Poor Ovarian Response to Gonadotrophins in PCOS Women after Laparoscopic Ovarian Drilling
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Statistical Analysis for All Patients Regardless of Ovarian Response
3.2. Statistical Analysis—NOR Patients Only
3.3. Statistical Analysis—POR Patients Only
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yildiz, B.O.; Bozdag, G.; Yapici, Z.; Esinler, I.; Yarali, H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum. Reprod. 2012, 27, 3067–3073. [Google Scholar] [CrossRef] [PubMed]
- ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Consensus on infertility treatment related to polycystic ovary syndrome. Fertil. Steril. 2008, 89, 505. [Google Scholar] [CrossRef] [PubMed]
- Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Li, W.; Bordewijk, E.M.; Legro, R.S.; Zhang, H.; Wu, X.; Gao, J.; Morin-Papunen, L.; Homburg, R.; E König, T.; et al. First-line ovulation induction for polycystic ovary syndrome: An individual participant data meta-analysis. Hum. Reprod. Updat. 2019, 25, 717–732. [Google Scholar] [CrossRef] [PubMed]
- Abu Hashim, H.; Al-Inany, H.; De Vos, M.; Tournaye, H. Three decades after Gjönnaess’s laparoscopic ovarian drilling for treatment of PCOS; what do we know? An evidence-based approach. Arch. Gynecol. Obstet. 2013, 288, 409–422. [Google Scholar] [CrossRef]
- Melo, A.; Ferriani, R.A.; Navarro, P.A. Treatment of infertility in women with polycystic ovary syndrome: Approach to clinical practice. Clinics 2015, 70, 765–769. [Google Scholar] [CrossRef]
- Nayak, P.; Agrawal, S.; Mitra, S. Laparoscopic ovarian drilling: An alternative but not the ultimate in the management of polycystic ovary syndrome. J. Nat. Sci. Biol. Med. 2015, 6, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Shibahara, H.; Shimada, K.; Kikuchi, K.; Hirano, Y.; Suzuki, T.; Takamizawa, S.; Fujiwara, H.; Suzuki, M. Major complications and outcome of diagnostic and operative transvaginal hydrolaparoscopy. J. Obstet. Gynaecol. Res. 2007, 33, 705–709. [Google Scholar] [CrossRef]
- Sunj, M.; Canic, T.; Baldani, D.P.; Tandara, M.; Jeroncic, A.; Palada, I. Does unilateral laparoscopic diathermy adjusted to ovarian volume increase the chances of ovulation in women with polycystic ovary syndrome? Hum. Reprod. 2013, 28, 2417–2424. [Google Scholar] [CrossRef] [Green Version]
- Amer, S.A.; Li, T.C.; Ledger, W.L. Ovulation induction using laparoscopic ovarian drilling in women with polycystic ovarian syndrome: Predictors of success. Hum. Reprod. 2004, 19, 1719–1724. [Google Scholar] [CrossRef] [Green Version]
- Giampaolino, P.; De Rosa, N.; Della Corte, L.; Morra, I.; Mercorio, A.; Nappi, C.; Bifulco, G. Operative transvaginal hydrolaparoscopy improve ovulation rate after clomiphene failure in polycystic ovary syndrome. Gynecol. Endocrinol. 2018, 34, 32–35. [Google Scholar] [CrossRef]
- Farquhar, C.; Brown, J.; Marjoribanks, J. Laparoscopic drilling by diathermy or laser for ovulation induction in anovulatory polycystic ovary syndrome. Cochrane Libr. 2012, 13, CD001122. [Google Scholar] [CrossRef]
- Soliman, E.M.; Attia, A.M.; EElebrashi, A.N.; Younis, A.S.; Salit, M.E. Laparosocpic ovarian electrocautery improves ovarian response to gonadotropins in clomiphene citrate resistant patients with polycystic ovary syndrome. Middle East Fertil. Soc. J. 2000, 5, 120–125. [Google Scholar]
