HELLP Syndrome—Holistic Insight into Pathophysiology
Abstract
:1. Introduction
2. Placental Pathogenesis of HELLP Syndrome
2.1. Placenta-Derived Factors Involved in the Pathophysiology of HELLP Syndrome
2.1.1. Factors Influencing the Vasculature
- VEGF (vascular endothelial growth factor)The vascular endothelial growth factor (VEGF) represents a major proangiogenic factor. Recent studies have shown that VEGF serum concentration, placental mRNA levels, and cytotrophoblast expression of VEGF and their receptors in HELLP patients are significantly lower than the serum concentration of patients suffering from severe preeclampsia (PE) but higher than the level in nonpregnant women [20,21]. Soluble vascular endothelial growth factor receptor-1 (sVEGFR-1), also known as soluble fms-like tyrosine kinase-1 (sFlt-1), secretion is increased in HELLP patients, preventing the interaction between VEGF and platelet growth factor with their receptors [22,23,24,25,26]. sFlt-1 is produced by the placenta, macrophages, endothelial cells, and vascular smooth muscle cells [21]. New studies cite the existence of a splice variant of sFlt (sFlt-e15a/sFlt-14), which is upregulated in the placenta of PE and HELLP patients [4,24].
- sENG (soluble endoglin)The concentration of soluble endoglin (sEng) is observed to be higher in women with HELLP syndrome compared with nonpregnant and preeclamptic women, as well as higher than the sFlt1 serum level [4,6]. It has been shown that both sEng and sFlt1 inhibit endothelial tube formation and, thus, damage endothelial integrity, resulting in vascular damage and leak [6,26]. Endoglin is a coreceptor for TGF-β1 and TGF-β3 isoforms, and it reduces TGF-β1 binding to receptor type II (TβRII) on endothelial cells. TGF- β1 is responsible for VEGF production by the stellate cells in the space of Disse. Therefore, sEng is thought to determine impaired production of VEGF by the pericytes [4,47,48,49].
- Gal-1 (galectin-1)Galectin-1 plays an important role in immune modulation and angiogenesis by binding to neuropilin-1 (NRP-1), which promotes activation and signaling of VEGFR2 [27]. Studies observed a reduced level of sFlt-1 after Gal-1 supplementation and, therefore, increased VEGF bioavailability. Gal-1 serum level is significantly increased in HELLP women [28,29]. Its expression is upregulated in the placenta’s syncytiotrophoblast. A negative correlation was noted between systemic Gal-1 levels and platelet counts in early-onset HELLP patients through a Ca2+-dependent mechanism [4]. Ca2+ levels are elevated on platelet stimulation with Gal-1, which signals thromboxane A2 (TXA2) synthesis [50].
- Gal-1 activates the P-selectin and GPIIIa expression dose-dependently, which triggers conformational changes in GPIIb/IIIa and F-actin polymerization on human platelets [29]. An upregulation in P-selectin expression on the activated platelets’ surface initiates a torrent of intracellular events in leukocytes and platelets. This promotes vascular inflammation and facilitates atherosclerosis and thrombotic episodes [4,29]. Incubating platelets with PGI2 or NO before exposure to Gal-1 prevents the shredding of microvesicles and P-selectin [29]. A complete blockage of Gal-1-induced P selectin and GPIIIa upregulation in disaccharide lactose treatment was reported [4].ET-1 (endothelin-1)
- Endothelin 1 binding to the endothelin A receptor (ETA) activates the ET pathway [30]. It mediates vasoconstriction, elevates blood pressure, contributes to oxidative stress, and increases inflammatory cytokines and CD4+ cells [30]. Circulating endothelin 1 level is elevated in HELLP patients. ET-1 dysfunction mediators are inflammatory cytokines, agonistic autoantibodies to the angiotensin II type 1 receptor, and increased sFlt1 and sEng [4].Angs-2 (angiopoietin-2)
- Angiopoietins play an essential role in promoting angiogenesis and maintaining vascular integrity [51]. Angiopoietin-1 (Angs-1) and angiopoietin-2 (Angs-2) bind to the same endothelial cell-specific tyrosine kinase receptor, which is activated by Angs-1 and blocked by Angs-2 [51]. Angs-1 is a promoter of endothelial cell survival, whereas Angs-2 is an activator of the endothelium [52]. Significantly higher Angs-2 levels were measured in HELLP patients in comparison to normal or preeclamptic pregnant women [53]. Angs-1 is considerably increased in HELLP patients compared to normal pregnant women [4].ADMA (asymmetric dimethylarginine)
- Asymmetric dimethylarginine represents an inhibitor of the enzyme NO synthase [33]. ADMA decreases the availability of NO, causing vasodilation [33]. Dimethylarginine dimethylaminohydrolase (DDHA) is an ADMA-degrading enzyme located in the placenta tissue [4]. Therefore, placental DDHA dysfunction is considered to be one of the major events implicated in PE and HELLP syndrome development [44,54]. ADMA serum concentrations are significantly higher in HELLP patients [4].
