Predictive MRI Biomarkers in MS—A Critical Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Need for Prognosis Biomarkers in MS
3.2. How Do We Define Prognosis and What Is a Bad One?
3.3. Are Prognosis Biomarkers in MS Even Possible?
3.4. The Use of MRI Metrics as Prognosis Biomarkers
3.5. Evaluating White Matter (WM) Pathology in MS
3.5.1. T1 Black Holes
3.5.2. T2/FLAIR Hyperintensities (White Matter Lesions—WMLs)
3.5.3. Gadolinium-Enhancing (GdE) Lesions or Contrast-Enhancing Lesions (CELs)
3.5.4. Newer Concepts in WM Pathology
3.5.5. Smoldering Lesions or Slowly Expanding Lesions (SELs)
3.5.6. White Matter and Total Brain Volumetrics
3.6. Spinal Atrophy
3.7. Evaluating Gray Matter (GM) Pathology in MS
3.7.1. Deep Gray Matter (DGM) Pathology
3.7.2. Cortical Lesions
3.7.3. Cortical Atrophy
3.8. A Brief Glance at Prognosis Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ruggieri, S.; Pontecorvo, S.; Tortorella, C.; Gasperini, C. Induction treatment strategy in multiple sclerosis: A review of past experiences and future perspectives. Mult. Scler. Demyelinating Disord. 2018, 3, 5. [Google Scholar] [CrossRef]
- Rieckmann, P. Concepts of induction and escalation therapy in multiple sclerosis. J. Neurol. Sci. 2009, 277, S42–S45. [Google Scholar] [CrossRef]
- Rieckmann, P.; Traboulsee, A.; Devonshire, V.; Oger, J. Escalating immunotherapy of multiple sclerosis. Ther. Adv. Neurol. Disord. 2008, 1, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Spelman, T.; Magyari, M.; Piehl, F.; Svenningsson, A.; Rasmussen, P.V.; Kant, M.; Sellebjerg, F.; Joensen, H.; Hillert, J.; Lycke, J. Treatment Escalation vs. Immediate Initiation of Highly Effective Treatment for Patients with Relapsing-Remitting Multiple Sclerosis: Data from 2 Different National Strategies. JAMA Neurol. 2021, 78, 1197–1204. [Google Scholar] [CrossRef]
- Simpson, A.; Mowry, E.M.; Newsome, S.D. Early Aggressive Treatment Approaches for Multiple Sclerosis. Curr. Treat. Options Neurol. 2021, 23, 19. [Google Scholar] [CrossRef]
- Arrambide, G.; Iacobaeus, E.; Amato, M.P.; Derfuss, T.; Vukusic, S.; Hemmer, B.; Brundin, L.; Tintore, M.; Berger, J.; Boyko, A.; et al. Aggressive multiple sclerosis (2): Treatment. Mult. Scler. J. 2020, 26, 1352458520924595. [Google Scholar] [CrossRef]
- Hartung, D.M. Health economics of disease-modifying therapy for multiple sclerosis in the United States. Ther. Adv. Neurol. Disord. 2021, 14, 1756286420987031. [Google Scholar] [CrossRef]
- Iacobaeus, E.; Arrambide, G.; Amato, M.P.; Derfuss, T.; Vukusic, S.; Hemmer, B.; Tintoré, M.; Brundin, L. Aggressive multiple sclerosis (1): Towards a definition of the phenotype. Mult. Scler. J. 2020, 26, 1352458520925369. [Google Scholar] [CrossRef]
- Lublin, F.D.; Reingold, S.C. Defining the clinical course of multiple sclerosis: Results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 1996, 46, 907–911. [Google Scholar] [CrossRef]
- Díaz, C.; Zarco, L.A.; Rivera, D.M. Highly active multiple sclerosis: An update. Mult. Scler. Relat. Disord. 2019, 30, 215–224. [Google Scholar] [CrossRef]
- Rush, C.A.; MacLean, H.J.; Freedman, M.S. Aggressive multiple sclerosis: Proposed definition and treatment algorithm. Nat. Rev. Neurol. 2015, 11, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Malpas, C.B.; Manouchehrinia, A.; Sharmin, S.; Roos, I.; Horakova, D.; Havrdova, E.K.; Trojano, M.; Izquierdo, G.; Eichau, S.; Bergamaschi, R.; et al. Aggressive form of multiple sclerosis can be predicted early after disease onset. Mult. Scler. J. 2019, 25, 605–607. [Google Scholar]