- Al-Hussaini, T.K.; Zakhera, M.S.; Abdel-Aleem, M.; Abbas, A.M. Premature ovarian failure/dysfunction following surgical treatment of polycystic ovarian syndrome: A case series. Middle East Fertil. Soc. J. 2017, 22, 233–235. [Google Scholar] [CrossRef]
- Amer, S.A.; El Shamy, T.T.; James, C.; Yosef, A.H.; Mohamed, A.A. The impact of laparoscopic ovarian drilling on AMH and ovarian reserve: A meta-analysis. Reproduction 2017, 154, R13–R21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giampaolino, P.; Morra, I.; Della Corte, L.; Sparice, S.; Di Carlo, C.; Nappi, C.; Bifulco, G. Serum anti-Mullerian hormone levels after ovarian drilling for the second-line treatment of polycystic ovary syndrome: A pilot-randomized study comparing laparoscopy and transvaginal hydrolaparoscopy. Gynecol. Endocrinol. 2017, 33, 26–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraretti, A.P.; La Marca, A.; Fauser, B.C.J.M.; Tarlatzis, B.; Nargund, G.; Gianaroli, L.; on behalf of the ESHRE working group on Poor Ovarian Response Definition. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: The Bologna criteria. Hum. Reprod. 2011, 26, 1616–1624. [Google Scholar] [CrossRef] [Green Version]
- La Marca, A.; Argento, C.; Sighinolfi, G.; Grisendi, V.; Carbone, M.; D’Ippolito, G.; Artenisio, A.C.; Stabile, G.; Volpe, A. Possibilities and limits of ovarian reserve testing in ART. Curr. Pharm. Biotechnol. 2012, 13, 398–408. [Google Scholar] [CrossRef]
- Chuang, C.C.; Chen, C.D.; Chao, K.H.; Chen, S.U.; Ho, H.N.; Yang, Y.S. Age is a better predictor of pregnancy potential than basal follicle-stimulating hormone levels in women undergoing in vitro fertilization. Fertil. Steril. 2003, 79, 63–68. [Google Scholar] [CrossRef]
- Kwee, J.; Elting, M.W.; Schats, R.; Bezemer, P.D.; Lambalk, C.B.; Schoemaker, J. Comparison of endocrine tests with respect to their predictive value on the outcome of ovarian hyperstimulation in IVF treatment: Results of a prospective randomized study. Hum. Reprod. 2003, 18, 1422–1427. [Google Scholar] [CrossRef] [Green Version]
- Jirge, P.R. Ovarian reserve tests. J. Hum. Reprod. Sci. 2011, 4, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Su, N.-J.; Huang, C.-Y.; Liu, J.; Kang, D.-Y.; Wang, S.-L.; Liao, L.-J.; Yang, J.-D.; Zhang, X.-Q.; Liu, F.-H. Association between baseline LH/FSH and live-birth rate after fresh-embryo transfer in polycystic ovary syndrome women. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, D.J.; Mol, B.J.; Bancsi, L.F.; teVelde, E.R.; Broekmans, F. Antral follicle count in the prediction of poor ovarian response and pregnancy after in vitro fertilisation: A meta-analysis and comparison with basal follicle stimulating hormone level. Fertil. Steril. 2005, 83, 291–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez Mayorga, M.; Gromoll, J.; Behre, H.M.; Gassner, C.; Nieschlag, E.; Simoni, M. Ovarian response to follicle-stimulating hormone (FSH) stimulation depends on the FSH receptor genotype. J. Clin. Endocrinol. Metab. 2000, 85, 3365–3369. [Google Scholar] [PubMed]
- Yan, Y.; Gong, Z.; Zhang, L.; Li, Y.; Li, X.; Zhu, L.; Sun, L. Association of follicle-stimulating hormone receptor polymorphisms with ovarian response in Chinese women: A prospective clinical study. PLoS ONE. 2013, 8, e78138. [Google Scholar] [CrossRef] [Green Version]
