Computed Tomography-Based Navigation System in Current Spine Surgery: A Narrative Review
Abstract
:1. Introduction
2. Method
3. Discussion
3.1. Trends in Spinal Navigation Systems
3.2. Accuracy, Complication Rate, Cost-Effectiveness, and Radiation Exposure in Navigated Spine Surgery
3.3. Application of Navigation Systems in Cervical Spine Surgery
3.4. Application of Navigation Systems in Scoliosis Surgery
3.5. Application of Navigation System in MISt Procedures
3.6. Robotics-Assisted Surgery
3.7. Limitations of Navigation Systems
3.8. Future Perspective and Challenges
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foley, K.T.; Holly, L.T.; Schwender, J.D. Minimally invasive lumbar fusion. Spine 2003, 28, S26–S35. [Google Scholar] [CrossRef] [PubMed]
- Gebhard, F.; Weidner, A.; Liener, U.C.; Stöckle, U.; Arand, M. Navigation at the spine. Injury 2004, 35, 35–45. [Google Scholar] [CrossRef]
- Shin, B.J.; James, A.R.; Njoku, I.U.; Härtl, R. Pedicle screw navigation: A systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J. Neurosurg. Spine 2012, 17, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.W.; Strohbehn, J.W.; Hatch, J.F.; Murray, W.; Kettenberger, H. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J. Neurosurg. 1986, 65, 545–549. [Google Scholar] [CrossRef]
- Kim, T.T.; Drazin, D.; Shweikeh, F.; Pashman, R.; Johnson, J.P. Clinical and radiographic outcomes of minimally invasive percutaneous pedicle screw placement with intraoperative CT (O-arm) image guidance navigation. Neurosurg. Focus 2014, 36, E1. [Google Scholar] [CrossRef]
- Kim, T.T.; Johnson, J.P.; Pashman, R.; Drazin, D. Minimally invasive spinal surgery with intraoperative image-guided navigation. BioMed Res. Int. 2016, 2016, 5716235. [Google Scholar] [CrossRef]
- Hiyama, A.; Katoh, H.; Sakai, D.; Sato, M.; Tanaka, M.; Watanabe, M. Comparison of radiological changes after single- position versus dual-position for lateral interbody fusion and pedicle screw fixation. BMC Musculoskelet. Disord. 2019, 20, 601. [Google Scholar] [CrossRef] [Green Version]
- Larson, A.N.; Santos, E.R.G.; Polly, D.W.; Ledonio, C.G.T.; Sembrano, J.N.; Mielke, C.H.; Guidera, K.J. Pediatric pedicle screw placement using intraoperative computed tomography and 3-dimensional image-guided navigation. Spine 2012, 37, E188–E194. [Google Scholar] [CrossRef]
- Van de Kelft, E.; Costa, F.; Van der Planken, D.; Schils, F. A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation navigation. Spine 2012, 37, E1580–E5877. [Google Scholar] [CrossRef] [Green Version]
- Scheufler, K.-M.; Franke, J.; Eckardt, A.; Dohmen, H. Accuracy of image-guided pedicle screw placement using intraoperative computed tomography-based navigation with automated referencing, Part I: Cervicothoracic spine. Neurosurgery 2011, 69, 782–795. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Krishan, S.; Haendlmayer, K.; Mohsen, A. Functional outcome of computer-assisted spinal pedicle screw placement: A systematic review and meta-analysis of 23 studies including 5992 pedicle screws. Eur. Spine J. 2010, 19, 370–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yson, S.C.; Sembrano, J.N.; Sanders, P.C.; Santos, E.R.G.; Ledonio, C.G.T.; Polly, D. Comparison of cranial facet joint violation rates between open and percutaneous pedicle screw placement using intraoperative 3-D CT (O-arm) computer navigation. Spine 2013, 38, E251–E258. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.-T.; Guan, X.-F.; Zhang, H.-L.; He, S.-S. Computer navigation versus fluoroscopy-guided navigation for thoracic pedicle screw placement: A meta-analysis. Neurosurg. Rev. 2016, 39, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Ughwanogho, E.; Patel, N.M.; Baldwin, K.D.; Sampson, N.R.; Flynn, J.M. Computed tomography–guided navigation of thoracic pedicle screws for adolescent idiopathic scoliosis results in more accurate placement and less screw removal. Spine 2012, 37, E473–E478. [Google Scholar] [CrossRef]
