Association between Pre-Existing Long-Term β-Blocker Therapy and the Outcomes of Sepsis-Associated Coagulopathy: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Patients
2.3. Measurement of the Outcomes
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Pre-Existing Long-Term β-Blocker Therapy and Clinical Outcomes
3.3. Changes in Markers of Coagulation Function
3.4. Pre-Existing Long-Term β-Blocker Therapy and 28-Day Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.W.; Kennedy, J.N.; Wang, S.; Chang, C.H.; Elliott, C.F.; Xu, Z.; Berry, S.; Clermont, G.; Cooper, G.; Gomez, H.; et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA 2019, 321, 2003–2017. [Google Scholar] [CrossRef] [PubMed]
- Lyons, P.G.; Micek, S.T.; Hampton, N.; Kollef, M.H. Sepsis-Associated Coagulopathy Severity Predicts Hospital Mortality. Crit. Care Med. 2018, 46, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Giustozzi, M.; Ehrlinder, H.; Bongiovanni, D.; Borovac, J.A.; Guerreiro, R.A.; Gasecka, A.; Papakonstantinou, P.E.; Parker, W.A.E. Coagulopathy and sepsis: Pathophysiology, clinical manifestations and treatment. Blood Rev. 2021, 50, 100864. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Li, Y.X.; Xia, D.M.; Zhao, P.Y.; Zhu, S.Y.; Zheng, L.Y.; Liang, L.P.; Yao, R.Q.; Du, X.H. Sepsis-Associated Coagulopathy Predicts Hospital Mortality in Critically Ill Patients With Postoperative Sepsis. Front. Med. 2022, 9, 783234. [Google Scholar] [CrossRef]
- Iba, T.; Levy, J.H.; Warkentin, T.E.; Thachil, J.; van der Poll, T.; Levi, M.; The Scientific and Standardization Committee on DIC; The Scientific and Standardization Committee on Perioperative and Critical Care of the International Society on Thrombosis and Haemostasis. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J. Thromb. Haemost. 2019, 17, 1989–1994. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.L.; Francois, B.; Zabolotskikh, I.; Daga, M.K.; Lascarrou, J.B.; Kirov, M.Y.; Pettila, V.; Wittebole, X.; Meziani, F.; Mercier, E.; et al. Effect of a Recombinant Human Soluble Thrombomodulin on Mortality in Patients with Sepsis-Associated Coagulopathy: The SCARLET Randomized Clinical Trial. JAMA 2019, 321, 1993–2002. [Google Scholar] [CrossRef] [Green Version]
- Thachil, J. Managing sepsis-associated coagulopathy remains an enigma. J. Thromb. Haemost. 2019, 17, 1586–1589. [Google Scholar] [CrossRef]
- Tagami, T. Antithrombin concentrate use in sepsis-associated disseminated intravascular coagulation: Re-evaluation of a ‘pendulum effect’ drug using a nationwide database. J. Thromb. Haemost. 2018, 16, 458–461. [Google Scholar] [CrossRef] [Green Version]
- van der Poll, T. Recombinant Human Soluble Thrombomodulin in Patients With Sepsis-Associated Coagulopathy: Another Negative Sepsis Trial? JAMA 2019, 321, 1978–1980. [Google Scholar] [CrossRef]
