Veno-Arterial Extracorporeal Membrane Oxygenation in Patients with Fulminant Myocarditis: A Review of Contemporary Literature
Abstract
:1. Introduction
2. Epidemiology
3. Diagnostics
3.1. Biomarkers
3.2. Imaging
3.2.1. Endomyocardial Biopsy (EMB)
3.2.2. Deleterious Effects of Circulatory Shock in Myocarditis
4. Management
4.1. Etiology Targeted Therapy
4.1.1. Initial Support
4.1.2. Management Approach
4.1.3. Timing of ECMO Initiation
4.1.4. Escalation of Care
4.1.5. Left Ventricular Unloading
4.1.6. ECMO-IABP Strategy
4.1.7. ECMELLA (ECMO-Impella) Strategy
4.1.8. Veno-Arterial Extracorporeal Membrane Oxygenation Weaning
5. COVID-19, Myocarditis, and Extracorporeal Membrane Oxygenation
Prognosis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
CK-MB | creatinine kinase-MB |
CMR | cardiac magnetic resonance |
COVID-19 | coronavirus disease 2019 |
ECLS | extracorporeal life support |
ECMO | extracorporeal membrane oxygenation |
ELSO | extracorporeal Life Support Organization |
EMB | endomyocardial biopsy |
ICD | implantable cardiac defibrillator |
LVAD | left ventricular assist device |
LVEF | left ventricular ejection fraction |
MCS | mechanical circulatory support |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
VAD | ventricular assist devices |
VA-ECMO | veno-arterial extracorporeal membrane oxygenation |
References
- Cooper, L.T.J. Myocarditis. N. Engl. J. Med. 2009, 360, 1526–1538. [Google Scholar] [CrossRef] [Green Version]
- Ammirati, E.; Frigerio, M.; Adler, E.D.; Basso, C.; Birnie, D.H.; Brambatti, M.; Friedrich, M.; Klingel, K.; Lehtonen, J.; Moslehi, J.J.; et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy: An expert consensus document. Circ. Heart Fail 2020, 13, e007405. [Google Scholar] [CrossRef]
- Blauwet, L.A.; Cooper, L.T. Myocarditis. Prog. Cardiovasc. Dis. 2010, 52, 274–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valaperti, A.; Marty, R.R.; Kania, G.; Germano, D.; Mauermann, N.; Dirnhofer, S.; Leimenstoll, B.; Blyszczuk, P.; Dong, C.; Mueller, C.; et al. CD11b+ monocytes abrogate Th17 CD4+ T cell-mediated experimental autoimmune myocarditis. J. Immunol. 2008, 180, 2686–2695. [Google Scholar] [CrossRef] [Green Version]
- Kindermann, I.; Barth, C.; Mahfoud, F.; Ukena, C.; Lenski, M.; Yilmaz, A.; Klingel, K.; Kandolf, R.; Sechtem, U.; Cooper, L.T.; et al. Update on myocarditis. J. Am. Coll. Cardiol. 2012, 59, 779–792. [Google Scholar] [CrossRef] [PubMed]
- Caforio, A.L.P.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Helio, T.; Heymans, S.; Jahns, R.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636—2648, 2648a—2648d. [Google Scholar] [CrossRef]
- Daniel, R.A.F.; Silva, A.R.; Neppelenbroek, V.B.S.; Feres, O.; Bestetti, R.B. Fulminant myocarditis and viral infection. J. Clin. Virol. 2013, 58, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Simpson, K.E.; Canter, C.E. Acute myocarditis in children. Expert Rev. Cardiovasc. Ther. 2011, 9, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Italia, L.; Tomasoni, D.; Bisegna, S.; Pancaldi, E.; Stretti, L.; Adamo, M.; Metra, M. COVID-19 and heart failure: From epidemiology during the pandemic to myocardial injury, myocarditis, and heart failure sequelae. Front. Cardiovasc. Med. 2021, 8, 713560. [Google Scholar] [CrossRef] [PubMed]
- Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [CrossRef] [Green Version]
- Ammirati, E.; Cipriani, M.; Lilliu, M.; Sormani, P.; Varrenti, M.; Raineri, C.; Petrella, D.; Garascia, A.; Pedrotti, P.; Roghi, A.; et al. Survival and left ventricular function changes in fulminant versus nonfulminant acute myocarditis. Circulation 2017, 136, 529–545. [Google Scholar] [CrossRef]
- Ammirati, E.; Cipriani, M.; Moro, C.; Raineri, C.; Pini, D.; Sormani, P.; Mantovani, R.; Varrenti, M.; Pedrotti, P.; Conca, C.; et al. Clinical presentation and outcome in a contemporary cohort of patients with acute myocarditis: Multicenter lombardy registry. Circulation 2018, 138, 1088–1099. [Google Scholar] [CrossRef]
- McCarthy, R.E., 3rd; Boehmer, J.P.; Hruban, R.H.; Hutchins, G.M.; Kasper, E.K.; Hare, J.M.; Baughman, K.L. Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. N. Engl. J. Med. 2000, 342, 690–695. [Google Scholar] [CrossRef] [Green Version]
- Law, Y.M.; Lal, A.K.; Chen, S.; Čiháková, D.; Cooper, L.T.J.; Deshpande, S.; Godown, J.; Grosse-Wortmann, L.; Robinson, J.D.; Towbin, J.A.; et al. Diagnosis and management of myocarditis in children: A scientific statement from the american heart association. Circulation 2021, 144, e123–e135. [Google Scholar] [CrossRef] [PubMed]