2.1.2. Growth Factors
- Activin and Inhibin
2.1.3. Apoptosis/Necrosis-Related Factors
- Fas/FasL (Fas receptor/Fas ligand)
- HSPA1A/Hsp70 (heat-shock protein A1A/70)
- PP 13 (placental protein 13)
3. Genetic Studies
4. Pathogenetic Mechanisms in HELLP Women
4.1. The Inflammatory Response
4.2. Thrombotic Microangiopathy
4.3. Microangiopathic Hemolytic Anemia
4.4. Liver and Kidney Dysfunctions
4.5. Disseminated Intravascular Coagulation (DIC)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Várkonyi, T.; Nagy, B.; Füle, T.; Tarca, A.L.; Karászi, K.; Schönléber, J.; Hupuczi, P.; Mihalik, N.; Kovalszky, I.; Rigó, J.; et al. Microarray profiling reveals that placental transcriptomes of early-onset HELLP syndrome and preeclampsia are similar. Placenta 2011, 32, S21–S29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sibai, B.M. The HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets): Much ado about nothing? Am. J. Obstet. Gynecol. 1990, 162, 311–316. [Google Scholar] [CrossRef]
- Messini, S.; Delucca, A. HELLP syndrome. Minerva Ginecol. 1991, 43, 465–468. [Google Scholar] [PubMed]
- Van Lieshout, L.C.E.W.; Koek, G.H.; Spaanderman, M.A.; van Runnard Heimel, P.J. Placenta derived factors involved in the pathogenesis of the liver in the syndrome of haemolysis, elevated liver enzymes and low platelets (HELLP): A review. Pregnancy Hypertens. 2019, 18, 42–48. [Google Scholar] [CrossRef]
- Bazzan, M.; Todros, T.; Tedeschi, S.; Ardissino, G.; Cardaropoli, S.; Stella, S.; Montaruli, B.; Marchese, C.; Roccatello, D.; Cugno, M. Genetic and molecular evidence for complement dysregulation in patients with HELLP syndrome. Thromb. Res. 2020, 196, 167–174. [Google Scholar] [CrossRef]
- Abildgaard, U.; Heimdal, K. Pathogenesis of the syndrome of hemolysis, elevated liver enzymes, and low platelet count (HELLP): A review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 166, 117–123. [Google Scholar] [CrossRef]
- Sibai, B.M. Diagnosis, controversies, and management of the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet. Gynecol. 2004, 103, 981–991. [Google Scholar] [CrossRef] [Green Version]
- Lachmeijer, A.M.A.; Arngrímsson, R.; Bastiaans, E.J.; Frigge, M.L.; Pals, G.; Sigurdardóttir, S.; Stéfansson, H.; Pálsson, B.; Nicolae, D.; Kong, A.; et al. genome-wide scan for preeclampsia in the Netherlands. Eur. J. Hum. Gen. 2001, 9, 758–764. [Google Scholar] [CrossRef]
- Habli, M.; Eftekhari, N.; Wiebracht, E.; Bombrys, A.; Khabbaz, M.; How, H.; Sibai, B. Long-term maternal and subsequent pregnancy outcomes 5 years after hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome. Am. J. Obstet. Gynecol. 2009, 201, 385.e1–385.e5. [Google Scholar] [CrossRef]
- Hupuczi, P.; Rigó, B.; Sziller, I.; Szabó, G.; Szigeti, Z.; Papp, Z. Follow-up analysis of pregnancies complicated by HELLP syndrome. Fetal Diagn. Ther. 2006, 21, 519–522. [Google Scholar] [CrossRef]
- Cathelain-Soland, S.; Coulon, C.; Subtil, D.; Houfflin-Debarge, V.; Deruelle, P. Subsequent pregnancy outcome in women with a history of preeclampsia and/or HELLP syndrome. Gynecol. Obstet. Fertil. 2010, 38, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Malmström, O.; Håberg, S.E.; Morken, N.H. Probability and outcomes of second pregnancy after HELLP syndrome in the first: A population-based registry study. Acta Obstet. Gynecol. Scand. 2020, 99, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Rinehart, B.K.; May, W.L.; Magann, E.F.; Terrone, D.A.; Blake, P.G.; Lowery, C.; Entman, S. The spectrum of severe preeclampsia: Comparative analysis by HELLP (hemolysis, elevated liver enzyme levels, and low platelet count) syndrome classification. Am. J. Obstet. Gynecol. 1999, 180, 1373–1384. [Google Scholar] [CrossRef]
