. 2016, 25, 131–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, M.A.; Bettencourt, L.; Kaye, L.; Moturu, S.T.; Nguyen, K.T.; Olgin, J.E.; Pletcher, J.M.; Marcus, G.M. Direct measurements of smartphone screen-time: Relationships with demographics and sleep. PLoS ONE 2016, 11, e0165331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piovezan, R.D.; Hirotsu, C.; Feres, M.C.; Cintra, F.D.; Andersen, M.L.; Tufik, S.; Poyares, D. Obstructive sleep apnea and objective short sleep duration are independently associated with the risk of serum vitamin D deficiency. PLoS ONE 2017, 12, e0180901. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, D.L.; Hirotsu, C.; Tufik, S.; Andersen, M.L. The interfaces between vitamin D., sleep and pain. J. Endocrinol. 2020, 234, R23–R36. [Google Scholar] [CrossRef] [Green Version]
- Join, I.F.M.; Calendar, P. Boosting Immunity: Functional Medicine Tips on Prevention & Immunity Boosting during the COVID-19 (Coronavirus) Outbreak. 2020. Available online: https://www.ifm.org/news-insights/boosting-immunity-functional-medicine-tips-prevention-immunity-boosting-covid-19-coronavirus-outbreak/ (accessed on 10 September 2022).
- Heyland, D.K.; Stapleton, R.D.; Mourtzakis, M.; Hough, C.L.; Morris, P.; Nicolaas, E.; Colantuoni, D.E.; Day, A.; Prado, C.M.; Needham, D.M. Combining nutrition and exercise to optimize survival and recovery from critical illness: Conceptual and methodological issues. Clin. Nutr. 2016, 35, 1196–1206. [Google Scholar] [CrossRef]
- Pescaru, C.C.; Marițescu, A.; Costin, E.O.; Trăilă, D.; Marc, M.S.; Trușculescu, A.A.; Pescaru, A.; Oancea, C.I. The Effects of COVID-19 on Skeletal Muscles, Muscle Fatigue and Rehabilitation Programs Outcomes. Medicina 2022, 58, 1199. [Google Scholar] [CrossRef]
- Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A.; Jain, S.S.; Burkhoff, D.; Kumaraiah, D.; Rabbani, L.; et al. COVID-19 and cardiovascular disease. Circulation 2020, 141, 1648–1655. [Google Scholar] [CrossRef] [Green Version]
- Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Ulven, S.M.; Foss, S.S.; Skjølsvik, A.M.; Stadheim, H.K.; Myhrstad, M.C.; Raael, E.; Sandvik, M.; Narverud, I.; Andersen, L.F.; Jensen, J.; et al. An acute bout of exercise modulate the inflammatory response in peripheral blood mononuclear cells in healthy young men. Arch. Physiol. Biochem. 2015, 121, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Gibbs, J.S.; Lu, X.; Brooke, C.B.; Roy, D.; Modlin, R.L.; Bennink, J.R.; Yewdell, J.W. Viral infection triggers rapid differentiation of human blood monocytes into dendritic cells. Blood 2012, 119, 3128–3131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Geest, K.S.M.; Wang, Q.; Eijsvogels, T.M.H.; Koenen, H.J.P.; Joosten, I.; Brouwer, E.; Hopman, M.T.E.; Jacobs, J.F.M.; Boots, A.M.H. Changes in peripheral immune cell numbers and functions in octogenarian walkers—An acute exercise study. Immun. Ageing 2017, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleeson, M.; McDonald, W.A.; Pyne, D.B.; Cripps, A.W.; Francis, J.L.; Fricker, P.A.; Clamcy, R.L. Salivary IgA levels and infection risk in elite swimmers. Med. Sci. Sports Exerc. 1999, 31, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Alkhatib, A.; Feng, W.H.; Huang, Y.J.; Kuo, C.H.; Hou, C.W. Anserine reverses exercise-induced oxidative stress and preserves cellular homeostasis in healthy men. Nutrients 2020, 12, 1146. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chou, W.Y.; Ko, J.Y.; Lee, M.S.; Wu, R.W. Early Recovery of Exercise-Related Muscular Injury by HBOT. BioMed Res. Int. 2019, 2019, 6289380. [Google Scholar] [CrossRef] [Green Version]