- Caforio, A.L.P.; Brucato, A.; Doria, A.; Brambilla, G.; Angelini, A.; Ghirardello, A.; Bottaro, S.; Tona, F.; Betterle, C.; Daliento, L.; et al. Anti-heart and anti-intercalated disk autoantibodies: Evidence for autoimmunity in idiopathic recurrent acute pericarditis. Heart 2010, 96, 779–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Aty, H.; Boyé, P.; Zagrosek, A.; Wassmuth, R.; Kumar, A.; Messroghli, D.; Bock, P.; Dietz, R.; Friedrich, M.G.; Schulz-Menger, J. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: Comparison of different approaches. J. Am. Coll. Cardiol. 2005, 45, 1815–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedrich, M.G.; Sechtem, U.; Schulz-Menger, J.; Holmvang, G.; Alakija, P.; Cooper, L.T.; White, J.A.; Abdel-Aty, H.; Gutberlet, M.; Prasad, S.; et al. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J. Am. Coll. Cardiol. 2009, 53, 1475–1487. [Google Scholar] [CrossRef] [Green Version]
- Leone, O.; Veinot, J.P.; Angelini, A.; Baandrup, U.T.; Basso, C.; Berry, G.; Bruneval, P.; Burke, M.; Butany, J.; Calabrese, F.; et al. 2011 consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovasc. Pathol. 2012, 21, 245–274. [Google Scholar] [CrossRef] [PubMed]
- Yancy, C.W.; Mariell, J.; Bozkurt, B.; Butler, B.; Casey, D.E., Jr.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure. J. Am. Coll. Cardiol. 2017, 70, 776–803. [Google Scholar] [CrossRef]
- Tschöpe, C.; Ammirati, E.; Bozkurt, B.; Caforio, A.L.P.; Cooper, L.T.; Felix, S.B.; Hare, J.M.; Heidecker, B.; Heymans, S.; Hubner, N.; et al. Myocarditis and inflammatory cardiomyopathy: Current evidence and future directions. Nat. Rev. Cardiol. 2021, 18, 169–193. [Google Scholar] [CrossRef] [PubMed]
- Ammirati, E.; Veronese, G.; Brambatti, M.; Merlo, M.; Cipriani, M.; Potena, L.; Sormani, P.; Aoki, T.; Sugimura, K.; Sawamura, A.; et al. Fulminant versus acute nonfulminant myocarditis in patients with left ventricular systolic dysfunction. J. Am. Coll. Cardiol. 2019, 74, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Samsky, M.D.; Morrow, D.A.; Proudfoot, A.G.; Hochman, J.S.; Thiele, H.; Rao, S.V. Cardiogenic shock after acute myocardial infarction: A review. JAMA 2021, 326, 1840–1850. [Google Scholar] [CrossRef] [PubMed]
- Escher, F.; Kühl, U.; Lassner, D.; Poller, W.; Westermann, D.; Pieske, B.; Tschope, C.; Schultheiss, H. Long-term outcome of patients with virus-negative chronic myocarditis or inflammatory cardiomyopathy after immunosuppressive therapy. Clin. Res. Cardiol. 2016, 105, 1011–1020. [Google Scholar] [CrossRef]
- Cooper, L.T.J.; Hare, J.M.; Tazelaar, H.D.; Edwards, W.D.; Starling, R.C.; Deng, M.C.; Menon, S.; Mullen, G.M.; Jaski, B.; Bailey, K.R.; et al. Usefulness of immunosuppression for giant cell myocarditis. Am. J. Cardiol. 2008, 102, 1535–1539. [Google Scholar] [CrossRef] [Green Version]
- De Backer, D.; Biston, P.; Devriendt, J.; Madl, C.; Chochrad, D.; Aldecoa, C.; Brasseur, A.; DeFrance, P.; Gottignies, P.; Vincent, J. Comparison of dopamine and norepinephrine in the treatment of shock. N. Engl. J. Med. 2010, 362, 779–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathew, R.; di Santo, P.; Jung, R.G.; Marbach, J.A.; Hutson, J.; Simard, T.; Ramirez, D.; Harnett, D.T.; Merdad, A.; Almufleh, A.; et al. Milrinone as compared with dobutamine in the treatment of cardiogenic shock. N. Engl. J. Med. 2021, 385, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Peng, L.; Zeng, Q.; Wu, Z.-K. Autonomic nervous function and arrhythmias in patients with acute viral myocarditis during a 6-month follow-up period. Cardiology 2009, 113, 66–71. [Google Scholar] [CrossRef]
- Baksi, A.J.; Kanaganayagam, G.S.; Prasad, S.K. Arrhythmias in viral myocarditis and pericarditis. Card. Electrophysiol. Clin. 2015, 7, 269–281. [Google Scholar] [CrossRef]
- Sharma, J.R.; Sathanandam, S.; Rao, S.P.; Acharya, S.; Flood, V. Ventricular tachycardia in acute fulminant myocarditis: Medical management and follow-up. Pediatric Cardiol. 2008, 29, 416–419. [Google Scholar] [CrossRef]
- Annamalai, S.K.; Esposito, M.L.; Jorde, L.; Schreiber, T.; Hall, S.; O’Neill, W.W.; Kapur, N. The impella microaxial flow catheter is safe and effective for treatment of myocarditis complicated by cardiogenic shock: An analysis from the global cVAD registry. J. Card. Fail. 2018, 24, 706–710. [Google Scholar] [CrossRef]