- Rimaitis, K.; Grauslyte, L.; Zavackiene, A.; Baliuliene, V.; Nadisauskiene, R.; Macas, A. Diagnosis of HELLP syndrome: A 10-year survey in a perinatology centre. Int. J. Environ. Res. Public Health 2019, 16, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, J.L.; Whitley, G.S.; Cartwright, J.E. Pre-eclampsia: Fitting together the placental, immune and cardiovascular pieces. J. Pathol. 2010, 221, 363–378. [Google Scholar] [CrossRef]
- Haram, K.; Svendsen, E.; Abildgaard, U. The HELLP syndrome: Clinical issues and management. A review. BMC Pregnancy Childbirth 2009, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Baumwell, S.; Karumanchi, S.A. Pre-eclampsia: Clinical manifestations and molecular mechanisms. Nephron Clin. Pract. 2007, 106, c72–c81. [Google Scholar] [CrossRef]
- Von Salmuth, V.; van der Heiden, Y.; Bekkers, I.; van Runnard Heimel, P.; Spaanderman, M.A.; Peeters, L.L.; Koek, G.H. The role of hepatic sinusoidal obstruction in the pathogenesis of the hepatic involvement in HELLP syndrome: Exploring the literature. Pregnancy Hypertens. 2020, 19, 37–43. [Google Scholar] [CrossRef]
- Baxter, J.K.; Weinstein, L. HELLP syndrome: The state of the art. Obstet. Gynecol. Surv. 2004, 59, 838–845. [Google Scholar] [CrossRef]
- Bussen, S.; Bussen, D. Influence of the vascular endothelial growth factor on the development of severe preeclampsia or HELLP syndrome. Arch. Gynecol. Obstet. 2011, 284, 551–557. [Google Scholar] [CrossRef]
- Purwosunu, Y.; Sekizawa, A.; Yoshimura, S.; Wibowo, N.; Nakamura, M.; Shimizu, H.; Okai, T.; Farina, A. Expression of angiogenesis-related genes in the cellular component of the blood of preeclamptic women. Reprod. Sci. 2009, 16, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; McMaster, M.; Woo, K.; Janatpour, M.; Perry, J.; Karpanen, T.; Alitalo, K.; Damsky, C.; Fisher, S.J. Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am. J. Pathol. 2002, 160, 1405–1423. [Google Scholar] [CrossRef] [Green Version]
- Taché, V.; Lacoursiere, D.Y.; Saleemuddin, A.; Parast, M.M. Placental expression of vascular endothelial growth factor receptor-1/soluble vascular endothelial growth factor receptor-1 correlates with severity of clinical preeclampsia and villous hypermaturity. Hum. Pathol. 2011, 42, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, C.L.; Palmer, K.R.; Nilsson, U.; Gao, Y.; Saglam, B.; Lappas, M.; Tong, S. Placental expression of a novel primate-specific splice variant of sFlt-1 is upregulated in pregnancies complicated by severe early onset preeclampsia. BJOG Int. J. Obstet. Gynaecol. 2011, 118, 1268–1271. [Google Scholar] [CrossRef]
- Schaarschmidt, W.; Rana, S.; Stepan, H. The course of angiogenic factors in early-vs. late-onset preeclampsia and HELLP syndrome. J. Perinat. Med. 2013, 41, 511–516. [Google Scholar] [CrossRef]
- Venkatesha, S.; Toporsian, M.; Lam, C.; Hanai, J.I.; Mammoto, T.; Kim, Y.M.; Bdolah, Y.; Lim, K.H.; Yuan, H.T.; Libermann, T.A.; et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 2006, 12, 642–649. [Google Scholar] [CrossRef]
- Freitag, N.; Tirado-Gonzaĺez, I.; Barrientos, G.; Herse, F.; Thijssen, V.L.J.L.; Weedon-Fekjær, S.M.; Schulz, H.; Wallukat, G.; Klapp, B.F.; Nevers, T.; et al. Interfering with Gal-1-mediated angiogenesis contributes to the pathogenesis of preeclampsia. Proc. Natl. Acad. Sci. USA 2013, 110, 11451–11456. [Google Scholar] [CrossRef] [Green Version]