- Fiatarone, M.A.; Morley, J.E.; Bloom, E.T.; Benton, D.; Solomon, G.F.; Makinodan, T. The effect of exercise on natural killer cell activity in young and old subjects. J. Gerontol. 1989, 44, M37–M45. [Google Scholar] [CrossRef]
- Cao Dinh, H.; Beyer, I.; Mets, T.; Onyema, O.O.; Njemini, R.; Renmans, W.; De Waele, M.; Jochmans, K.; Vander Meeren, S.; Bautmans, I. Effects of Physical Exercise on Markers of Cellular Immunosenescence: A Systematic Review. Calcif. Tissue Int. 2017, 100, 193–215. [Google Scholar] [CrossRef]
- Booth, F.W.; Roberts, C.K.; Thyfault, J.P.; Ruegsegger, G.N.; Toedebusch, R.G. Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. Physiol. Rev. 2017, 97, 1351–1402. [Google Scholar] [CrossRef]
- Wedell-Neergaard, A.S.; Krogh-Madsen, R.; Petersen, G.L.; Hansen, A.M.; Pedersen, B.K.; Lund, R. Cardiorespiratory fitness and the metabolic syndrome: Roles of inflammation and abdominal obesity. PLoS ONE 2018, 13, e0194991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zbinden-Foncea, H.; Francaux, M.; Deldicque, L.; Hawley, J.A. Does high cardiorespiratory fitness confersome protection against pro-inflammatory responses after infection by SARS-CoV-2? Obesity 2020, 28, 1378–1381. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Mao, L.; Nassis, G.P.; Harmer, P.; Ainsworth, B.E.; Li, F. Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions. J. Sport Health Sci. 2020, 9, 103–104. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.C.; Chou, C.L.; Kao, C.L. Exercise, nutrition, and medication considerations in the light of the COVID pandemic, with specific focus on geriatric population: A literature review. J. Chin. Med. Assoc. 2020, 83, 977–980. [Google Scholar] [CrossRef]
- Alkhatib, A. Antiviral Functional Foods and Exercise Lifestyle Prevention of Coronavirus. Nutrients 2020, 12, 2633. [Google Scholar] [CrossRef]
- Strachan, D.P. Hay fever, hygiene, and household size. BMJ 1989, 299, 1259–1260. [Google Scholar] [CrossRef] [Green Version]
- Sehrawat, S.; Rouse, B.T. Does the hygiene hypothesis apply to COVID-19 susceptibility? Microbes Infect. 2020, 22, 400–402. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Ramos-Campo, D.J.; Mielgo-Ayuso, J.; Dalamitros, A.A.; Nikolaidis, P.A.; Hormeño-Holgado, A.; Tornero-Aguilera, J.F. Nutrition in the Actual COVID-19 Pandemic. A Narrative Review. Nutrients 2021, 13, 1924. [Google Scholar] [CrossRef]
- Antwi, J.; Appiah, B.; Oluwakuse, B.; Abu, B.A.Z. The Nutrition-COVID-19 Interplay: A Review. Curr. Nutr. Rep. 2021, 10, 364–374. [Google Scholar] [CrossRef]
- Belanger, M.J.; Hill, M.A.; Angelidi, A.M.; Dalamaga, M.; Sowers, J.R.; Mantzoros, C.S. COVID-19 and disparities in nutrition and obesity. N. Engl. J. Med. 2020, 383, e69. [Google Scholar] [CrossRef]
- Pavlović, D.; Matejić, J.; Pavlović, I.; Veljković, M. Impact of COVID pandemic on attitude and prevalence of plant-based food products consumption in Serbia. J. Appl. Bot. Food Qual. 2021, 94, 176–181. [Google Scholar] [CrossRef]
- Moscatelli, F.; Sessa, F.; Valenzano, A.; Polito, R.; Monda, V.; Cibelli, G.; Villano, I.; Pisanelli, D.; Perrella, M.; Daniele, A.; et al. COVID-19: Role of Nutrition and Supplementation. Nutrients 2021, 13, 976. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.S.; Khan, U.; Sadiq, A.; Khalid, W.; Hussain, M.; Yasmeen, A.; Asghar, Z.; Rehana, H. Coronavirus disease (COVID-19) and immunity booster green foods: A mini review. Food Sci. Nutr. 2020, 8, 3971–3976. [Google Scholar] [CrossRef] [PubMed]