- Tan, K.; Harazim, M.; Tang, B.; McLean, A.; Nalos, M. The association between premorbid beta blocker exposure and mortality in sepsis-a systematic review. Crit. Care 2019, 23, 298. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, C.; Radermacher, P.; Wepler, M.; Nussbaum, B. Non-Hemodynamic Effects of Catecholamines. Shock 2017, 48, 390–400. [Google Scholar] [CrossRef]
- Andreis, D.T.; Singer, M. Catecholamines for inflammatory shock: A Jekyll-and-Hyde conundrum. Intensive Care Med. 2016, 42, 1387–1397. [Google Scholar] [CrossRef]
- Singer, M. Catecholamine treatment for shock—Equally good or bad? Lancet 2007, 370, 636–637. [Google Scholar] [CrossRef]
- Suzuki, T.; Suzuki, Y.; Okuda, J.; Kurazumi, T.; Suhara, T.; Ueda, T.; Nagata, H.; Morisaki, H. Sepsis-induced cardiac dysfunction and beta-adrenergic blockade therapy for sepsis. J. Intensive Care 2017, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Morelli, A.; Ertmer, C.; Westphal, M.; Rehberg, S.; Kampmeier, T.; Ligges, S.; Orecchioni, A.; D’Egidio, A.; D’Ippoliti, F.; Raffone, C.; et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: A randomized clinical trial. JAMA 2013, 310, 1683–1691. [Google Scholar] [CrossRef]
- Macchia, A.; Romero, M.; Comignani, P.D.; Mariani, J.; D’Ettorre, A.; Prini, N.; Santopinto, M.; Tognoni, G. Previous prescription of beta-blockers is associated with reduced mortality among patients hospitalized in intensive care units for sepsis. Crit. Care Med. 2012, 40, 2768–2772. [Google Scholar] [CrossRef]
- Contenti, J.; Occelli, C.; Corraze, H.; Lemoel, F.; Levraut, J. Long-Term beta-Blocker Therapy Decreases Blood Lactate Concentration in Severely Septic Patients. Crit. Care Med. 2015, 43, 2616–2622. [Google Scholar] [CrossRef]
- Li, J.; Sun, W.; Guo, Y.; Ren, Y.; Li, Y.; Yang, Z. Prognosis of beta-adrenergic blockade therapy on septic shock and sepsis: A systematic review and meta-analysis of randomized controlled studies. Cytokine 2020, 126, 154916. [Google Scholar] [CrossRef]
- Hasegawa, D.; Sato, R.; Prasitlumkum, N.; Nishida, K.; Takahashi, K.; Yatabe, T.; Nishida, O. Effect of Ultrashort-Acting beta-Blockers on Mortality in Patients With Sepsis With Persistent Tachycardia Despite Initial Resuscitation: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Chest 2021, 159, 2289–2300. [Google Scholar] [CrossRef]
- Goradia, S.; Sardaneh, A.A.; Narayan, S.W.; Penm, J.; Patanwala, A.E. Vasopressor dose equivalence: A scoping review and suggested formula. J. Crit. Care 2021, 61, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Stolk, R.F.; Kox, M.; Pickkers, P. Noradrenaline drives immunosuppression in sepsis: Clinical consequences. Intensive Care Med. 2020, 46, 1246–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Montmollin, E.; Aboab, J.; Mansart, A.; Annane, D. Bench-to-bedside review: Beta-adrenergic modulation in sepsis. Crit. Care 2009, 13, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimmoun, A.; Louis, H.; Al Kattani, N.; Delemazure, J.; Dessales, N.; Wei, C.; Marie, P.Y.; Issa, K.; Levy, B. beta1-Adrenergic Inhibition Improves Cardiac and Vascular Function in Experimental Septic Shock. Crit. Care Med. 2015, 43, e332–e340. [Google Scholar] [CrossRef] [PubMed]