- Pahuja, M.; Adegbala, O.; Mishra, T.; Akintoye, E.; Chehab, O.; Mony, S.; Singh, M.; Ando, T.; Abubaker, H.; Yassin, A.; et al. Trends in the incidence of in-hospital mortality, cardiogenic shock, and utilization of mechanical circulatory support devices in myocarditis (analysis of National Inpatient Sample Data, 2005–2014). J. Card. Fail. 2019, 25, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Patnaik, S.; Patel, B.; Ram, P.; Garg, L.; Agarwal, M.; Agrawal, S.; Arora, S.; Patel, N.; Wald, J.; et al. Trends in mechanical circulatory support use and hospital mortality among patients with acute myocardial infarction and non-infarction related cardiogenic shock in the United States. Clin. Res. Cardiol. 2018, 107, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.-H.; Chi, N.-H.; Yu, H.-Y.; Wang, C.-H.; Huang, S.-C.; Wang, S.-S.; Ko, W.-J.; Chen, Y.-S. Extracorporeal membranous oxygenation support for acute fulminant myocarditis: Analysis of a single center’s experience. Eur. J. Cardio-Thorac. 2011, 40, 682–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorusso, R.; Centofanti, P.; Gelsomino, S.; Barili, F.; di Mauro, M.; Orlando, P.; Botta, L.; Filippo, M.; Dato, G.A.; Casabona, R.; et al. Venoarterial extracorporeal membrane oxygenation for acute fulminant myocarditis in adult patients: A 5-year multi-institutional experience. Ann. Thorac. Surg. 2016, 101, 919–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marelli, D.; Laks, H.; Amsel, B.; Jett, G.K.; Couper, G.; Ardehali, A.; Galindo, A.; Drinkwater, D.C. Temporary mechanical support with the BVS 5000 assist device during treatment of acute myocarditis. J. Card. Surg. 1997, 12, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Ueno, T.; Bergin, P.; Richardson, M.; Esmore, D.S. Bridge to recovery with a left ventricular assist device for fulminant acute myocarditis. Ann. Thorac. Surg. 2000, 69, 284–286. [Google Scholar] [CrossRef]
- Houël, R.; Vermes, E.; Tixier, D.B.; le Besnerais, P.; Benhaiem-Sigaux, N.; Loisance, D.Y. Myocardial recovery after mechanical support for acute myocarditis: Is sustained recovery predictable? Ann. Thorac. Surg. 1999, 68, 2177–2180. [Google Scholar] [CrossRef]
- Chen, J.M.; Spanier, T.B.; Gonzalez, J.J.; Marelli, D.; Flannery, M.A.; Tector, K.A.; Cullinane, S.; Oz, M.C. Improved survival in patients with acute myocarditis using external pulsatile mechanical ventricular assistance. J. Heart Lung 1999, 18, 351–357. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Prasad, A.; Bell, M.R.; Sandhu, G.S.; Eleid, M.F.; Dunlay, S.M.; Schears, G.J.; Stulak, J.M.; Singh, M.; Gersh, B.J.; et al. Extracorporeal membrane oxygenation use in acute myocardial infarction in the United States, 2000 to 2014. Circ. Heart Fail 2019, 12, e005929. [Google Scholar] [CrossRef] [PubMed]
- Vallabhajosyula, S.; Vallabhajosyula, S.; Vaidya, V.R.; Patlolla, S.H.; Desai, V.; Mulpuru, S.K.; Noseworthy, P.A.; Kapa, K.; Egbe, A.C.; Gersh, B.J.; et al. Venoarterial extracorporeal membrane oxygenation support for ventricular tachycardia ablation: A systematic review. ASAIO J. 2020, 66, 980–985. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Patlolla, S.H.; Sandhyavenu, H.; Vallabhajosyula, S.; Barsness, G.W.; Dunlay, S.M.; Greason, K.L.; Holmes, D.R.; Eleid, M.F. Periprocedural cardiopulmonary bypass or venoarterial extracorporeal membrane oxygenation during transcatheter aortic valve replacement: A systematic review. J. Am. Heart Assoc. 2018, 7, e009608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallabhajosyula, S.; Arora, S.; Lahewala, S.; Kumar, V.; Shantha, G.P.S.; Jentzer, J.C.; Stulak, J.M.; Gersh, B.J.; Rajiv, G.; Rihal, C.S.; et al. Temporary mechanical circulatory support for refractory cardiogenic shock before left ventricular assist device surgery. J. Am. Heart Assoc. 2018, 7, e010193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallabhajosyula, S.; O’Horo, J.C.; Antharam, P.; Ananthaneni, S.; Vallabhajosyula, S.; Stulak, J.M.; Eleid, M.F.; Dunlay, S.M.; Gersh, B.J.; Rihal, S.C.; et al. Concomitant intra-aortic balloon pump use in cardiogenic shock requiring veno-arterial extracorporeal membrane oxygenation. Circ. Cardiovasc. Interv. 2018, 11, e006930. [Google Scholar] [CrossRef] [PubMed]
- Vallabhajosyula, S.; Arora, S.; Sakhuja, A.; Lahewala, S.; Kumar, V.; Shantha, G.P.S.; Egbe, A.C.; Stulak, J.M.; Gersh, B.J.; Gulati, R.; et al. Trends, predictors, and outcomes of temporary mechanical circulatory support for postcardiac surgery cardiogenic shock. Am. J. Cardiol. 2019, 123, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Dalton, H.J.; Berg, R.A.; Nadkarni, V.M.; Kochanek, P.M.; Tisherman, S.A.; Thiagarajan, R.; Alexander, P.; Bartlett, R.H. Cardiopulmonary resuscitation and rescue therapies. Crit. Care Med. 2021, 49, 1375–1388. [Google Scholar] [CrossRef]
- Tominaga, Y.; Toda, K.; Miyagawa, S.; Yoshioka, D.; Kainuma, S.; Kawamura, T. Total percutaneous biventricular assist device implantation for fulminant myocarditis. J. Artif. Organs 2021, 24, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Tschöpe, C.; van Linthout, S.; Klein, O.; Mairinger, T.; Krackhardt, F.; Potapov, E.V.; Schmidt, G.; Burkhoff, D.; Pieske, B.; Spillmann, F. Mechanical unloading by fulminant myocarditis: LV-Impella, Ecmella, BI-Pella, and Propella Concepts. J. Cardiovasc. Transl. Res. 2019, 12, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Extracorporeal Life Support Organization. ECLS Registry Report; International Summary; Extracorporeal Life Support Organization: Ann Arbor, MI, USA, 2019. [Google Scholar]