- Džopalić, T.; Božić-Nedeljković, B.; Jurišić, V. The role of vitamin A and vitamin D in modulation of the immune response with a focus on innate lymphoid cells. Cent. Eur. J. Immunol. 2021, 46, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Martineau, A.R.; Jolliffe, D.A.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; Goodall, E.C.; et al. Vitamin D supplementation to prevent acute respiratory infections: Individual participant data meta-analysis. Health Technol. Assess. 2019, 23, 1–44. [Google Scholar] [CrossRef]
- Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ 2017, 356, i6583. [Google Scholar] [CrossRef] [Green Version]
- Mukattash, T.L.; Alkhalidy, H.; Alzu’bi, B.; Abu-Farha, R.; Itani, R.; Karout, S.; Khojah, H.M.J.; Khdour, M.; El-Dahiyat, F.; Jarab, A. Dietary supplements intake during the second wave of COVID-19 pandemic: A multinational Middle Eastern study. Eur. J. Integr. Med. 2022, 49, 102102. [Google Scholar] [CrossRef]
- Greiller, C.; Martineau, A. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients 2015, 7, 4240–4270. [Google Scholar] [CrossRef]
- Rodriguez-Leyva, D.; Pierce, G.N. The Impact of Nutrition on the COVID-19 Pandemic and the Impact of the COVID-19 Pandemic on Nutrition. Nutrients 2021, 13, 1752. [Google Scholar] [CrossRef]
- Beard, J.A.; Bearden, A.; Striker, R. Vitamin D and the anti-viral state. J. Clin. Virol. 2011, 50, 194–200. [Google Scholar] [CrossRef]
- Cannell, J.J.; Vieth, R.; Umhau, J.C.; Holick, M.F.; Grant, W.B.; Madronich, S.; Garland, F.; Giovannucci, E. Epidemic influenza and vitamin D. Epidemiol. Infect. 2006, 134, 1129–1140. [Google Scholar] [CrossRef] [PubMed]
- Hewison, M. An update on vitamin D and human immunity. Clin. Endocrinol. 2012, 76, 315–325. [Google Scholar] [CrossRef]
- De Faria Coelho-Ravagnani, C.; Campos Corgosinho, F.; Ziegler Sanches, F.L.F.; Marques Maia Prado, C.; Laviano, A.; Mota, J.F. Dietary recommendations during the COVID-19 pandemic. Nutr. Rev. 2021, 79, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Majid, M.S.; Ahmad, H.S.; Bizhan, H.; Hosein, H.Z.M.; Mohammad, A. The effect of vitamin D supplement on the score and quality of sleep in 20-50 year-old people with sleep disorders compared with control group. Nutr. Neurosci. 2018, 21, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Romano, F.; Muscogiuri, G.; Di Benedetto, E.; Zhukouskaya, V.V.; Barrea, L.; Savastano, S.; Colao, A.; Di Somma, C. Vitamin D and Sleep Regulation: Is there a Role for Vitamin D? Curr. Pharm. Des. 2020, 26, 2492–2496. [Google Scholar] [CrossRef]
- Stojiljković, N.; Ilić, S.; Veljković, M.; Randjelović, P.; Radovanović, D.; Todorović, J.; Stojanović, N. Correlation between Biochemical and Morphometric Parameters in Gentamicin-Induced Kidney Injury: The Role of Co-Supplementation with Vitamins C and E. Acta Fac. Med. Naissensis 2018, 35, 161–174. [Google Scholar] [CrossRef]
- Erol, A. High-Dose Intravenous Vitamin C Treatment for COVID-19; OSFPreprints: Charlottesville, VA, USA, 2020. [Google Scholar] [CrossRef]
- Hill, C. 20 Foods That Are High in Vitamin C. 2018. Available online: https://www.healthline.com/nutrition/vitamin-c-foods#section10 (accessed on 10 September 2022).