- Valkenburg, O.; Uitterlinden, A.G.; Piersma, D.; Hofman, A.; Themmen, A.P.; de Jong, F.H.; Fauser, B.C.; Laven, J.S. Genetic polymorphisms of GnRH and gonadotrophic hormone receptors affect the phenotype of polycystic ovary syndrome. Hum. Reprod. 2009, 24, 2014–2022. [Google Scholar] [CrossRef] [Green Version]
- Simoni, M.; Nieschlag, E.; Gromoll, J. Isoforms and single nucleotide polymorphisms of the FSH receptor gene: Implications for human reproduction. Hum. Reprod. Update 2002, 8, 413–421. [Google Scholar] [CrossRef]
- Laven, J.S.; Mulders, A.G.; Suryandari, D.A.; Gromoll, J.; Nieschlag, E.; Fauser, B.C.; Simoni, M. Follicle-stimulating hormone receptor polymorphisms in women with normogonadotropic anovulatory infertility. Fertil. Steril. 2003, 80, 986–992. [Google Scholar] [CrossRef]
- Behre, H.M.; Greb, R.R.; Mempel, A.; Sonntag, B.; Kiesel, L.; Kaltwasser, P.; Seliger, E.; Ropke, F.; Gromoll, J.; Nieschlag, E.; et al. Significance of a common single nucleotide polymorphism in exon 10 of the follicle-stimulating hormone (FSH) receptor gene for the ovarian response to FSH: A pharmacogenetic approach to controlled ovarian hyperstimulation. Pharm. Genom. 2005, 15, 451–456. [Google Scholar] [CrossRef]
- Tarlatzis, B.C.; Zepiridis, L.; Grimbizis, G.; Bontis, J. Clinical management of low ovarian response to stimulation for IVF: A systematic review. Hum. Reprod. Update 2004, 9, 61–76. [Google Scholar] [CrossRef]
- Turkcapar, A.F.; Seckin, B.; Onalan, G.; Ozdener, T.; Batioglu, S. Human Menopausal Gonadotropin versus Recombinant FSH in Polycystic Ovary Syndrome Patients Undergoing In Vitro Fertilization. Int. J. Fertil. Steril. 2013, 6, 238–243. [Google Scholar]
- Burnik Papler, T.; Vrtačnik Bokal, E.; Prosenc Zmrzljak, U.; Stimpfel, M.; Laganà, A.S.; Ghezzi, F.; Jančar, N. PGR and PTX3 gene expression in cumulus cells from obese and normal weighting women after administration of long-acting recombinant follicle-stimulating hormone for controlled ovarian stimulation. Arch. Gynecol. Obstet. 2019, 299, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Hugues, J.N. Impact of overweight on the outcome of ovarian stimulation. Bull. Acad. Natl. Med. 2008, 192, 661–670. [Google Scholar] [PubMed]
- Ozekinci, M.; Seven, A.; Olgan, S.; Sakinci, M.; Keskin, U.; Akar, M.E.; Ceyhan, S.T.; Ergun, A. Does obesity have detrimental effects on IVF treatment outcomes? BMC Women’s Health 2015, 15, 61–68. [Google Scholar] [CrossRef] [Green Version]
- McCormick, B.; Thomas, M.; Maxwell, R.; Williams, D.; Aubuchon, M. Effects of polycystic ovarian syndrome on in vitro fertilization–embryo transfer outcomes are influenced by body mass index. Fertil. Steril. 2008, 90, 2304–2309. [Google Scholar] [CrossRef] [PubMed]
- Balen, A.H.; Platteau, P.; Andersen, A.N.; Devroey, P.; Sørensen, P.; Helmgaard, L.; Arce, J.C. The influence of body weight on response to ovulation induction with gonadotrophins in 335 women with World Health Organization group II anovulatory infertility. BJOG 2006, 113, 1195–1202. [Google Scholar] [CrossRef]
- Erel, C.T.; Senturk, L.M. The impact of body mass index on assisted reproduction. Curr. Opin. Obstet. Gynecol. 2009, 21, 228–235. [Google Scholar] [CrossRef]
- Zhang, D.; Zhu, Y.; Gao, H.; Zhou, B.; Zhang, R.; Wang, T.; Ding, G.; Qu, F.; Huang, H.; Lu, X. Overweight and obesity negatively affect the outcomes of ovarian stimulation and in vitro fertilisation: A cohort study of 2628 Chinese women. Gynecol. Endocrinol. 2010, 26, 325–332. [Google Scholar] [CrossRef]