- Mishra, V.; Svennevig, J.L.; Bugge, J.F.; Andresen, S.; Mathisen, A.; Karlsen, H.; Khushi, I.; Hagen, T.P. Cost of extracorporeal membrane oxygenation: Evidence from the Rikshospitalet University Hospital, Oslo, Norway. Eur. J. Cardio-Thorac. Surg. 2010, 37, 339–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, M.; Zhao, Y.; Strom, J.B.; Shen, C.; Yeh, R.W. Extracorporeal membrane oxygenation use in cardiogenic shock: Impact of age on in-hospital mortality, length of stay, and costs. Crit. Care Med. 2019, 47, e214-21. [Google Scholar] [CrossRef]
- Hayanga, J.W.A.; Aboagye, J.; Bush, E.; Canner, J.; Hayanga, H.K.; Klingbeil, A.; McCarthy, P.; Fugett, J.; Abbas, G.; Badhwar, V. Contemporary analysis of charges and mortality in the use of extracorporeal membrane oxygenation: A cautionary tale. JTCVS Open 2020, 1, 61–70. [Google Scholar] [CrossRef]
- Saito, S.; Toda, K.; Miyagawa, S.; Yoshikawa, Y.; Hata, H.; Yoshioka, D.; Domae, K.; Tsukamoto, Y.; Sakata, Y.; Sawa, Y. Diagnosis, medical treatment, and stepwise mechanical circulatory support for fulminat myocarditis. J. Artif. Organs 2018, 21, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, S.K.; Almond, C.S.; Laussen, P.C.; Rycus, P.T.; Wypij, D.; Thiagarajan, R.R. Extracorporeal membrane oxygenation for the support of infants, children, and young adults with acute myocarditis: A review of the Extracorporeal Life Support Organization registry. Crit. Care Med. 2010, 38, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Paden, M.L.; Conrad, S.A.; Rycus, P.T.; Thiagarajan, R.R. Registry on B of the E. extracorporeal life support organization registry report 2012. ASAIO J. 2013, 59, 202–210. [Google Scholar] [CrossRef]
- Mirabel, M.; Luyt, C.-E.; Leprince, P.; Trouillet, J.-L.; Léger, P.; Pavie, A.; Chastre, J.; Combes, A. Outcomes, long-term quality of life, and psychologic assessment of fulminant myocarditis patients rescued by mechanical circulatory support. Crit. Care Med. 2011, 39, 1029–1035. [Google Scholar] [CrossRef]
- Thourani, V.H.; Kirshbom, P.M.; Kanter, K.R.; Simsic, J.; Kogon, B.E.; Wagoner, S.; Dykes, F.; Fortenberry, J.; Forbess, J.M. Venoarterial extracorporeal membrane oxygenation (VA-ECMO) in pediatric cardiac support. Ann. Thorac. Surg. 2006, 82, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Chong, S.-Z.; Fang, C.-Y.; Fang, H.-Y.; Chen, H.-C.; Chen, C.-J.; Yang, C.-H.; Hang, C.-L.; Yip, H.-K.; Wu, C.-J.; Lee, W.-C. Associations with the in-hospital survival following extracorporeal membrane oxygenation in adult acute fulminant myocarditis. J. Clin. Med. 2018, 7, 452. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.-P.; Chu, S.-C.; Huang, W.-Y.; Hsia, S.-H.; Chan, O.-W.; Lin, C.-Y.; Su, Y.-T.; Chang, Y.-S.; Chung, H.-T.; Wu, H.-P.; et al. Factors associated with in-hospital mortality of children with acute fulminant myocarditis on extracorporeal membrane oxygenation. Front. Pediatrics 2020, 8, 488. [Google Scholar] [CrossRef]
- Asaumi, Y.; Yasuda, S.; Morii, I.; Kakuchi, H.; Otsuka, Y.; Kawamura, A.; Sasako, Y.; Nakatani, T.; Nonogi, H.; Miyazaki, S. Favourable clinical outcome in patients with cardiogenic shock due to fulminant myocarditis supported by percutaneous extracorporeal membrane oxygenation. Eur. Heart J. 2005, 26, 2185–2192. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.I.; Chung, S.; Yang, J.-H.; Sung, K.; Kim, D.; Choi, J.-O.; Jeon, E.-S.; Yang, J.-H.; Cho, Y.-H. Extracorporeal membrane oxygenation for fulminant myocarditis: Increase of cardiac enzyme and SOFA score is associated with high mortality. J. Clin. Med. 2021, 10, 1526. [Google Scholar] [CrossRef]
- Tadokoro, N.; Fukushima, S.; Minami, K.; Taguchi, T.; Saito, T.; Kawamoto, N.; Kakuta, T.; Seguchi, O.; Watanabe, T.; Doi, S.N.; et al. Efficacy of central extracorporeal life support for patients with fulminant myocarditis and cardiogenic shock. Eur. J. Cardiothorac. Surg. 2021, 60, 1184–1192. [Google Scholar] [CrossRef]
- Diddle, J.W.; Almodovar, M.C.; Rajagopal, S.K.; Rycus, P.T.; Thiagarajan, R.R. Extracorporeal membrane oxygenation for the support of adults with acute myocarditis. Crit. Care Med. 2015, 43, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Han, J.; Jia, Y.; Zeng, W.; Shi, J.; Hou, X.; Meng, X. Early and intermediate results of rescue extracorporeal membrane oxygenation in adult cardiogenic shock. Ann. Thorac. Surg. 2009, 88, 1897–1903. [Google Scholar] [CrossRef]