- Choe, J.Y.; Seong-Kyu, K. Quercetin and ascorbic acid suppress fructose-induced NLRP3 inflammasome activation by blocking intracellular shuttling of txnip in human macrophage cell lines. Inflammation 2017, 40, 980–994. [Google Scholar] [CrossRef]
- Hemila, H. Vitamin C supplementation and respiratory infections: A systematic review. Mil. Med. 2004, 169, 920–925. [Google Scholar] [CrossRef] [Green Version]
- Veljković, M.; Pavlović, D.R.; Stojiljković, N.; Ilić, S.; Jovanović, I.; Poklar Ulrih, N.; Rakić, V.; Veličković, L.J.; Sokolović, D. Bilberry: Chemical Profiling, in Vitro and in Vivo Antioxidant Activity and Nephroprotective Effect against Gentamicin Toxicity in Rats. Phytother. Res. 2017, 31, 115–123. [Google Scholar] [CrossRef]
- Veljković, M.; Pavlović, D.R.; Ilić, I.; Sokolović, D. Green Tea and Bilberry Protective Effect against Gentamicin-Induced Nephrotoxicity in Rats. Acta Fac. Med. Naissensis 2020, 37, 261–266. [Google Scholar] [CrossRef]
- Stojiljkovic, N.; Ilic, S.; Veljkovic, M.; Todorovic, J. Effects of supplementation with vitamin E on gentamicin-induced acute renal failure in rats. Facta Univ. 2014, 16, 61–66. [Google Scholar]
- Liang, Y.; Wei, P.; Duke, R.W.; Reaven, P.D.; Harman, M.S.; Cutler, R.G.; Heward, C.B. Quantification of 8-isoprostaglandin-F2 and 2–3-dinor-8-iso-prostaglandin-F2 in human urine using liquid chromatography-tandem mass spectrometry. Free Radic. Biol. Med. 2003, 34, 409–418. [Google Scholar] [CrossRef]
- Andreone, P.; Fiorino, S.; Cursaro, C.; Gramenzi, A.; Margotti, M.; Di Giammarino, L.; Biselli, M.; Miniero, R.; Gasbarrini, G.; Bernardi, M. Vitamin E as treatment for chronic hepatitis B: Results of a randomized controlled pilot trial. Antivir. Res. 2001, 49, 75–81. [Google Scholar] [CrossRef]
- Jayawardena, R.; Sooriyaarachchi, P.; Chourdakis, M.; Jeewandara, C.; Ranasinghe, P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab. Syndr. 2020, 14, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Opara, E.C. Oxidative stress, micronutrients, diabetes mellitus and its complications. J. R. Soc. Promot. Health 2002, 122, 28–34. [Google Scholar] [CrossRef]
- Rayman, M.P. The importance of selenium to human health. Lancet 2000, 356, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Kiremidjian-Schumacher, L.; Roy, M. Selenium and immune function. Z. Ernahrungswiss 1998, 37, 50–56. [Google Scholar]
- Lozada-Nur, F.; Chainani-Wu, N.; Fortuna, G.; Sroussi, H. Dysgeusia in COVID-19: Possible mechanisms and implications. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 130, 344–346. [Google Scholar] [CrossRef]
- Kumar, A.; Kubota, Y.; Chernov, M.; Kasuya, H. Potential role of zinc supplementation in prophylaxis and treatment of COVID19. Med. Hypotheses 2020, 144, 109848. [Google Scholar] [CrossRef]
- Iddir, M.; Brito, A.; Dingeo, G.; Fernandez Del Campo, S.S.; Samouda, H.; La Frano Michael, R.; Bohn, T. Strengthening the immune system and reducing inflammation and oxidative stress through diet and nutrition: Considerations during the COVID-19 crisis. Nutrients 2020, 12, 1562. [Google Scholar] [CrossRef] [PubMed]