- Fichtner, J.; Hofmann, N.; Rienmüller, A.; Buchmann, N.; Gempt, J.; Kirschke, J.S.; Ringel, F.; Meyer, B.; Ryang, Y.-M. Revision rate of misplaced pedicle screws of the thoracolumbar spine–comparison of three-dimensional fluoroscopy navigation with freehand placement: A systematic analysis and review of the literature. World Neurosurg. 2018, 109, e24–e32. [Google Scholar] [CrossRef]
- Schouten, R.; Lee, R.; Boyd, M.; Paquette, S.; Dvorak, M.; Kwon, B.K.; Fisher, C.; Street, J. Intra-operative cone-beam CT (O-arm) and stereotactic navigation in acute spinal trauma surgery. J. Clin. Neurosci. 2012, 19, 1137–1143. [Google Scholar] [CrossRef]
- Bydon, M.; Xu, R.; Amin, A.G.; Macki, M.; Kaloostian, P.; Sciubba, D.M.; Wolinsky, J.-P.; Bydon, A.; Gokaslan, Z.L.; Witham, T.F. Safety and efficacy of pedicle screw placement using intraoperative computed tomography: Consecutive series of 1148 pedicle screws. J. Neurosurg. Spine 2014, 21, 320–328. [Google Scholar] [CrossRef]
- Zausinger, S.; Scheder, B.; Uhl, E.; Heigl, T.; Morhard, D.; Tonn, J.-C. Intraoperative computed tomography with integrated navigation system in spinal stabilizations. Spine 2009, 34, 2919–2926. [Google Scholar] [CrossRef]
- Watkins, R.G.; Gupta, A. Cost-effectiveness of image-guided spine surgery. Open Orthop. J. 2010, 4, 228–233. [Google Scholar] [CrossRef]
- Dea, N.; Fisher, C.G.; Batke, J.; Strelzow, J.; Mendelsohn, D.; Paquette, S.J.; Kwon, B.K.; Boyd, M.D.; Dvorak, M.F.; Street, J.T. Economic evaluation comparing intraoperative cone beam CT-based navigation and conventional fluoroscopy for the placement of spinal pedicle screws: A patient-level data cost-effectiveness analysis. Spine J. 2016, 16, 23–31. [Google Scholar] [CrossRef]
- Vano, E.; Kleiman, N.; Duran, A.; Rehani, M.; Echeverri, D.; Cabrera, M. Radiation cataract risk in interventional cardiology personnel. Radiat. Res. 2010, 174, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Shan, S.-J.; Chen, J.; Xu, X.; Guo, Y.; Wei, H.; Liu, Q.-Z.; Fu, Z.; Chen, H.-D. Multiple syringoid eccrine carcinomas with a long-term exposure to X-rays. Eur. J. Dermatol. 2011, 21, 821–822. [Google Scholar] [CrossRef]
- Mendelsohn, D.; Strelzow, J.; Dea, N.; Ford, N.L.; Batke, J.; Pennington, A.; Yang, K.; Ailon, T.; Boyd, M.; Dvorak, M.; et al. Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation. Spine J. 2016, 16, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Falavigna, A.; Ramos, M.B.; Iutaka, A.S.; Menezes, C.M.; Emmerich, J.; Taboada, N.; Riew, K.D. Knowledge and attitude regarding radiation exposure among spine surgeons in latin America. World Neurosurg. 2018, 112, e823–e829. [Google Scholar] [CrossRef] [PubMed]
- Giordano, B.D.; Rechtine, G.R., 2nd; Morgan, T.L. Minimally invasive surgery and radiation exposure. J. Neurosurg. Spine 2009, 11, 375–376. [Google Scholar] [CrossRef]
- Mastrangelo, G.; Fedeli, U.; Fadda, E.; Giovanazzi, A.; Scoizzato, L.; Saia, B. Increased cancer risk among surgeons in an orthopaedic hospital. Occup. Med. 2005, 55, 498–500. [Google Scholar] [CrossRef] [Green Version]
- Villard, J.; Ryang, Y.M.; Demetriades, A.K.; Reinke, A.; Behr, M.; Preuss, A.; Meyer, B.; Ringel, F. Radiation exposure to the surgeon and the patient during posterior lumbar spinal instrumentation: A prospective randomized comparison of navigated versus non-navigated freehand techniques. Spine 2014, 39, 1004–1009. [Google Scholar] [CrossRef]