- Sheu, J.-J.; Tsai, T.-H.; Lee, F.-Y.; Fang, H.-Y.; Sun, C.-K.; Leu, S.; Yang, C.-H.; Chen, S.-M.; Hang, C.-L.; Hsieh, Y.-K.; et al. Early extracorporeal membrane oxygenator-assisted primary percutaneous coronary intervention improved 30-day clinical outcomes in patients with ST-segment elevation myocardial infarction complicated with profound cardiogenic shock. Crit. Care Med. 2010, 38, 1810–1817. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-C.; Hsu, J.-C.; Wu, Y.-W.; Ke, S.-R.; Huang, J.-H.; Chiu, K.-M.; Liao, P.-C. Implementation of extracorporeal membrane oxygenation before primary percutaneous coronary intervention may improve the survival of patients with ST-segment elevation myocardial infarction and refractory cardiogenic shock. Int. J. Cardiol. 2018, 269, 45–50. [Google Scholar] [CrossRef]
- Choi, K.H.; Yang, J.H.; Hong, D.; Park, T.K.; Lee, J.M.; Song, Y.B.; Hahn, J.-Y.; Choi, S.-H.; Choi, J.-H.; Chung, S.R.; et al. Optimal timing of venoarterial-extracorporeal membrane oxygenation in acute myocardial infarction patients suffering from refractory cardiogenic shock. Circ. J. 2020, 84, 1502–1510. [Google Scholar] [CrossRef]
- Lee, H.-H.; Kim, H.C.; Ahn, C.-M.; Lee, S.-J.; Hong, S.-J.; Yang, J.H.; Kim, J.-S.; Kim, B.-K.; Ko, Y.-G.; Ko, Y.-G.; et al. Association between timing of extracorporeal membrane oxygenation and clinical outcomes in refractory cardiogenic shock. JACC Cardiovasc. Interv. 2021, 14, 1109–1119. [Google Scholar] [CrossRef]
- Rajaram, S.S.; Desai, N.K.; Kalra, A.; Gajera, M.; Cavanaugh, S.K.; Brampton, W.; Young, D.; Harvey, S.; Rowan, K. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst. Rev. 2013, 2013, CD003408. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez Ziccardi, M.; Khalid, N. Pulmonary Artery Catheterization; StatPerls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Capaccione, K.M.; Leb, J.S.; D’souza, B.; Utukuri, P.; Salvatore, M.M. Acute myocardial infarction secondary to COVID-19 infection: A case report and review of the literature. Clin. Imaging 2021, 72, 178–182. [Google Scholar] [CrossRef]
- Sotomi, Y.; Sato, N.; Kajimoto, K.; Sakata, Y.; Mizuno, M.; Minami, Y.; Fujii, K.; Takano, T. Impact of pulmonary artery catheter on outcome in patients with acute heart failure syndromes with hypotension or receiving inotropes: From the ATTEND Registry. Int. J. Cardiol. 2014, 172, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Binanay, C.; Califf, R.M.; Hasselblad, V.; O’Connor, C.M.; Shah, M.R.; Sopko, G.; Stevenson, L.W.; Francis, G.S.; Leier, C.V.; Miller, L.W.; et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: The ESCAPE trial. JAMA 2005, 294, 1625–1633. [Google Scholar]
- Van Diepen, S.; Katz, J.N.; Albert, N.M.; Henry, T.D.; Jacobs, A.K.; Kapur, N.K.; Kilic, A.; Menon, V.; Ohman, E.M.; Sweitzer, N.K.; et al. Contemporary management of cardiogenic shock: A scientific statement from the american heart association. Circulation 2017, 136, e232-68. [Google Scholar] [CrossRef] [PubMed]
- Fuernau, G.; Desch, S.; de Waha-Thiele, S.; Eitel, I.; Neumann, F.-J.; Hennersdorf, M.; Felix, S.B.; Fach, A.; Bohm, M.; Poss, J.; et al. Arterial lactate in cardiogenic shock. JACC: Cardiovasc. Interv. 2020, 13, 2208–2216. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, B.N.; Truesdell, A.G.; Sherwood, M.W.; Desai, S.; Tran, H.A.; Epps, K.C.; Singh, R.; Psotko, M.; Shah, P.; Cooper, L.B.; et al. Standardized team-based care for cardiogenic shock. J. Am. Coll. Cardiol. 2019, 73, 1659–1669. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-S.; Yu, H.-Y. Choice of mechanical support for fulminant myocarditis: ECMO vs. VAD? Eur. J. Cardio-Thorac. Surg. 2005, 27, 931–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallabhajosyula, S.; O’Horo, J.C.; Antharam, P.; Ananthaneni, S.; Vallabhajosyula, S.; Stulak, J.M.; Dunlay, S.M.; Holmes Jr, D.R.; Barness, G.W. Venoarterial extracorporeal membrane oxygenation with concomitant impella versus venoarterial extracorporeal membrane oxygenation for cardiogenic shock. ASAIO J. 2020, 66, 497–503. [Google Scholar] [CrossRef]
- Subramaniam, A.V.; Barsness, G.W.; Vallabhajosyula, S.; Vallabhajosyula, S. Complications of temporary percutaneous mechanical circulatory support for cardiogenic shock: An appraisal of contemporary literature. Cardiol. Ther. 2019, 8, 211–228. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.N.; Stultz, J.R.; Bellamkonda, N.; Amsterdam, E.A. Fulminant myocarditis: Epidemiology, pathogenesis, diagnosis, and management. Am. J. Cardiol. 2019, 124, 1954–1960. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Bell, M.R.; Sandhu, G.S.; Jaffe, A.S.; Holmes, D.R.J.; Barsness, G.W. Complications in patients with acute myocardial infarction supported with extracorporeal membrane oxygenation. J. Clin. Med. 2020, 19, 839. [Google Scholar] [CrossRef] [Green Version]