- Kuo, M.J.; Chou, R.H.; Lu, Y.W.; Guo, J.Y.; Tsai, Y.L.; Wu, C.H.; Huang, P.H.; Lin, S.J. Premorbid beta1-selective (but not non-selective) beta-blocker exposure reduces intensive care unit mortality among septic patients. J. Intensive Care 2021, 9, 40. [Google Scholar] [CrossRef]
- Tan, K.; Harazim, M.; Simpson, A.; Tan, Y.C.; Gunawan, G.; Robledo, K.P.; Whitehead, C.; Tang, B.; McLean, A.; Nalos, M. Association Between Premorbid Beta-Blocker Exposure and Sepsis Outcomes-The Beta-Blockers in European and Australian/American Septic Patients (BEAST) Study. Crit. Care Med. 2021, 49, 1493–1503. [Google Scholar] [CrossRef]
- Musher, D.M.; Abers, M.S.; Corrales-Medina, V.F. Acute Infection and Myocardial Infarction. N. Engl. J. Med. 2019, 380, 171–176. [Google Scholar] [CrossRef]
- Ho, S.; Phua, H.P.; Lim, W.Y.; Mahalingam, N.; Tan, G.H.C.; Puah, S.H.; Lew, J.W.S. Sepsis, cardiovascular events and short-term mortality risk in critically ill patients. Ann. Acad. Med. Singap. 2022, 51, 272–282. [Google Scholar] [CrossRef]
- Matsubara, T.; Yamakawa, K.; Umemura, Y.; Gando, S.; Ogura, H.; Shiraishi, A.; Kushimoto, S.; Abe, T.; Tarui, T.; Hagiwara, A.; et al. Significance of plasma fibrinogen level and antithrombin activity in sepsis: A multicenter cohort study using a cubic spline model. Thromb. Res. 2019, 181, 17–23. [Google Scholar] [CrossRef]
- Hjemdahl, P.; Larsson, P.T.; Wallen, N.H. Effects of stress and beta-blockade on platelet function. Circulation 1991, 84, VI44–VI61. [Google Scholar]
- Keularts, I.M.; van Gorp, R.M.; Feijge, M.A.; Vuist, W.M.; Heemskerk, J.W. alpha(2A)-adrenergic receptor stimulation potentiates calcium release in platelets by modulating cAMP levels. J. Biol. Chem. 2000, 275, 1763–1772. [Google Scholar] [CrossRef]
- Markel, A.; Brook, J.G.; Levy, Y.; Aviram, M.; Youdim, M.B. Increased platelet adhesion and aggregation in hypertensive patients: Effect of atenolol. Br. J. Clin. Pharmacol. 1983, 16, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Adler, B.; Gimbrone, M.A., Jr.; Schafer, A.I.; Handin, R.I. Prostacyclin and beta-adrenergic catecholamines inhibit arachidonate release and PGI2 synthesis by vascular endothelium. Blood 1981, 58, 514–517. [Google Scholar] [CrossRef] [Green Version]
- Morelli, A.; Donati, A.; Ertmer, C.; Rehberg, S.; Kampmeier, T.; Orecchioni, A.; D’Egidio, A.; Cecchini, V.; Landoni, G.; Pietropaoli, P.; et al. Microvascular effects of heart rate control with esmolol in patients with septic shock: A pilot study. Crit. Care Med. 2013, 41, 2162–2168. [Google Scholar] [CrossRef]
Variables | Total n = 228 | Beta-Blocker n = 48 | No Beta-Blocker n = 180 | p Value |
---|---|---|---|---|