- Hojo, Y.; Ito, M.; Suda, K.; Oda, I.; Yoshimoto, H.; Abumi, K. A multicenter study on accuracy and complications of freehand placement of cervical pedicle screws under lateral fluoroscopy in different pathological conditions: CT-based evaluation of more than 1,000 screws. Eur. Spine J. 2014, 23, 2166–2174. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Kanemura, T.; Yoshida, G.; Ito, Z.; Muramoto, A.; Ohno, S. Clinical accuracy of three-dimensional fluoroscopy-based computer-assisted cervical pedicle screw placement: A retrospective comparative study of conventional versus computer-assisted cervical pedicle screw placement. J. Neurosurg. Spine 2010, 13, 606–611. [Google Scholar] [CrossRef]
- Kotani, Y.; Abumi, K.; Ito, M.; Minami, A. Improved accuracy of computer-assisted cervical pedicle screw insertion. J. Neurosurg. Spine 2003, 99, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Kaneyama, S.; Sugawara, T.; Sumi, M. Safe and accurate midcervical pedicle screw insertion procedure with the patient-specific screw guide template system. Spine 2015, 40, E341–E348. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Kanemura, T.; Yoshida, G.; Matsumoto, A.; Ito, Z.; Tauchi, R.; Muramoto, A.; Ohno, S.; Nishimura, Y. Intraoperative, full-rotation, three-dimensional image (O-arm)–based navigation system for cervical pedicle screw insertion. J. Neurosurg. Spine 2011, 15, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Kuklo, T.R.; Lenke, L.G.; O’Brien, M.F.; Lehman, R.A., Jr.; Polly, D.W., Jr.; Schroeder, T.M. Accuracy and efficacy of thoracic pedicle screws in curves more than 90 degrees. Spine 2005, 30, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Di Silvestre, M.; Parisini, P.; Lolli, F.; Bakaloudis, G. Complications of thoracic pedicle screws in scoliosis treatment. Spine 2007, 32, 1655–1661. [Google Scholar] [CrossRef]
- Hicks, J.; Singla, A.; Arlet, V. 145. Complications of pedicle screw fixation in scoliosis surgery: A systematic review. Spine 2010, 35, E465–E470. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lenke, L.G.; Bridwell, K.H.; Cho, Y.S.; Riew, K.D. Free hand pedicle screw placement in the thoracic spine: Is it safe? Spine 2004, 29, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Lehman, R.A.; Lenke, L.G.; Keeler, K.A.; Kim, Y.J.; Cheh, G. Computed tomography evaluation of pedicle screws placed in the pediatric deformed spine over an 8-year period. Spine 2007, 32, 2679–2684. [Google Scholar] [CrossRef]
- Şarlak, A.Y.; Tosun, B.; Atmaca, H.; Sarisoy, H.T.; Buluç, L. Evaluation of thoracic pedicle screw placement in adolescent idiopathic scoliosis. Eur. Spine J. 2009, 18, 1892–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson, A.N.; Polly, D.W.; Guidera, K.J.; Mielke, C.H.; Santos, E.R.G.; Ledonio, C.G.T.; Sembrano, J.N. The accuracy of navigation and 3d image-guided placement for the placement of pedicle screws in congenital spine deformity. J. Pediatr. Orthop. 2012, 32, e23–e29. [Google Scholar] [CrossRef]
- Vissarionov, S.; Schroeder, J.; Novikov, S.; Kokushin, D.; Belyanchikov, S.; Kaplan, L. The Utility of 3-dimensional-navigation in the surgical treatment of children with idiopathic scoliosis. Spine Deform. 2014, 2, 14–20. [Google Scholar] [CrossRef]
- Choi, H.Y.; Hyun, S.-J.; Kim, K.-J.; Jahng, T.-A. Freehand S2 alar-iliac screw placement using k-wire and cannulated screw: Technical case series. J. Korean Neurosurg. Soc. 2018, 61, 75–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blizzard, D.J.; Thomas, J.A. MIS single-position lateral and oblique lateral lumbar interbody fusion and bilateral pedicle screw fixation: Feasibility and perioperative results. Spine 2018, 43, 440–446. [Google Scholar] [CrossRef]