- Schnabel, A.; Blois, S.M.; Meint, P.; Freitag, N.; Ernst, W.; Barrientos, G.; Conrad, M.L.; Rose, M.; Seelbach-Göbel, B. Elevated systemic galectin-1 levels characterize HELLP syndrome. J. Reprod. Immunol. 2016, 114, 38–43. [Google Scholar] [CrossRef]
- Pacienza, N.; Pozner, R.G.; Bianco, G.A.; D’Atri, L.P.; Croci, D.O.; Negrotto, S.; Malaver, E.; Gómez, R.M.; Rabinovich, G.A.; Schattner, M. The immunoregulatory glycan-binding protein galectin-1 triggers human platelet activation. FASEB J. 2008, 22, 1113–1123. [Google Scholar] [CrossRef]
- Morris, R.; Spencer, S.K.; Kyle, P.B.; Williams, J.M.; Harris, A.; Owens, M.Y.; Wallace, K. Hypertension in an animal model of HELLP syndrome is associated with activation of endothelin 1. Reprod. Sci. 2016, 23, 42–50. [Google Scholar] [CrossRef]
- Karakus, S.; Bozoklu Akkar, O.; Yildiz, C.; Sancakdar, E.; Cetin, M.; Cetin, A. Serum levels of ET-1, M30, and angiopoietins-1 and -2 in HELLP syndrome and preeclampsia compared to controls. Arch. Gynecol. Obstet. 2015, 293, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Torry, D.S.; Leavenworth, J.; Chang, M.; Maheshwari, V.; Groesch, K.; Ball, E.R.; Torry, R.J. Angiogenesis in implantation. J. Assist. Reprod. Genet. 2007, 24, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Siroen, M.P.C.; Teerlink, T.; Bolte, A.C.; Van Elburg, R.M.; Richir, M.C.; Nijveldt, R.J.; Van Der Hoven, B.; Van Leeuwen, P.A.M. No compensatory upregulation of placental dimethylarginine dimethylaminohydrolase activity in preeclampsia. Gynecol. Obstet. Investig. 2006, 62, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Savvidou, M.D.; Hingorani, A.D.; Tsikas, D.; Frölich, J.C.; Vallance, P.; Nicolaides, K.H. Endothelial dysfunction and raised plasma concentrations of asymmetric dimethylarginine in pregnant women who subsequently develop preeclampsia. Lancet 2003, 361, 1511–1517. [Google Scholar] [CrossRef]
- Mylonas, I.; Makovitzky, J.; Kunze, S.; Brüning, A.; Kainer, F.; Schiessl, B. Inhibin-betaC subunit expression in normal and pathological human placental tissues. Syst. Biol. Reprod. Med. 2011, 57, 197–203. [Google Scholar] [CrossRef]
- Muttukrishna, S.; Knight, P.G.; Groome, N.P.; Redman, C.W.G.; Ledger, W.L. Activin A and inhibin A as possible endocrine markers for preeclampsia. Lancet 1997, 349, 1285–1288. [Google Scholar] [CrossRef]
- Endo, D.; Kogure, K.; Hasegawa, Y.; Makuuchi, M.; Kojima, I. Activin A augments vascular endothelial growth factor activity in promoting branching tubulogenesis in hepatic sinusoidal endothelial cells. J. Hepatol. 2004, 40, 399–404. [Google Scholar] [CrossRef]
- Rodgarkia-Dara, C.; Vejda, S.; Erlach, N.; Losert, A.; Bursch, W.; Berger, W.; Schulte-Hermann, R.; Grusch, M. The activin axis in liver biology and disease. Mutat. Res. Mutat. Res. 2006, 613, 123–137. [Google Scholar] [CrossRef]
- Florio, P.; Cobellis, L.; Luisi, S.; Ciarmela, P.; Severi, F.M.; Bocchi, C.; Petraglia, F. Changes in inhibins and activin secretion in healthy and pathological pregnancies. Mol. Cell. Endocrinol. 2001, 180, 123–130. [Google Scholar] [CrossRef]
- Vassalli, A.; Matzuk, M.M.; Gardner, H.A.R.; Lee, K.F.; Jaenisch, R. Activin/inhibin beta B subunit gene disruption leads to defects in eyelid development and female reproduction. Genes Dev. 1994, 8, 414–427. [Google Scholar] [CrossRef] [Green Version]