Age, years, mean ± SD | 66.1 ± 15.7 | 72.8 ± 12.3 | 64.3 ± 16.1 | 0.001 |
Male sex, n (%) | 139 (61.0%) | 25 (52.1%) | 114 (63.3%) | 0.156 |
Comorbidities | ||||
Hypertension, n (%) | 92 (40.4%) | 39 (81.3%) | 53 (29.4%) | <0.001 |
Diabetes, n (%) | 48 (21.1%) | 16 (33.3%) | 32 (17.8%) | 0.019 |
Chronic lung disease, n (%) | 26 (11.4%) | 4 (8.3%) | 22 (12.2%) | 0.451 |
Coronary heart disease, n (%) | 49 (21.5%) | 20 (41.7%) | 29 (16.1%) | <0.001 |
Cerebrovascular disease, n (%) | 44 (19.3%) | 13 (27.1%) | 31 (17.2%) | 0.124 |
Others, n (%) | 64 (28.1%) | 13 (27.1%) | 51 (28.3%) | 0.864 |
Source of infection | ||||
Pulmonary infection, n (%) | 106 (46.5%) | 17 (35.4%) | 89 (49.4%) | 0.083 |
Intraabdominal infection, n (%) | 74 (32.5%) | 19 (39.6%) | 55 (30.6%) | 0.235 |
Urinary infections, n (%) | 44 (19.3%) | 13 (27.1%) | 31 (17.2%) | 0.124 |
Soft tissue infection, n (%) | 14 (6.1%) | 3 (6.3%) | 11 (6.1%) | 0.972 |
Bacteraemia, n (%) | 20 (8.3%) | 4 (8.3%) | 16 (8.8%) | 0.904 |
Other sources, n (%) | 6 (2.6%) | 2 (4.2%) | 4 (2.2%) | 0.455 |
Vital lab data | ||||
WBC (109/L), median (IQR) | 11.5 (6.9–17.1) | 11.6 (8.7–16.3) | 11.4 (6.5–17.7) | 0.826 |
Neutrophils (%), median (IQR) | 91.0 (83.6–94.0) | 91.2 (84.4–94.0) | 91.0 (82.6–94.0) | 0.961 |
Lymphocytes (%), median (IQR) | 4.3 (2.6–8.8) | 4.4 (2.2–8.0) | 4.2 (2.7–9.8) | 0.462 |
Monocytes (%), median (IQR) | 3.7 (2.4–6.1) | 4.2 (3.0–6.3) | 3.6 (2.2–6.0) | 0.209 |
Platelet (109/L), median (IQR) | 73.0 (42.0–103.0) | 74.5 (54.0–107.8) | 73.0 (41.0–99.3) | 0.354 |
INR, median (IQR) | 1.61 (1.47–1.99) | 1.60 (1.46–1.94) | 1.62 (1.48–2.00) | 0.543 |
HGB (g/L), median (IQR) | 98.0 (81.3–114.0) | 96.0 (86.5–113.0) | 98.5 (79.0–114.3) | 0.96 |
ALB (g/L), median (IQR) | 27.5 (23.9–30.6) | 28.3 (26.5–30.5) | 27.0 (23.6–30.6) | 0.156 |
Glucose (mmol/L), median (IQR) | 6.6 (5.3–8.9) | 6.7 (5.8–9.0) | 6.5 (5.1–8.9) | 0.186 |
Bilirubin (μmol/L), median (IQR) | 33.1 (17.3–65.2) | 28.2 (13.2–64.0) | 33.9 (18.1–65.2) | 0.391 |
Creatinine (μmol/L), median (IQR) | 167.1 (96.1–256.4) | 177.8 (113.4–252.0) | 163.4 (85.3–256.4) | 0.314 |
SOFA score, mean ± SD | 11.2 ± 4.6 | 9.9 ± 4.4 | 11.5 ± 4.6 | 0.034 |
Variables | Total n = 228 | Beta-Blocker n = 48 | No Beta-Blocker n = 180 | p Value |
---|---|---|---|---|
Septic shock, n (%) | 173 (75.9%) | 31 (64.6%) | 142 (78.9%) | 0.040 |
Mechanical ventilation, n (%) | 121 (53.1%) | 19 (39.6%) | 102 (56.7%) | 0.035 |
Norepinephrine equivalents total * (μg/kg/min), median (IQR) | 0.24 (0–1.20) | 0.11 (0–0.32) | 0.32 (0.06–1.48) | <0.001 |
Mortality on day 28, n (%) | 104 (45.6%) | 17 (35.4%) | 87 (48.3%) | 0.110 |
Variables | Day 1 of ICU Admission | p Value | Day 4 of ICU Admission | p Value | ||
---|---|---|---|---|---|---|
Beta-Blocker (n = 48) | No Beta-Blocker (n = 180) | Beta-Blocker (n = 37) | No Beta-Blocker (n = 116) | |||
PT (s), | 17.5 | 17.8 | 0.511 | 14 | 14.6 | 0.818 |