- Tintore, M.; Arrambide, G.; Otero-Romero, S.; Carbonell-Mirabent, P.; Río, J.; Tur, C.; Comabella, M.; Nos, C.; Arévalo, M.J.; Anglada, E.; et al. The long-term outcomes of CIS patients in the Barcelona inception cohort: Looking back to recognize aggressive MS. Mult. Scler. J. 2020, 26, 1658–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saccardi, R.; Freedman, M.; Sormani, M.P.; Atkins, H.; Farge, D.; Griffith, L.; Kraft, G.; Mancardi, G.L.; Nash, R.; Pasquini, M.; et al. A prospective, randomized, controlled trial of autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: A position paper. Mult. Scler. J. 2012, 18, 825–834. [Google Scholar] [CrossRef]
- Edan, G.; Comi, G.; Le Page, E.; Leray, E.; Rocca, M.A.; Filippi, M. Mitoxantrone prior to interferon beta-1b in aggressive relapsing multiple sclerosis: A 3-year randomised trial. J. Neurol. Neurosurg. Psychiatry 2011, 82, 1344–1350. [Google Scholar] [CrossRef]
- Freedman, M.S.; Rush, C.A. Severe, Highly Active, or Aggressive Multiple Sclerosis. Contin. Lifelong Learn. Neurol. 2016, 22, 761–784. [Google Scholar] [CrossRef] [Green Version]
- Bowen, J.D. Highly Aggressive Multiple Sclerosis. Contin. Lifelong Learn. Neurol. 2019, 25, 689–714. [Google Scholar] [CrossRef]
- Ellenberger, D.; Flachenecker, P.; Fneish, F.; Frahm, N.; Hellwig, K.; Paul, F.; Stahmann, A.; Warnke, C.; Rommer, P.S.; Zettl, U.K. Aggressive multiple sclerosis: A matter of measurement and timing. Brain 2020, 143, e97. [Google Scholar] [CrossRef]
- Kappos, L.; de Stefano, N.; Freedman, M.S.; Cree, B.; Radue, E.-W.; Sprenger, T.; Sormani, M.P.; Smith, T.; Häring, D.A.; Meier, D.P.; et al. Inclusion of brain volume loss in a revised measure of ‘no evidence of disease activity’ (NEDA-4) in relapsing–remitting multiple sclerosis. Mult. Scler. J. 2016, 22, 1297–1305. [Google Scholar] [CrossRef] [Green Version]
- De Stefano, N.; Stromillo, M.L.; Giorgio, A.; Bartolozzi, M.L.; Battaglini, M.; Baldini, M.; Portaccio, E.; Amato, M.P.; Sormani, M.P. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2016, 87, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Di Sabatino, E.; Gaetani, L.; Sperandei, S.; Fiacca, A.; Guercini, G.; Parnetti, L.; Di Filippo, M. The no evidence of disease activity (NEDA) concept in MS: Impact of spinal cord MRI. J. Neurol. 2021, 1–7. [Google Scholar] [CrossRef]
- Prosperini, L.; Annovazzi, P.; Boffa, L.; Buscarinu, M.C.; Gallo, A.; Matta, M.; Moiola, L.; Musu, L.; Perini, P. No evidence of disease activity (NEDA-3) and disability improvement after alemtuzumab treatment for multiple sclerosis: A 36-month real-world study. J. Neurol. 2018, 265, 2851–2860. [Google Scholar] [CrossRef] [PubMed]
- Pandit, L. No Evidence of Disease Activity (NEDA) in Multiple Sclerosis—Shifting the Goal Posts. Ann. Indian Acad. Neurol. 2019, 22, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Hobart, J.C.; Kalkers, N.F.; Barkhof, F.; Uitdehaag, B.M.J.; Polman, C.H.; Thompson, A. Outcome measures for multiple sclerosis clinical trials: Relative measurement precision of the Expanded Disability Status Scale and Multiple Sclerosis Functional C omposite. Mult. Scler. J. 2004, 10, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Hobart, J.; Freeman, J.; Thompson, A. Kurtzke scales revisited: The application of psychometric methods to clinical intuition. Brain 2000, 123 Pt 5, 1027–1040. [Google Scholar] [CrossRef] [Green Version]
- Noseworthy, J.H.; Vandervoort, M.K.; Wong, C.J.; Ebers, G. Interrater variability with the Expanded Disability Status Scale (EDSS) and Functional Systems (FS) in a multiple sclerosis clinical trial. Neurology 1990, 40, 971–975. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Moock, S.; Feng, Y.-S.; Maeurer, M.; Dippel, F.-W.; Kohlmann, T. Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis. BMC Neurol. 2014, 14, 58. [Google Scholar] [CrossRef] [Green Version]