- Cevasco, M.; Takayama, H.; Ando, M.; Garan, A.R.; Naka, Y.; Takeda, K. Left ventricular distension and venting strategies for patients on venoarterial extracorporeal membrane oxygenation. J. Thorac. Dis. 2019, 11, 1676–1683. [Google Scholar] [CrossRef]
- Kapur, N.K.; Esposito, M.L.; Bader, Y.; Morine, K.J.; Kiernan, M.S.; Pham, D.T.; Burkhoff, D. Mechanical circulatory support devices for acute right ventricular failure. Circulation 2017, 136, 314–326. [Google Scholar] [CrossRef] [Green Version]
- Bakhtiary, F.; Keller, H.; Dogan, S.; Dzemali, O.; Oezaslan, F.; Meininger, D.; Ackermann, H.; Zwissler, B.; Kleine, P.; Moritz, A. Venoarterial extracorporeal membrane oxygenation for treatment of cardiogenic shock: Clinical experiences in 45 adult patients. J. Thorac. Cardiovasc. Surg. 2008, 135, 382–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappalardo, F.; Schulte, C.; Pieri, M.; Schrage, B.; Contri, R.; Soeffker, G.; Greco, T.; Lembo, R.; Mullerleile, K.; Colombo, A.; et al. Concomitant implantation of Impella® on top of veno-arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock. Eur. J. Heart Fail. 2017, 19, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Souter, M.J.; Kirschen, M. Brain death: Optimizing support of the traumatic brain injury patient awaiting organ procurement. Curr. Opin. Crit. Care 2020, 26, 155–161. [Google Scholar] [CrossRef]
- Matsumoto, M.; Asaumi, Y.; Nakamura, Y.; Nakatani, T.; Nagai, T.; Kanaya, T.; Kawakami, S.; Honda, S.; Kataoka, Y.; Nakajima, S.; et al. Clinical determinants of successful weaning from extracorporeal membrane oxygenation in patients with fulminant myocarditis. ESC Heart Fail 2018, 5, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Jaroszewski, D.E.; Marranca, M.C.; Pierce, C.N.; Wong, R.K.; Steidley, E.D.; Scott, R.L.; Devaleria, P.A.; Arabia, F. Successive circulatory support stages: A triple bridge to recovery from fulminant myocarditis. J. Heart Lung Transpl. 2009, 28, 984–986. [Google Scholar] [CrossRef] [PubMed]
- Prime BEC. ELSO Anticoagulation Guideline. 2014. Available online: http://www.elso.org/Portals/0/Files/elsoanticoagulationguideline8-2014-table-contents.pdf.
- Thiagarajan, R.R.; Barbaro, R.P.; Rycus, P.T.; Mcmullan, D.M.; Conrad, S.A.; Fortenberry, J.D.; Paden, M.L.; ELSO member centers. Extracorporeal life support organization registry international report 2016. ASAIO J. 2017, 63, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Zangrillo, A.; Landoni, G.; Biondi-Zoccai, G.; Greco, M.; Greco, T.; Frati, G.; Patroniti, N.; Antonelli, M.; Pesenti, A.; Pappalardo, F. A meta-analysis of complications and mortality of extracorporeal membrane oxygenation. Crit. Care Resusc. 2013, 15, 172–178. [Google Scholar]
- Olson, S.R.; Murphree, C.R.; Zonies, D.; Meyer, A.D.; Mccarty, O.J.T.; Deloughery, T.G.; Shatzel, J.J. Thrombosis and bleeding in extracorporeal membrane oxygenation (ECMO) without anticoagulation: A systematic review. ASAIO J. 2021, 67, 290–296. [Google Scholar] [CrossRef]
- Vaquer, S.; de Haro, C.; Peruga, P.; Oliva, J.C.; Artigas, A. Systematic review and meta-analysis of complications and mortality of veno-venous extracorporeal membrane oxygenation for refractory acute respiratory distress syndrome. Ann. Intensive Care 2017, 7, 51. [Google Scholar] [CrossRef]
- Brogan, T.V.; Thiagarajan, R.R.; Rycus, P.T.; Bartlett, R.H.; Bratton, S.L. Extracorporeal membrane oxygenation in adults with severe respiratory failure: A multi-center database. Intensive Care Med. 2009, 35, 2105–2114. [Google Scholar] [CrossRef]
- Aubron, C.; Cheng, A.C.; Pilcher, D.; Leong, T.; Magrin, G.; Cooper, D.J.; Scheinkestel, C.; Pellegrino, V. Factors associated with outcomes of patients on extracorporeal membrane oxygenation support: A 5-year cohort study. Crit. Care 2013, 17, R73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aubron, C.; DePuydt, J.; Belon, F.; Bailey, M.; Schmidt, M.; Sheldrake, J.; Murphy, D.; Scheinkestel, C.; Cooper, J.D.; Capellier, G.; et al. Predictive factors of bleeding events in adults undergoing extracorporeal membrane oxygenation. Ann. Intensive Care 2016, 6, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combes, A.; Leprince, P.; Luyt, C.-E.; Bonnet, N.; Trouillet, J.-L.; Léger, P.; Pavie, A.; Chastre, J. Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit. Care Med. 2008, 36, 1404–1411. [Google Scholar] [CrossRef]