median (IQR) | (15.8–21.4) | (16.1–21.8) | (13.0–17.3) | (13.0–17.4) | ||
APTT (s), | 35.8 | 38.1 | 0.057 | 33.9 | 33.4 | 0.777 |
median (IQR) | (32.8–39.0) | (32.6–48.5) | (30.1–38.2) | (29.8–41.2) | ||
TT (s), | 15.2 | 15.4 | 0.554 | 15.9 | 16 | 0.516 |
median (IQR) | (13.8–17.2) | (14.0–17.8) | (14.0–16.6) | (14.0–18.2) | ||
FIB (mg/dL), | 394 | 370.5 | 0.604 | 334 | 337 | 0.895 |
median (IQR) | (283.5–431.8) | (243.3–452.3) | (219.0–380.0) | (228.5–432.0) | ||
DD (ng/mL), | 2474 | 3138 | 0.016 | 2009 | 2722 | 0.131 |
median (IQR) | (993–3571) | (1428–5923) | (1225–3158) | (1383–4286) |
Variables | Univariate | Multivariate * | ||
---|---|---|---|---|
Hazard Ratio | p Value | Adjusted Hazard Ratio | p Value | |
Beta-Blocker | 0.59 (0.35–1.00) | 0.048 | 0.55 (0.32–0.94) | 0.03 |
Age | 1.01 (1.00–1.02) | 0.259 | - | - |
Comorbidities | ||||
Hypertension | 1.41 (0.96–2.08) | 0.078 | - | - |
Diabetes | 0.98 (0.61–1.57) | 0.943 | - | - |
Chronic lung disease | 1.70 (0.99–2.90) | 0.051 | - | - |
Coronary heart disease | 1.61 (1.05–2.47) | 0.03 | 1.83 (1.18–2.83) | 0.007 |
Cerebrovascular disease | 1.10 (0.69–1.76) | 0.687 | - | - |
Source of infection | ||||
Pulmonary infection | 1.21 (0.83–1.79) | 0.319 | - | - |
Intraabdominal infection | 0.97 (0.64–1.47) | 0.884 | - | - |
Urinary infections | 0.75 (0.44–1.25) | 0.27 | - | - |
WBC | 0.99 (0.96–1.01) | 0.195 | - | - |
Lymphocytes | 1.02 (1.01–1.03) | <0.001 | 1.01 (1.00–1.03) | 0.153 |
PLT | 0.99 (0.99–1.00) | 0.008 | 1.00 (1.00–1.01) | 0.663 |
INR | 1.41 (1.14–1.74) | 0.001 | 1.27 (0.97–1.67) | 0.087 |
FIB | 1.00 (1.00–1.00) | <0.001 | 1.00 (1.00–1.00) | 0.04 |
DD | 1.00 (1.00–1.00) | 0.474 | - | - |
ALB | 0.93 (0.90–0.97) | 0.001 | 0.97 (0.93–1.01) | 0.178 |
Glucose | 1.02 (0.99–1.06) | 0.246 | - | - |
Bilirubin | 1.00 (1.00–1.00) | 0.435 | - | - |
Creatinine | 1.00 (1.00–1.00) | 0.081 | - | - |
SOFA score | 1.25 (1.19–1.31) | <0.001 | 1.22 (1.15–1.28) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Ma, J.; Yang, J. Association between Pre-Existing Long-Term β-Blocker Therapy and the Outcomes of Sepsis-Associated Coagulopathy: A Retrospective Study. Medicina 2022, 58, 1843. https://doi.org/10.3390/medicina58121843
Ma Y, Ma J, Yang J. Association between Pre-Existing Long-Term β-Blocker Therapy and the Outcomes of Sepsis-Associated Coagulopathy: A Retrospective Study. Medicina. 2022; 58(12):1843. https://doi.org/10.3390/medicina58121843
Chicago/Turabian StyleMa, Ying, Jie Ma, and Jiong Yang. 2022. "Association between Pre-Existing Long-Term β-Blocker Therapy and the Outcomes of Sepsis-Associated Coagulopathy: A Retrospective Study" Medicina 58, no. 12: 1843. https://doi.org/10.3390/medicina58121843
APA StyleMa, Y., Ma, J., & Yang, J. (2022). Association between Pre-Existing Long-Term β-Blocker Therapy and the Outcomes of Sepsis-Associated Coagulopathy: A Retrospective Study. Medicina, 58(12), 1843. https://doi.org/10.3390/medicina58121843