- Remorgida, V.; Giordano, M.; Lanera, P. The relationship between body composition and plasma concentration of exogenously administered urinary follicle stimulating hormone. Hum. Reprod. 1993, 8, 1001–1004. [Google Scholar] [CrossRef]
- De Pergola, G.; Maldera, S.; Tartagni, M.; Pannacciulli, N.; Loverro, G.; Giorgino, R. Inhibitory effect of obesity on gonadotropin, estradiol, and inhibin B levels in fertile women. Obesity (Silver Spring) 2006, 14, 1954–1960. [Google Scholar] [CrossRef] [Green Version]
- Grenman, S.; Ronnemaa, T.; Irjala, K.; Kaihola, H.L.; Gronroos, M. Sex steroid, gonadotropin, cortisol, and prolactin levels in healthy, massively obese women: Correlation with abdominal fat cell size and effect of weight reduction. J. Clin. Endocrinol. Metab. 1986, 63, 1257–1261. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, L.; Foreste, V.; Barra, F.; Gustavino, C.; Alessandri, F.; Centurioni, M.G.; Ferrero, S.; Bifulco, G.; Giampaolino, P. Current and experimental drug therapy for the treatment of polycystic ovarian syndrome. Expert Opin. Investig. Drugs 2020, 29, 819–830. [Google Scholar] [CrossRef] [PubMed]
NOR (n = 114) | POR (n = 30) | p-Value | |
---|---|---|---|
Age (years) | 30 (27.75–33) | 32 (29–34) | 0.102 |
BMI (kg/m2) | 25.3 (20.9–31.2) | 23.5 (20.6–30.5) | 0.798 |
FSH (IU/L) | 6.0 (5.0–7.4) | 7.2 (6.0–9.2) | 0.006 * |
LH (IU/L) | 5.4 (3.4–8.2) | 5.5 (2.9–9.9) | 0.956 |
LH/FSH ratio | 0.9 (0.6–1.3) | 0.8 (0.5–1.2) | 0.331 |
Daily gonadotrophin dose (all cycles) | 150 (150–200) | 175 (150–225) | 0.109 |
Cumulative gonadotrophin dose (all cycles) | 1600 (1200–1800) | 1875 (1312.5–2400) | 0.018 * |
Daily gonadotrophin dose (only for cases with uFSH used) | 225 (150–225) | 225 (225–225) | 0.442 |
Cumulative gonadotrophin dose (only for cases with uFSH used) | 1875 (1631.25–2643.75) | 2175 (1800–2868.75) | 0.442 |
Daily gonadotrophin dose (only for cases with rFSH used) | 150 (150–200) | 150 (150–200) | 0.810 |
Cumulative gonadotrophin dose (only for cases with rFSH used) | 1175 (1200–1800) | 1800 (1162.5–2250) | 0.239 |
Nr of oocytes | 8 (5–12) | 1 (1–2) | <0.001 * |
Nr of immature oocytes | 1 (0–2) | 0 (0–0) | <0.001 * |
Nr of embryos | 4 (2–6) | 1 (0–1) | <0.001 * |
Urinary FSH (n = 16) | Recombinant FSH (n = 128) | p-Value | |
---|---|---|---|
Age | 33 (28.75–34.75) | 30 (28–33) | 0.076 |
BMI (kg/m2) | 22.5 (20.8–29.9) | 25.3 (20.8–31.2) | 0.446 |
FSH (IU/L) | 6.7 (5.2–10.2) | 6.2 (5.2–7.8) | 0.445 |
LH (IU/L) | 3.0 (1.6–9.2) | 5.5 (3.6–8.4) | 0.050 |
LH/FSH ratio | 0.5 (0.2–1.1) | 0.9 (0.6–1.3) | 0.008 * |
Daily FSH dose (IU) | 225 (168.75–225) | 150 (150–200) | <0.001 * |
Cumulative FSH dose (IU) | 1987.5 (1800–2700) | 1600 (1200–1950) | <0.001 * |
Oocytes (n) | 4 (1.25–9.25) | 7 (4–11.75) | 0.041 * |
Immature oocytes (n) | 0 (0–1) | 0 (0–2) | 0.673 |
Embryos (n) | 2 (1–4.75) | 4 (2–6) | 0.073 |
BMI | FSH | Nr Oocytes | Nr Immature Oocytes | Nr Embryos | Cumulative Gonadotrophin Dose | |
---|---|---|---|---|---|---|
BMI | ||||||
Correlation coefficient | 1 | −0.32 | −0.01 | 0.08 | −0.09 | 0.18 |
p-value | <0.001 * | 0.853 | 0.413 | 0.278 | 0.029 * | |
FSH | ||||||
Correlation coefficient | −0.32 | 1 | −0.17 | −0.12 | −0.10 | 0.16 |
p-value | <0.001 * | 0.039 * | 0.159 | 0.245 | 0.059 | |
Nr oocytes | ||||||
Correlation coefficient | −0.01 | −0.17 | 1 | 0.48 | 0.74 | −0.10 |
p-value | 0.853 | 0.039 * | <0.001 * | <0.001 * | 0.163 | |