- Aboulenein-Djamshidian, F.; Krššák, M.; Serbecic, N.; Rauschka, H.; Beutelspacher, S.; Kukurová, I.J.; Valkovič, L.; Khan, A.; Prayer, D.; Kristoferitsch, W. CROP—The Clinico-Radiologico-Ophthalmological Paradox in Multiple Sclerosis: Are Patterns of Retinal and MRI Changes Heterogeneous and Thus Not Predictable? PLoS ONE 2015, 10, e0142272. [Google Scholar] [CrossRef]
- Cinar, B.P.; Yorgun, Y.G. What We Learned from The History of Multiple Sclerosis Measurement: Expanded Disease Status Scale. Arch. Neuropsychiatry 2018, 55 (Suppl. 1), S69–S75. [Google Scholar] [CrossRef]
- Bin Sawad, A.; Seoane-Vazquez, E.; Rodriguez-Monguio, R.; Turkistani, F. Evaluation of the Expanded Disability Status Scale and the Multiple Sclerosis Functional Composite as clinical endpoints in multiple sclerosis clinical trials: Quantitative meta-analyses. Curr. Med. Res. Opin. 2016, 32, 1969–1974. [Google Scholar] [CrossRef]
- Rudick, R.A.; Miller, D.; Bethoux, F.; Rao, S.M.; Lee, J.-C.; Stough, D.; Reece, C.; Schindler, D.; Mamone, B.; Alberts, J. The Multiple Sclerosis Performance Test (MSPT): An iPad-Based Disability Assessment Tool. J. Vis. Exp. 2014, e51318. [Google Scholar] [CrossRef] [PubMed]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtzke, J.F. Historical and Clinical Perspectives of the Expanded Disability Status Scale. Neuroepidemiology 2008, 31, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Edelman, R.R. The History of MR Imaging as Seen through the Pages of Radiology. Radiology 2014, 273, S181–S200. [Google Scholar] [CrossRef] [Green Version]
- Filippi, M.; Rocca, M.A.; Ciccarelli, O.; de Stefano, N.; Evangelou, N.; Kappos, L.; Rovira, A.; Sastre-Garriga, J.; Tintorè, M.; Frederiksen, J.L.; et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016, 15, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Swanton, J.; Fernando, K.; Miller, D. Early prognosis of multiple sclerosis. Handb. Clin. Neurol. 2014, 122, 371–391. [Google Scholar] [CrossRef]
- Barnett, Y.; Garber, J.Y.; Barnett, M.H. MRI biomarkers of disease progression in multiple sclerosis: Old dog, new tricks? Quant. Imaging Med. Surg. 2020, 10, 527–532. [Google Scholar] [CrossRef]
- Filippi, M.; Preziosa, P.; Banwell, B.L.; Barkhof, F.; Ciccarelli, O.; de Stefano, N.; Geurts, J.J.G.; Paul, F.; Reich, D.S.; Toosy, A.T.; et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: Practical guidelines. Brain 2019, 142, 1858–1875. [Google Scholar] [CrossRef] [Green Version]
- Filippi, M.; Rocca, M.A. New magnetic resonance imaging biomarkers for the diagnosis of multiple sclerosis. Expert Opin. Med. Diagn. 2012, 6, 109–120. [Google Scholar] [CrossRef]
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2018, 378, 169–180. [Google Scholar] [CrossRef]
- Gajofatto, A.; Calabrese, M.; Benedetti, M.D.; Monaco, S. Clinical, MRI, and CSF Markers of Disability Progression in Multiple Sclerosis. Dis. Markers 2013, 35, 687–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinley, R.; Wepfer, R.; Grunder, L.; Aschwanden, F.; Fischer, T.; Friedli, C.; Muri, R.; Rummel, C.; Verma, R.; Weisstanner, C.; et al. Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence. NeuroImage Clin. 2020, 25, 102104. [Google Scholar] [CrossRef] [PubMed]
- Sarbu, N.; Shih, R.Y.; Jones, R.V.; Horkayne-Szakaly, I.; Oleaga, L.; Smirniotopoulos, J.G. White Matter Diseases with Radiologic-Pathologic Correlation. RadioGraphics 2016, 36, 1426–1447. [Google Scholar] [CrossRef] [PubMed]
- Fernando, M.S.; O’Brien, J.; Perry, R.H.; English, P.; Forster, G.; McMeekin, W.; Slade, J.Y.; Golkhar, A.; Matthews, F.; Barber, R.; et al. Comparison of the pathology of cerebral white matter with post-mortem magnetic resonance imaging (MRI) in the elderly brain. Neuropathol. Appl. Neurobiol. 2004, 30, 385–395. [Google Scholar] [CrossRef]