- Funao, H.; Kebaish, K.M.; Isogai, N.; Koyanagi, T.; Matsumoto, M.; Ishii, K. Utilization of a technique of percutaneous S2 alar-iliac fixation in immunocompromised patients with spondylodiscitis. World Neurosurg. 2017, 97, e11–e18. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.L.; Sponseller, P.D.; Kebaish, K.M.; Fishman, E.K. Low profile pelvic fixation: Anatomic parameters for sacral alar-iliac fixation versus traditional iliac fixation. Spine 2009, 34, 436–440. [Google Scholar] [CrossRef]
- Nottmeier, E.W.; Pirris, S.M.; Balseiro, S.; Fenton, D. Three-dimensional image-guided placement of S2 alar screws to adjunct or salvage lumbosacral fixation. Spine J. 2010, 10, 595–601. [Google Scholar] [CrossRef]
- Ray, W.Z.; Ravindra, V.M.; Schmidt, M.H.; Dailey, A.T. Stereotactic navigation with the O-arm for placement of S-2 alar iliac screws in pelvic lumbar fixation. J. Neurosurg. Spine 2013, 18, 490–495. [Google Scholar] [CrossRef]
- Laratta, J.L.; Shillingford, J.N.; Lombardi, J.M.; Alrabaa, R.G.; Benkli, B.; Fischer, C.; Lenke, L.G.; Lehman, R.A. Accuracy of S2 alar-iliac screw placement under robotic guidance. Spine Deform. 2018, 6, 130–136. [Google Scholar] [CrossRef]
- Lieberman, I.H.; Togawa, D.; Kayanja, M.M.; Reinhardt, M.K.; Friedlander, A.; Knoller, N. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: Part I--Technical development and a test case result. Neurosurgery 2006, 59, 641–650. [Google Scholar] [CrossRef]
- Devito, D.P.; Kaplan, L.; Dietl, R.; Pfeiffer, M.; Horne, D.; Silberstein, B. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: Retrospective study. Spine 2010, 35, 2109–2115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pechlivanis, I.; Kiriyanthan, G.; Engelhardt, M.; Scholz, M.; Lücke, S.; Harders, A. Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: First experiences and accuracy of screw placement. Spine 2009, 34, 392–398. [Google Scholar] [CrossRef]
- Kantelhardt, S.R.; Martinez, R.; Baerwinkel, S.; Burger, R.; Giese, A.; Rohde, V. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur. Spine J. 2011, 20, 860–868. [Google Scholar] [CrossRef] [Green Version]
- Molliqaj, G.; Schatlo, B.; Alaid, A.; Solomiichuk, V.; Rohde, V.; Schaller, K.; Tessitore, E. Accuracy of robot-guided versus freehand fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery. Neurosurg. Focus 2017, 42, E14. [Google Scholar] [CrossRef]
- Roser, F.; Tatagiba, M.; Maier, G. Spinal robotics: Current applications and future perspectives. Neurosurgery 2013, 72 (Suppl. 1), 12–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barzilay, Y.; Schroeder, J.E.; Hiller, N.; Singer, G.; Hasharoni, A.; Safran, O. Robot-assisted vertebral body augmentation: A radiation reduction tool. Spine 2014, 39, 153–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, J.R.; Smith, B.W.; Liu, X.; Park, P. Current applications of robotics in spine surgery: A systematic review of the literature. Neurosurg. Focus 2017, 42, E2. [Google Scholar] [CrossRef] [Green Version]
- Hyun, S.J.; Kim, K.J.; Jahng, T.A.; Kim, H.J. Minimally invasive robotic versus open fluoroscopic-guided spinal instrumented fusions: A randomized controlled trial. Spine 2017, 42, 353–358. [Google Scholar] [CrossRef]
- Keric, N.; Doenitz, C.; Haj, A.; Rachwal-Czyzewicz, I.; Renovanz, M.; Wesp, D.M.A.; Boor, S.; Conrad, J.; Brawanski, A.; Giese, A.; et al. Evaluation of robot-guided minimally invasive implantation of 2067 pedicle screws. Neurosurg. Focus 2017, 42, E11. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Ohnmeiss, D.D.; Lieberman, I.H. Robotic-assisted pedicle screw placement: Lessons learned from the first 102 patients. Eur. Spine J. 2013, 22, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Lee, S.H.; Chang, B.-S.; Lee, C.-K.; Lim, T.O.; Hoo, L.P.; Yi, J.-M.; Yeom, J.S. Monitoring the quality of robot-assisted pedicle screw fixation in the lumbar spine by using a cumulative summation test. Spine 2015, 40, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Schatlo, B.; Martinez, R.; Alaid, A.; Von Eckardstein, K.; Akhavan-Sigari, R.; Hahn, A.; Stockhammer, F.; Rohde, V. Unskilled unawareness and the learning curve in robotic spine surgery. Acta Neurochir. 2015, 157, 1819–1823. [Google Scholar] [CrossRef]