- Cook, R.W.; Thompson, T.B.; Jardetzky, T.S.; Woodruff, T.K. Molecular biology of inhibin action. Semin. Reprod. Med. 2004, 22, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Strand, S.; Strand, D.; Seufert, R.; Mann, A.; Lotz, J.; Blessing, M.; Lahn, M.; Wunsch, A.; Broering, D.C.; Hahn, U.; et al. Placenta-derived CD95 ligand causes liver damage in hemolysis, elevated liver enzymes, and low platelet count syndrome. Gastroenterology 2004, 126, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Gibbens, J.; Morris, R.; Bowles, T.; Spencer, S.K.; Wallace, K. Dysregulation of the Fas/FasL system in an experimental animal model of HELLP syndrome. Pregnancy Hypertens. Int. J. Women’s Cardiovas. Health 2017, 8, 26–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molvarec, A.; Prohászka, Z.; Nagy, B.; Kalabay, L.; Szalay, J.; Füst, G.; Karádi, I.; Rigó, J. Association of increased serum heat shock protein 70 and C-reactive protein concentrations and decreased serum α2-HS glycoprotein concentration with the syndrome of hemolysis, elevated liver enzymes, and low platelet count. J. Reprod. Immunol. 2007, 73, 172–179. [Google Scholar] [CrossRef]
- Molvarec, A.; Tamási, L.; Losonczy, G.; Madách, K.; Prohászka, Z.; Rigó, J. Circulating heat shock protein 70 (HSPA1A) in normal and pathological pregnancies. Cell Stress Chaperones 2009, 15, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Than, N.G.; Abdul Rahman, O.; Magenheim, R.; Nagy, B.; Fule, T.; Hargitai, B.; Sammar, M.; Hupuczi, P.; Tarca, A.L.; Szabo, G.; et al. Placental protein 13 (galectin-13) has decreased placental expression but increased shedding and maternal serum concentrations in patients presenting with preterm preeclampsia and HELLP syndrome. Virchows Archiv. 2008, 453, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Sgambati, E.; Marini, M.; Zappoli Thyrion, G.D.; Parretti, E.; Mello, G.; Orlando, C.; Simi, L.; Tricarico, C.; Gheri, G.; Brizzi, E. VEGF expression in the placenta from pregnancies complicated by hypertensive disorders. BJOG Int. J. Obstet. Gynaecol. 2004, 111, 564–570. [Google Scholar] [CrossRef]
- Cheifetz, S.; Bellon, T.; Cales, C.; Vera, S.; Bernabeu, C.; Massague, J.; Letarte, M. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J. Biol. Chem. 1992, 267, 19027–19030. [Google Scholar] [CrossRef]
- Darland, D.C.; Massingham, L.J.; Smith, S.R.; Piek, E.; Saint-Geniez, M.; D’Amore, P.A. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev. Biol. 2003, 264, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Romaniuk, M.A.; Croci, D.O.; Lapponi, M.J.; Tribulatti, M.V.; Negrotto, S.; Poirier, F.; Campetella, O.; Rabinovich, G.A.; Schattner, M. Binding of galectin-1 to αIIbβ3 integrin triggers “outside-in” signals, stimulates platelet activation, and controls primary hemostasis. FASEB J. 2012, 26, 2788–2798. [Google Scholar] [CrossRef]
- Maisonpierre, P.C.; Suri, C.; Jones, P.F.; Bartunkova, S.; Wiegand, S.J.; Radziejewski, C.; Compton, D.; McClain, J.; Aldrich, T.H.; Papadopoulos, N.; et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997, 277, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Augustin, H.G.; Young Koh, G.; Thurston, G.; Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin–Tie system. Nat. Rev. Mol. Cell Biol. 2009, 10, 165–177. [Google Scholar] [CrossRef] [PubMed]
- LaMarca, B. Endothelial dysfunction. An important mediator in the pathophysiology of hypertension during preeclampsia. Minerva Ginecol. 2012, 64, 309–320. [Google Scholar] [PubMed]