- Casas, R.; Sacanella, E.; Estruch, R. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr. Metab. Immune Disord. Drug Targets 2014, 14, 245–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Hoffmann, G. Mediterranean dietary pattern, inflammation and endothelial function: A systematic review and meta-analysis of intervention trials. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, F.M.; Calatayud, B.; Gallego, J.G.; González-Martín, C.; Alguacil, L.F. Effects of Mediterranean diet in patients with recurring colds and frequent complications. Allergol. Immunopathol. 2017, 45, 417–424. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attinà, A.; Cinelli, G.; Leggeri, C.; Caparello, G.; Barrea, L.; Scerbo, F.; et al. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. J. Transl. Med. 2020, 18, 229. [Google Scholar] [CrossRef]
- Pavlović, D.R.; Veljković, M.; Stojanović, N.M.; Gočmanac-Ignjatović, M.; Mihailov-Krstev, T.; Branković, S.; Sokolović, D.; Marčetić, M.; Radulović, N.; Radenković, M. Influence of different wild-garlic (Allium ursinum) extracts on the gastrointestinal system: Spasmolytic, antimicrobial and antioxidant properties. J. Pharm. Pharmacol. 2017, 69, 1208–1218. [Google Scholar] [CrossRef]
- Luthra-Guptasarma, M.; Guptasarma, P. Does chronic inflammation cause acute inflammation to spiral into hyper-inflammation in a manner modulated by diet and the gut microbiome, in severe COVID-19? BioEssays 2021, 43, 2000211. [Google Scholar] [CrossRef]
- Key, T.J.; Appleby, P.N.; Davey, G.K.; Allen, N.E.; Spencer, E.A.; Travis, R.C. Mortality in British vegetarians: Review and preliminary results from EPIC-Oxford. Am. J. Clin. Nutr. 2003, 78, 533S–538S. [Google Scholar] [CrossRef] [Green Version]
- Wood, L.G.; Gibson, P.G. Dietary factors lead to innate immune activation in asthma. Pharmacol. Ther. 2009, 123, 37–53. [Google Scholar] [CrossRef]
- Živanović, S.; Pavlović, D.; Stojanović, N.; Veljković, M. Attitudes to and prevalence of bee product usage in pediatric pulmonology patients. Eur. J. Integr. Med. 2019, 27, 1–6. [Google Scholar] [CrossRef]
- Senghor, B.; Sokhna, C.; Ruimy, R.; Lagier, J.C. Gut microbiota diversity according to dietary habits and geographical provenance. Hum. Microbiome J. 2018, 27, 1–9. [Google Scholar] [CrossRef]
- Mackowiak, P.A. Recycling Metchnikoff: Probiotics, the intestinal microbiome and the quest for long life. Front. Public Health 2013, 1, 52. [Google Scholar] [CrossRef] [PubMed]
- Vangay, P.; Johnson, A.J.; Ward, T.L.; Al-Ghalith, G.A.; Shields-Cutler, R.R.; Hillmann, M.B.; Lucas, S.K.; Beura, L.K.; Thompson, E.A.; Till, L.M.; et al. US immigration westernizes the human gut microbiome. Cell 2018, 175, 962–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rishi, P.; Thakur, K.; Vij, S.; Rishi, L.; Singh, A.; Kaur, I.P.; Patel, S.K.S.; Lee, J.K.; Kalia, V.C. Gut Microbiota and COVID-19. Indian J. Microbiol. 