- Den Uil, C.A.; Akin, S.; Jewbali, L.S.; dos Reis Miranda, D.; Brugts, J.J.; Constantinescu, A.A.; Kappetein, A.P.; Caliskan, K. Short-term mechanical circulatory support as a bridge to durable left ventricular assist device implantation in refractory cardiogenic shock: A systematic review and meta-analysis. Eur. J. Cardio-Thorac. Surg. 2017, 52, 14–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kociol, R.D.; Cooper, L.T.; Fang, J.C.; Moslehi, J.J.; Pang, P.S.; Sabe, M.A.; Shah, R.V.; Sims, D.B.; Thiene, G.; Vardeny, O. Recognition and initial management of fulminant myocarditis: A scientific statement from the american heart association. Circulation 2020, 141, e69-92. [Google Scholar] [CrossRef]
- Szakal-Toth, Z.; Szlavik, J.; Soltesz, A.; Berzsenyi, V.; Csikos, G.; Varga, T.; Racz, K.; Kiraly, A.; Sax, B.; Hartyanszky, I.; et al. Acute heart transplantation from mechanical circulatory support in a human immunodeficiency virus-positive patient with fulminant myocarditis. ESC Heart Fail 2021, 8, 1643–1648. [Google Scholar] [CrossRef] [PubMed]
- Durães, A.R.; dos Santos Figueira, F.A.M.; Lafayette, A.R.; de Martins, J.C.S.; de Sá, J.C. Use of venoarterial extracorporeal membrane oxygenation in fulminant chagasic myocarditis as a bridge to heart transplant. Rev. Bras. Ter. Intensiva 2015, 27, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Ting, M.; Wang, C.-H.; Tsao, C.-I.; Huang, S.-C.; Chi, N.-H.; Chou, N.-K.; Chen, Y.-S.; Wang, S.-S. Heart transplantation under mechanical circulatory support for acute fulminant myocarditis with cardiogenic shock: 10 years’ experience of a single center. Transplant. Proc. 2016, 48, 951–955. [Google Scholar] [CrossRef]
- Çınar, T.; Hayıroğlu, M.İ.; Çiçek, V.; Uzun, M.; Orhan, A.L. COVID-19 and acute myocarditis: Current literature review and diagnostic challenges. Rev. Assoc. Med. Bras. 2020, 66, 48–54. [Google Scholar] [CrossRef]
- Daniels, C.J.; Rajpal, S.; Greenshields, J.T.; Rosenthal, G.L.; Chung, E.H.; Terrin, M.; Jeudy, J.; Mattson, S.E.; Law, I.H.; Borchers, J.; et al. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 Infection: Results from the big ten COVID-19 cardiac registry. JAMA Cardiol. 2021, 6, 1078–1087. [Google Scholar] [CrossRef]
- Laganà, N.; Cei, M.; Evangelista, I.; Cerutti, S.; Colombo, A.; Conte, L.; Mormina, E.; Rotiroti, G.; Versace, A.G.; Porta, C. Suspected myocarditis in patients with COVID-19: A multicenter case series. Medicine 2021, 100, e24552. [Google Scholar] [CrossRef]
- Montgomery, J.; Ryan, M.; Engler, R.; Hoffman, D.; McClenathan, B.; Collins, L.; Loran, D.; Hrncir, D.; Herring, K.; Platzer, M.; et al. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. JAMA Cardiol. 2021, 6, 1202–1206. [Google Scholar] [CrossRef]
- Diaz, G.A.; Parsons, G.T.; Gering, S.K.; Meier, A.R.; Hutchinson, I.V.; Robicsek, A. Myocarditis and pericarditis after vaccination for COVID-19. JAMA 2021, 326, 1210–1212. [Google Scholar] [CrossRef] [PubMed]
- Shekar, K.; Badulak, J.; Peek, G.; Boeken, U.; Dalton, H.J.; Arora, L.; Zakhary, B.; Ramanathan, K.; Starr, J.; Akkanti, B.; et al. Extracorporeal life support organization coronavirus disease 2019 interim guidelines: A consensus document from an international group of interdisciplinary extracorporeal membrane oxygenation providers. ASAIO J. 2020, 66, 707–721. [Google Scholar] [CrossRef]
- Rajagopal, K.; Keller, S.P.; Akkanti, B.; Bime, C.; Loyalka, P.; Cheema, F.H.; Zwischenberger, J.B.; Banayosy, A.E.; Pappalardo, F.; Slaughter, M.S.; et al. Advanced pulmonary and cardiac support of COVID-19 Patients. Circ. Heart Fail. 2020, 13, e007175. [Google Scholar] [CrossRef] [PubMed]
- Gauchotte, G.; Venard, V.; Segondy, M.; Cadoz, C.; Esposito-Fava, A.; Barraud, D.; Louis, G. SARS-Cov-2 fulminant myocarditis: An autopsy and histopathological case study. Int. J. Leg. Med. 2021, 135, 577–581. [Google Scholar] [CrossRef]
- Bojkova, D.; Wagner, J.U.G.; Shumliakivska, M.; Aslan, G.S.; Saleem, U.; Hansen, A.; Luxan, G.; Gunther, S.; Pham, M.D.; Krishnan, J.; et al. SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes. Cardiovasc. Res. 2020, 116, 2207–2215. [Google Scholar] [CrossRef] [PubMed]
- Agdamag, A.C.C.; Edmiston, J.B.; Charpentier, V.; Chowdhury, M.; Fraser, M.; Maharaj, V.R.; Francis, G.S.; Alexy, T. Update on COVID-19 Myocarditis. Medicina 2020, 56, 678. [Google Scholar] [CrossRef]
- Siripanthong, B.; Nazarian, S.; Muser, D.; Deo, R.; Santangeli, P.; Khanji, M.Y.; Cooper Jr., L.T.; Chahal, C.A.A. Recognizing COVID-19; related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020, 17, 1463–1471. [Google Scholar] [CrossRef]