- Madách, K.; Molvarec, A.; Rigó, J.; Nagy, B.; Pénzes, I.; Karádi, I.; Prohászka, Z. Elevated serum 70 kDa heat shock protein level reflects tissue damage and disease severity in the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Eur. J. Obstet. Gynecol. Reprod. Biol. 2008, 139, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Kellems, R.E. Is preeclampsia an autoimmune disease? Clin. Immunol. 2009, 133, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mylonas, I.; Schiessl, B.; Jeschke, U.; Vogl, J.; Makrigiannakis, A.; Kuhn, C.; Schulze, S.; Kainer, F.; Friese, K. Expression of inhibin/activin subunits alpha (-α), betaA (-βA), and betaB (-βB) in placental tissue of normal, preeclamptic, and HELLP pregnancies. Endocr. Pathol. 2006, 17, 19–33. [Google Scholar] [CrossRef]
- Vale, W.; Wiater, E.; Gray, P.; Harrison, C.; Bilezikjian, L.; Choe, S. Activins and inhibins and their signaling. Ann. N. Y. Acad. Sci. 2004, 1038, 142–147. [Google Scholar] [CrossRef]
- Gingelmaier, A.; Brüning, A.; Kimmich, T.; Makovitzky, J.; Bergauer, F.; Schiessl, B.; Friese, K.; Mylonas, I. Inhibin/activin-betaE subunit is expressed in normal and pathological human placental tissue including chorionic carcinoma cell lines. Arch. Gynecol. Obstet. 2010, 283, 223–230. [Google Scholar] [CrossRef]
- Li, Y.; Klausen, C.; Cheng, J.C.; Zhu, H.; Leung, P.C.K. Activin A, B, and AB increase human trophoblast cell invasion by up-regulating N-cadherin. J. Clin. Endocrinol. Metab. 2014, 99, E2216–E2225. [Google Scholar] [CrossRef] [Green Version]
- Nagata, S. Fas and Fas ligand: A death factor and its receptor. Adv. Immunol. 1994, 57, 129–144. [Google Scholar]
- Cardier, J.E.; Schulte, T.; Kammer, H.; Kwak, J.; Cardier, M. Fas (CD95, APO-1) antigen expression and function in murine liver endothelial cells: Implications for the regulation of apoptosis in liver endothelial cells. FASEB J. 1999, 13, 1950–1960. [Google Scholar] [CrossRef] [PubMed]
- Sammar, M.; Drobnjak, T.; Mandala, M.; Gizurarson, S.; Huppertz, B.; Meiri, H. Galectin 13 (PP13) Facilitates Remodeling and Structural Stabilization of Maternal Vessels during Pregnancy. Int. J. Mol. Sci. 2019, 20, 3192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balogh, A.; Pozsgay, J.; Matkó, J.; Dong, Z.; Kim, C.J.; Várkonyi, T.; Sammar, M.; Rigó, J.; Meiri, H.; Romero, R.; et al. Placental protein 13 (PP13/galectin-13) undergoes lipid raft-associated subcellular redistribution in the syncytiotrophoblast in preterm preeclampsia and HELLP syndrome. Am. J. Obstet. Gynecol. 2011, 205, 156.e1–156.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vokalova, L.; Balogh, A.; Toth, E.; Van Breda, S.V.; Schäfer, G.; Hoesli, I.; Lapaire, O.; Hahn, S.; Than, N.G.; Rossi, S.W. Placental Protein 13 (Galectin-13) Polarizes Neutrophils Toward an Immune Regulatory Phenotype. Front. Immunol. 2020, 11, 145. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, K.K.; Simon-Santamaria, J.; McCuskey, R.S.; Smedsrød, B. Liver sinusoidal endothelial cells. Compr. Physiol. 2015, 5, 1751–1774. [Google Scholar]
- May, D.; Djonov, V.; Zamir, G.; Bala, M.; Safadi, R.; Sklair-Levy, M.; Keshet, E. A transgenic model for conditional induction and rescue of portal hypertension reveals a role of VEGF-mediated regulation of sinusoidal fenestrations. PLoS ONE 2011, 6, e21478. [Google Scholar] [CrossRef] [Green Version]
- Braet, F.; Wisse, E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: A review. Comp. Hepatol. 2002, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Van Rijn, B.B.; Franx, A.; Steegers, E.A.P.; de Groot, C.J.M.; Bertina, R.M.; Pasterkamp, G.; Voorbij, H.A.M.; Bruinse, H.W.; Roest, M. Maternal TLR4 and NOD2 gene variants, pro-inflammatory phenotype and susceptibility to early-onset preeclampsia and HELLP syndrome. PLoS ONE 2008, 3, e1865. [Google Scholar] [CrossRef] [Green Version]