2020, 60, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Veljković, M.; Pavlović, D.R.; Stojiljković, N.; Ilić, S.; Petrović, A.; Jovanović, I.; Radenković, M. Morphological and morphometric study of protective effect of green teain gentamicin-induced nephrotoxicity in rats. Life Sci. 2016, 147, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Veljković, M.; Ilić, S.; Stojiljković, N.; Veličković, L.J.; Pavlović, D.; Radenković, M.; Branković, S.; Kitić, D.; Gočmanac Ignjatović, M. Beneficial Effects of Green Tea Extract in Gentamicin-Induced Acute Renal Failure in Rats. Acta Fac. Med. Naissensis 2015, 32, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Nawrot, J.; Gornowicz-Porowska, J.; Budzianowski, J.; Nowak, G.; Schroeder, G.; Kurczewska, J. Medicinal Herbs in the Relief of Neurological, Cardiovascular, and Respiratory Symptoms after COVID-19 Infection A Literature Review. Cells 2022, 11, 1897. [Google Scholar] [CrossRef]
- Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Evaluation of green tea polyphenols as novel corona virus (SARS-CoV-2) main protease (Mpro) inhibitors—An in silico docking and molecular dynamics simulation study. J. Biomol. Struct. Dyn. 2020, 39, 4362–4374. [Google Scholar] [CrossRef]
- Bhardwaj, V.K.; Singh, R.; Sharma, J.; Rajendran, V.; Purohit, R.; Kumar, S. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. J. Biomol. Struct. Dyn. 2020, 39, 1–13. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B 2020, 10, 766–788. [Google Scholar] [CrossRef]
- Menegazzi, M.; Campagnari, R.; Bertoldi, M.; Crupi, R.; Di, P.R.; Cuzzocrea, S. Protective Effect of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune Activation: Could Such a Scenario Be Helpful to Counteract COVID-19? Int. J. Mol. Sci. 2020, 21, 5171. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Liu, J.; Zhang, D.; Xu, Z.; Ji, J.; Wen, C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front. Immunol. 2020, 11, 1708. [Google Scholar] [CrossRef] [PubMed]
- Storozhuk, M. Green Tea Catechins Against COVID-19: Lower COVID-19 Morbidity and Mortality in Countries with Higher per capita Green Tea Consumption. Coronaviruses 2022, 3, 57–64. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veljković, M.; Pavlović, D.R.; Stojanović, N.M.; Džopalić, T.; Popović Dragonjić, L. Behavioral and Dietary Habits That Could Influence Both COVID-19 and Non-Communicable Civilization Disease Prevention—What Have We Learned Up to Now? Medicina 2022, 58, 1686. https://doi.org/10.3390/medicina58111686
Veljković M, Pavlović DR, Stojanović NM, Džopalić T, Popović Dragonjić L. Behavioral and Dietary Habits That Could Influence Both COVID-19 and Non-Communicable Civilization Disease Prevention—What Have We Learned Up to Now? Medicina. 2022; 58(11):1686. https://doi.org/10.3390/medicina58111686
Chicago/Turabian StyleVeljković, Milica, Dragana R. Pavlović, Nikola M. Stojanović, Tanja Džopalić, and Lidija Popović Dragonjić. 2022. "Behavioral and Dietary Habits That Could Influence Both COVID-19 and Non-Communicable Civilization Disease Prevention—What Have We Learned Up to Now?" Medicina 58, no. 11: 1686. https://doi.org/10.3390/medicina58111686
APA StyleVeljković, M., Pavlović, D. R., Stojanović, N. M., Džopalić, T., & Popović Dragonjić, L. (2022). Behavioral and Dietary Habits That Could Influence Both COVID-19 and Non-Communicable Civilization Disease Prevention—What Have We Learned Up to Now? Medicina, 58(11), 1686. https://doi.org/10.3390/medicina58111686