Nr immature oocytes | ||||||
Correlation coefficient | 0.08 | −0.12 | 0.48 | 1 | 0.15 | −0.11 |
p-value | 0.413 | 0.159 | <0.001 * | 0.085 | 0.134 | |
Nr embryos | ||||||
Correlation coefficient | −0.09 | −0.10 | 0.74 | 0.15 | 1 | −0.14 |
p-value | 0.278 | 0.245 | <0.001 * | 0.085 | 0.075 | |
Cumulative gonadotrophin dose | ||||||
Correlation coefficient | 0.18 | 0.16 | −0.10 | −0.11 | −0.14 | 1 |
p-value | 0.029 * | 0.059 | 0.163 | 0.134 | 0.075 |
BMI | FSH | Nr Oocytes | Nr Immature Oocytes | Nr Embryos | Cumulative Gonadotrophin Dose | |
---|---|---|---|---|---|---|
BMI | ||||||
Correlation coefficient | 1 | −0.34 | −0.03 | 0.11 | −0.10 | 0.17 |
p-value | <0.001 | 0.760 | 0.238 | 0.276 | 0.076 | |
FSH | ||||||
Correlation coefficient | −0.34 | 1 | −0.03 | −0.08 | −0.05 | 0.19 |
p-value | <0.001 * | 0.795 | 0.379 | 0.612 | 0.049 * | |
Nr oocytes | ||||||
Correlation coefficient | −0.03 | −0.03 | 1 | 0.36 | 0.60 | 0.06 |
p-value | 0.760 | 0.795 | <0.001 * | <0.001 * | 0.500 | |
Nr immature oocytes | ||||||
Correlation coefficient | 0.11 | −0.08 | 0.36 | 1 | −0.07 | −0.02 |
p-value | 0.238 | 0.379 | <0.001 * | 0.472 | 0.844 | |
Nr embryos | ||||||
Correlation coefficient | −0.10 | 0.05 | 0.60 | −0.07 | 1 | −0.02 |
p-value | 0.276 | 0.612 | <0.001 * | 0.472 | 0.838 | |
Cumulative gonadotrophin dose | ||||||
Correlation coefficient | 0.17 | 0.19 | 0.06 | −0.02 | −0.02 | 1 |
p-value | 0.076 | 0.049 * | 0.500 | 0.844 | 0.838 |
BMI | FSH | Nr Oocytes | Nr Immature Oocytes | Nr Embryos | Cumulative Gonadotrophin Dose | |
---|---|---|---|---|---|---|
BMI | ||||||
Correlation coefficient | 1 | −0.22 | −0.27 | −0.33 | −0.39 | 0.30 |
p-value | 0.244 | 0.156 | 0.071 | 0.034 * | 0.111 | |
FSH | ||||||
Correlation coefficient | −0.22 | 1 | 0.18 | 0.20 | 0.06 | −0.13 |
p-value | 0.244 | 0.335 | 0.292 | 0.766 | 0.493 | |
Nr oocytes | ||||||
Correlation coefficient | −0.27 | 0.18 | 1 | 0.43 | 0.72 | −0.09 |
p-value | 0.156 | 0.335 | 0.018 * | <0.001 * | 0.631 | |
Nr immature oocytes | ||||||
Correlation coefficient | −0.33 | 0.20 | 0.43 | 1 | 0.20 | −0.15 |
p-value | 0.071 | 0.292 | 0.018 * | 0.294 | 0.435 | |
Nr embryos | ||||||
Correlation coefficient | −0.39 | 0.06 | 0.72 | 0.20 | 1 | −0.06 |
p-value | 0.034 * | 0.766 | <0.001 * | 0.294 | 0.757 | |
Cumulative gonadotrophin dose | ||||||
Correlation coefficient | 0.30 | −0.13 | −0.09 | −0.15 | −0.06 | 1 |
p-value | 0.111 | 0.493 | 0.631 | 0.435 | 0.757 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burnik Papler, T.; Stimpfel, M.; Kovacik, B.; Bokal, E.V. Poor Ovarian Response to Gonadotrophins in PCOS Women after Laparoscopic Ovarian Drilling. Medicina 2022, 58, 147. https://doi.org/10.3390/medicina58020147
Burnik Papler T, Stimpfel M, Kovacik B, Bokal EV. Poor Ovarian Response to Gonadotrophins in PCOS Women after Laparoscopic Ovarian Drilling. Medicina. 2022; 58(2):147. https://doi.org/10.3390/medicina58020147
Chicago/Turabian StyleBurnik Papler, Tanja, Martin Stimpfel, Brina Kovacik, and Eda Vrtacnik Bokal. 2022. "Poor Ovarian Response to Gonadotrophins in PCOS Women after Laparoscopic Ovarian Drilling" Medicina 58, no. 2: 147. https://doi.org/10.3390/medicina58020147
APA StyleBurnik Papler, T., Stimpfel, M., Kovacik, B., & Bokal, E. V. (2022). Poor Ovarian Response to Gonadotrophins in PCOS Women after Laparoscopic Ovarian Drilling. Medicina, 58(2), 147. https://doi.org/10.3390/medicina58020147