- Nagy, B.; Savli, H.; Molvarec, A.; Várkonyi, T.; Rigó, B.; Hupuczi, P.; Rigó, J. Vascular endothelial growth factor (VEGF) polymorphisms in HELLP syndrome patients determined by quantitative real-time PCR and melting curve analyses. Clin. Chim. Acta 2008, 389, 126–131. [Google Scholar] [CrossRef]
- Sziller, I.; Hupuczi, P.; Normand, N.; Halmos, A.; Papp, Z.; Witkin, S.S. Fas (TNFRSF6) gene polymorphism in pregnant women with hemolysis, elevated liver enzymes, and low platelets and in their neonates. Obstet. Gynecol. 2006, 107, 582–587. [Google Scholar] [CrossRef]
- Muetze, S.; Leeners, B.; Ortlepp, J.R.; Kuse, S.; Tag, C.G.; Weiskirchen, R.; Gressner, A.M.; Rudnik-Schoeneborn, S.; Zerres, K.; Rath, W. Maternal factor V Leiden mutation is associated with HELLP syndrome in Caucasian women. Acta Obstet. Gynecol. Scand. 2008, 87, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Terrone, D.A.; Rinehart, B.K.; May, W.L.; Moore, A.; Magann, E.F.; Martin, J.N. Leukocytosis is proportional to HELLP syndrome severity: Evidence for an inflammatory form of preeclampsia. South. Med. J. 2000, 93, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.J.; Richards, A.; Liszewski, M.K.; Kavanagh, D.; Atkinson, J.P. Advances in understanding of pathogenesis of aHUS and HELLP. Br. J. Haematol. 2008, 143, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Hulstein, J.J.J.; Van Runnard Heimel, P.J.; Franx, A.; Lenting, P.J.; Bruinse, H.W.; Silence, K.; De Groot, P.H.G.; Fijnheer, R. Acute activation of the endothelium results in increased levels of active von Willebrand factor in hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome. J. Thromb. Haemost. 2006, 4, 2569–2575. [Google Scholar] [CrossRef] [PubMed]
- Prusac, I.K.; Zekic Tomas, S.; Roje, D. Apoptosis, proliferation and Fas ligand expression in placental trophoblast from pregnancies complicated by HELLP syndrome or preeclampsia. Acta Obstet. Gynecol. Scand. 2011, 90, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Halim, A.; Kanayama, N.; El Maradnya, E.; Maehara, K.; Takahashi, A.; Nosaka, K.; Fukuo, S.; Amamiya, A.; Kobayashi, T.; Terao, T. Immunohistological study in cases of HELLP syndrome (hemolysis, elevated liver enzymes and low platelets) and acute fatty liver of pregnancy. Gynecol. Obstet. Investig. 1996, 41, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Tsokos, M.; Longauer, F.; Kardošová, V.; Gavel, A.; Anders, S.; Schulz, F. Maternal death in pregnancy from HELLP syndrome. A report of three medico-legal autopsy cases with special reference to distinctive histopathological alterations. Int. J. Leg. Med. 2002, 116, 50–53. [Google Scholar] [CrossRef]
- Koenig, M.; Roy, M.; Baccot, S.; Cuilleron, M.; de Filippis, J.P.; Cathébrasl, P. Thrombotic microangiopathy with liver, gut, and bone infarction (catastrophic antiphospholipid syndrome) associated with HELLP syndrome. Clin. Rheumatol. 2005, 24, 166–168. [Google Scholar] [CrossRef]
- Kawabata, I.; Nakai, A.; Takeshita, T. Prediction of HELLP syndrome with assessment of maternal dual hepatic blood supply by using Doppler ultrasound. Arch. Gynecol. Obstet. 2006, 274, 303–309. [Google Scholar] [CrossRef]
- Gardiner, C.; Tannetta, D.S.; Simms, C.A.; Harrison, P.; Redman, C.W.G.; Sargent, I.L. Syncytiotrophoblast microvesicles released from preeclampsia placentae exhibit increased tissue factor activity. PLoS ONE 2011, 6, e26313. [Google Scholar] [CrossRef]
Factors | HELLP | Role | References |
---|---|---|---|
Factors influencing the vasculature | |||
VEGF | ↑ | Proangiogenic, prevents hypertension | Abildgaard et al. [6], Bussen et al. [20], Purwosunu et al. [21] |