- Zeng, J.-H.; Liu, Y.-X.; Yuan, J.; Wang, F.-X.; Wu, W.-B.; Li, J.-X.; Wang, L.-F.; Gao, H.; Wang, Y.; Dong, C.-F.; et al. First case of COVID-19 complicated with fulminant myocarditis: A case report and insights. Infection 2020, 48, 773–777. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, J.-M.; Almroth, H.; Törnudd, M.; van der Wal, H.; Varelogianni, G.; Lawesson, S.S. Fulminant myocarditis in a COVID-19 positive patient treated with mechanical circulatory support—A case report. Eur. Heart J. Case Rep. 2021, 5, 523. [Google Scholar] [CrossRef] [PubMed]
- Yeleti, R.; Guglin, M.; Saleem, K.; Adigopula, S.V.; Sinha, A.; Upadhyay, S.; Everett, J.E.; Ballut, K.; Uppuluri, S.; Rao, R.A. Fulminant myocarditis: COVID or not COVID? Reinfection or co-infection? Future Cardiol. 2021, 17, 1307–1311. [Google Scholar] [CrossRef] [PubMed]
- Marcinkiewicz, K.; Petryka-Mazurkiewicz, J.; Nowicki, M.M.; Kuriata, J.; Dzielińska, Z.; Demkow, M.; Konopka, A. Acute heart failure in the course of fulminant myocarditis requiring mechanical circulatory support in a healthy young patient after coronavirus disease 2019. Kardiol. Pol. 2021, 79, 583–584. [Google Scholar] [PubMed]
- Bernal-Torres, W.; Herrera-Escandón, Á.; Hurtado-Rivera, M.; Plata-Mosquera, C.A. COVID-19 fulminant myocarditis: A case report. Eur. Heart J.—Case Rep. 2020, 4, 1–6. [Google Scholar] [CrossRef] [PubMed]
Infectious | Non-Infectious |
---|---|
Bacterial Staphylococcus, Streptococcus, Meningococcus, Gonococcus, Salmonella, Hemophilus influenza, Mycoplasma pneumonia, Brucella | Toxin mediated |
Spirochetal Borrelia, Leptospira | Physical Radiation induced; Electric shock induced |
Viral DNA viruses: human herpes virus–6, Epstein-Barr virus, varicella-zoster virus, herpes simplex virus, adenoviruses, parvovirus B19, cytomegalovirus RNA viruses: coronaviruses, respiratory syncytial virus, mumps virus, measles virus, rubella virus, hepatitis C virus, dengue virus, yellow fever virus, Chikungunya virus, coxsackieviruses A and B, echoviruses, polioviruses, influenza A and B viruses | Drugs Cocaine, cyclophosphamide, ethanol, fluorouracil, lithium, catecholamines, hemetine, interleukin, amphetamines, anthracyclines, trastuzumab |
Fungal Cryptococcus, Histoplasma, Aspergillus, Actinomyces, Blastomyces, Candida, Coccidioides | Heavy metals Lead, copper, iron, arsenic |
Parasitic Echinococcus granulosus, Taenia solium, Trichinella spiralis | Hormonal Pheochromocytoma |
Rickettsial Coxiella burnetii, R. rickettsii R. tsutsugamushi | Venoms Snake and spider bites, bee, and wasp stings |
Protozoal Trypanosoma cruzi, Toxoplasma gondii, Entamoeba, Leishmania | Immune mediated |
Allergen Serum sickness, tetanus toxoid | |
Antigen induced Infection-negative lymphocytic, infection-negative giant cell, heart transplant rejection |
Author/Year | Study Design | Region | Total N | Configuration of VA-ECMO | Survival to Discharge | LVAD Transition | Long-Term Survival |
---|---|---|---|---|---|---|---|
Asaumi et al. 2005 [59] | Retrospective cohort | Japan | 14 | 100% Peripheral | 71% | --- | 71% |
Hsu et al. 2011 [33] | Retrospective cohort | Taiwan | 75 | 63% Peripheral 37% Central | 64% | 8% | --- |
Mirabel et al. 2011 [55] | Retrospective cross-sectional | France | 35 | 80% Peripheral 4% Central 16% BiVAD | 68% | --- | --- |
Lorusso et al. 2016 [34] | Retrospective cohort | Italy | 57 | 85.8% Peripheral 14.2% Central | 75.5% | --- | 65.2% |
Saito et al. 2018 [52] | Retrospective cohort | Japan | 30 | 92% Peripheral 8% Central | 83.3% | 13% | --- |
Chong et al. 2018 [57] | Retrospective cohort | Taiwan | 35 | 100% Peripheral | 57% | --- | 55.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venkataraman, S.; Bhardwaj, A.; Belford, P.M.; Morris, B.N.; Zhao, D.X.; Vallabhajosyula, S. Veno-Arterial Extracorporeal Membrane Oxygenation in Patients with Fulminant Myocarditis: A Review of Contemporary Literature. Medicina 2022, 58, 215. https://doi.org/10.3390/medicina58020215
Venkataraman S, Bhardwaj A, Belford PM, Morris BN, Zhao DX, Vallabhajosyula S. Veno-Arterial Extracorporeal Membrane Oxygenation in Patients with Fulminant Myocarditis: A Review of Contemporary Literature. Medicina. 2022; 58(2):215. https://doi.org/10.3390/medicina58020215
Chicago/Turabian StyleVenkataraman, Shreyas, Abhishek Bhardwaj, Peter Matthew Belford, Benjamin N. Morris, David X. Zhao, and Saraschandra Vallabhajosyula. 2022. "Veno-Arterial Extracorporeal Membrane Oxygenation in Patients with Fulminant Myocarditis: A Review of Contemporary Literature" Medicina 58, no. 2: 215. https://doi.org/10.3390/medicina58020215
APA StyleVenkataraman, S., Bhardwaj, A., Belford, P. M., Morris, B. N., Zhao, D. X., & Vallabhajosyula, S. (2022). Veno-Arterial Extracorporeal Membrane Oxygenation in Patients with Fulminant Myocarditis: A Review of Contemporary Literature. Medicina, 58(2), 215. https://doi.org/10.3390/medicina58020215