- Stüer, C.; Ringel, F.; Stoffel, M.; Reinke, A.; Behr, M.; Meyer, B. Robotic technology in spine surgery: Current applications and future developments. Acta Neurochir. Suppl. 2010, 109, 241–245. [Google Scholar]
- Kelly, P.J. Neurosurgical robotics. Clin. Neurosurg. 2002, 49, 136–158. [Google Scholar]
- Louw, D.F.; Fielding, T.; McBeth, P.B.; Gregoris, D.; Newhook, P.; Sutherland, G.R. Surgical robotics: A review and neurosurgical prototype development. Neurosurgery 2004, 54, 525–537. [Google Scholar] [CrossRef]
- Ringel, F.; Stüer, C.; Reinke, A.; Preuss, A.; Behr, M.; Auer, F. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: A prospective randomized comparison to conventional freehand screw implantation. Spine 2012, 37, E496–E501. [Google Scholar] [CrossRef]
- Van Dijk, J.D.; van den Ende, R.P.; Stramigioli, S.; Köchling, M.; Höss, N. Clinical pedicle screw accuracy and deviation from planning in robot-guided spine surgery: Robot-guided pedicle screw accuracy. Spine 2015, 40, E986–E991. [Google Scholar] [CrossRef]
- Lieberman, I.H.; Kisinde, S.; Hesselbacher, S. Robotic-assisted pedicle screw placement during spine surgery. JBJS Essent. Surg. Tech. 2020, 10, e0020. [Google Scholar] [CrossRef] [PubMed]
- Urbanski, W.; Jurasz, W.; Wolanczyk, M.; Kulej, M.; Morasiewicz, P.; Dragan, S.L.; Zaluski, R.; Miekisiak, G. Increased radiation but no benefits in pedicle screw accuracy with navigation versus a freehand technique in scoliosis surgery. Clin. Orthop. Relat. Res. 2018, 476, 1020–1027. [Google Scholar] [CrossRef]
- Fomekong, E.; Pierrard, J.; Raftopoulos, C. Comparative cohort study of percutaneous pedicle screw implantation without versus with navigation in patients undergoing surgery for degenerative lumbar disc disease. World Neurosurg. 2018, 111, e410–e417. [Google Scholar] [CrossRef]
- Yahanda, A.T.; Moore, E.; Ray, W.Z.; Pennicooke, B.; Jennings, J.W.; Molina, C.A. First in-human report of the clinical accuracy of thoracolumbar percutaneous pedicle screw placement using augmented reality guidance. Neurosurg. Focus 2021, 51, E10. [Google Scholar] [CrossRef] [PubMed]
- Yanni, D.S.; Ozgur, B.M.; Louis, R.G.; Shekhtman, Y.; Iyer, R.R.; Boddapati, V.; Iyer, A.; Patel, P.D.; Jani, R.; Cummock, M.; et al. Real-time navigation guidance with intraoperative CT imaging for pedicle screw placement using an augmented reality head-mounted display: A proof-of-concept study. Neurosurg. Focus 2021, 51, E11. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otomo, N.; Funao, H.; Yamanouchi, K.; Isogai, N.; Ishii, K. Computed Tomography-Based Navigation System in Current Spine Surgery: A Narrative Review. Medicina 2022, 58, 241. https://doi.org/10.3390/medicina58020241
Otomo N, Funao H, Yamanouchi K, Isogai N, Ishii K. Computed Tomography-Based Navigation System in Current Spine Surgery: A Narrative Review. Medicina. 2022; 58(2):241. https://doi.org/10.3390/medicina58020241
Chicago/Turabian StyleOtomo, Nao, Haruki Funao, Kento Yamanouchi, Norihiro Isogai, and Ken Ishii. 2022. "Computed Tomography-Based Navigation System in Current Spine Surgery: A Narrative Review" Medicina 58, no. 2: 241. https://doi.org/10.3390/medicina58020241
APA StyleOtomo, N., Funao, H., Yamanouchi, K., Isogai, N., & Ishii, K. (2022). Computed Tomography-Based Navigation System in Current Spine Surgery: A Narrative Review. Medicina, 58(2), 241. https://doi.org/10.3390/medicina58020241