sFlt1 | ↑↑ | Antiangiogenic, ⊖ vasodilation, ⊕ ET-1 | Abildgaard et al. [6], Zhou et al. [22], Tache et al. [23], Whitehead et al. [24], Schaarschmidt et al. [25], Venkatesha et al. [26], Purwosunu et al. [21] |
sEng | ↑↑ | ⊖ TGFβ signaling, ⊖ vasodilation, antiangiogenic, influences vascular permeability | Abildgaard et al. [6], Venkatesha et al. [26], Purwosunu et al. [21] |
Gal-1 | ↑ | Proangiogenic, matrix remodeling, procoagulant | Freitag et al. [27], Schnabel et al. [28], Pacienza et al. [29] |
ET-1 | ↑↑ | Promotes hypertension, increases hemolysis, liver enzymes, CD4+ and CD8+, decreases platelets | Morris et al. [30], Karakus et al. [31] |
Angs-2 | ↑↑ | Activates endothelial cells | Karakus et al. [31], Torry et al. [32] |
ADMA | ↑ | ⊖ NO synthase | Siroen et al. [33], Savvidou et al. [34] |
Growth factors | |||
Inhibin A | ↑ | Antagonise activin A | Mylonas et al. [35], Muttukrishna et al. [36] |
Activin A | 0 | ⊖ Mitogen-induced DNA synthesis, ⊕ apoptosis in hepatocytes, ↑ tubulogenesis of LSECs induced by VEGF, ↑ survival of LSECs | Mylonas et al. [35], Endo et al. [37], Rodgarkia-Dara et al. [38], Florio et al. [39], Muttukrishna et al. [36] |
Inhibin B | 0 | ↓ FSH release | Mylonas et al. [35], Vassalli et al. [40], Cook et al. [41] |
Activin B | ↑ | ↑ FSH release, promotes labor | Mylonas et al. [35], Vassalli et al. [40], Muttukrishna et al. [36] |
Apoptosis/necrosis-related factors | |||
FasL/Fas | ↑↑ | ⊕ Apoptosis | Abildgaard et al. [6], Strand et al. [42], Gibbens et al. [43] |
Hsp70 | ↑↑ | Marker of tissue damage, ⊕ proinflammatory immune response, ⊕ endothelial injury | Molvarec et al. [44,45] |
PP 13 | ↑ | Development of fetal/maternal interface, immune regulation | Than et al. [46] |
Gene Variant | HELLP Compared to | Outcome | References |
---|---|---|---|
Glucocorticoid receptor gene (GCCR) | Healthy pregnant | Abnormal immune and glucocorticoid | Abildgaard et al. [6] |
Bell SNP polymorphisms | Severe PE | sensitivity | |
Toll-like receptor 4 gene (TLR4) | Healthy pregnant | Inflammation | Van Rijn et al. [68] |
D299G | PE | Ineffective immunity | |
T3991 | |||
Polymorphisms | |||
VEGF gene (VEGFA) | Healthy pregnant | Angiogenesis, vasculogenesis | Nagy et al. [69] |
C−460T | Healthy pregnant | arterial muscular relaxation | |
G+405C | |||
Polymorphisms | |||
Fas (TNFRSF6) gene, homozygous | Healthy pregnant | Immune regulation, apoptosis | Sziller et al. [70] |
Polymorphism in A−670G | Liver disease | ||
FV Leiden | Healthy pregnant | Thrombophilia | Muetze et al. [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petca, A.; Miron, B.C.; Pacu, I.; Dumitrașcu, M.C.; Mehedințu, C.; Șandru, F.; Petca, R.-C.; Rotar, I.C. HELLP Syndrome—Holistic Insight into Pathophysiology. Medicina 2022, 58, 326. https://doi.org/10.3390/medicina58020326
Petca A, Miron BC, Pacu I, Dumitrașcu MC, Mehedințu C, Șandru F, Petca R-C, Rotar IC. HELLP Syndrome—Holistic Insight into Pathophysiology. Medicina. 2022; 58(2):326. https://doi.org/10.3390/medicina58020326
Chicago/Turabian StylePetca, Aida, Bianca Corina Miron, Irina Pacu, Mihai Cristian Dumitrașcu, Claudia Mehedințu, Florica Șandru, Răzvan-Cosmin Petca, and Ioana Cristina Rotar. 2022. "HELLP Syndrome—Holistic Insight into Pathophysiology" Medicina 58, no. 2: 326. https://doi.org/10.3390/medicina58020326
APA StylePetca, A., Miron, B. C., Pacu, I., Dumitrașcu, M. C., Mehedințu, C., Șandru, F., Petca, R.-C., & Rotar, I. C. (2022). HELLP Syndrome—Holistic Insight into Pathophysiology. Medicina, 58(2), 326. https://doi.org/10.3390/medicina58020326