- Haller, S.; Kovari, E.V.; Herrmann, F.R.; Cuvinciuc, V.; Tomm, A.-M.; Zulian, G.B.; Lovblad, K.-O.; Giannakopoulos, P.; Bouras, C. Do brain T2/FLAIR white matter hyperintensities correspond to myelin loss in normal aging? A radiologic-neuropathologic correlation study. Acta Neuropathol. Commun. 2013, 1, 14. [Google Scholar] [CrossRef] [Green Version]
- Tawfik, A.I.; Kamr, W.H. Diagnostic value of 3D-FLAIR magnetic resonance sequence in detection of white matter brain lesions in multiple sclerosis. Egypt. J. Radiol. Nucl. Med. 2020, 51, 127. [Google Scholar] [CrossRef]
- Van Waesberghe, J.H.; van Walderveen, M.A.; Castelijns, J.A.; Scheltens, P.; à Nijeholt, G.L.; Polman, C.H.; Barkhof, F. Patterns of lesion development in multiple sclerosis: Longitudinal observations with T1-weighted spin-echo and magnetization transfer MR. AJNR Am. J. Neuroradiol. 1998, 19, 675–683. [Google Scholar]
- Mitjana, R.; Tintoré, M.; Rocca, M.A.; Auger, C.; Barkhof, F.; Filippi, M.; Polman, C.; Fazekas, F.; Huerga, E.; Montalban, X.; et al. Diagnostic value of brain chronic black holes on T1-weighted MR images in clinically isolated syndromes. Mult. Scler. J. 2014, 20, 1471–1477. [Google Scholar] [CrossRef]
- Sahraian, M.A.; Radue, E.-W.; Haller, S.; Kappos, L. Black holes in multiple sclerosis: Definition, evolution, and clinical correlations. Acta Neurol. Scand. 2010, 122, 1–8. [Google Scholar] [CrossRef]
- Bagnato, F.; Jeffries, N.; Richert, N.D.; Stone, R.D.; Ohayon, J.M.; McFarland, H.F.; Frank, J.A. Evolution of T1 black holes in patients with multiple sclerosis imaged monthly for 4 years. Brain 2003, 126 Pt 8, 1782–1789. [Google Scholar] [CrossRef] [Green Version]
- Simon, J.; Lull, J.; Jacobs, L.; Rudick, R.; Cookfair, D.; Herndon, R.; Richert, J.; Salazar, A.; Sheeder, J.; Miller, D.; et al. A longitudinal study of T1 hypointense lesions in relapsing MS: MSCRG trial of interferon beta-1a. Neurology 2000, 55, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Zivadinov, R.; Dwyer, M.; Barkay, H.; Steinerman, J.R.; Knappertz, V.; Khan, O. Effect of glatiramer acetate three-times weekly on the evolution of new, active multiple sclerosis lesions into T1-hypointense “black holes”: A post hoc magnetic resonance imaging analysis. J. Neurol. 2015, 262, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Truyen, L.; van Waesberghe, J.H.; van Walderveen, M.; van Oosten, B.W.; Polman, C.H.; Hommes, O.R.; Ader, H.J.; Barkhof, F. Accumulation of hypointense lesions (“black holes”) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 1996, 47, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Fisniku, L.K.; Chard, D.; Jackson, J.S.; Anderson, V.; Altmann, D.R.; Miszkiel, K.A.; Thompson, A.; Miller, D.H. Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann. Neurol. 2008, 64, 247–254. [Google Scholar] [CrossRef]
- Rovaris, M.; Comi, G.; Ladkani, D.; Wolinsky, J.S.; Filippi, M. Short-Term Correlations between Clinical and MR Imaging Findings in Relapsing-Remitting Multiple Sclerosis. Am. J. Neuroradiol. 2003, 24, 75–81. [Google Scholar]
- Thaler, C.; Faizy, T.; Sedlacik, J.; Holst, B.; Stürner, K.; Heesen, C.; Stellmann, J.-P.; Fiehler, J.; Siemonsen, S. T1 Recovery Is Predominantly Found in Black Holes and Is Associated with Clinical Improvement in Patients with Multiple Sclerosis. Am. J. Neuroradiol. 2017, 38, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Wagner, S.; Adams, H.-P.; Sobel, D.; Slivka, L.; Sipe, J.; Romine, J.; Koziol, J. New hypointense lesions on MRI in relapsing-remitting multiple sclerosis patients. Eur. Neurol. 2000, 43, 194–200. [Google Scholar] [CrossRef]
- Rocca, M.A.; Comi, G.; Filippi, M. The Role of T1-Weighted Derived Measures of Neurodegeneration for Assessing Disability Progression in Multiple Sclerosis. Front. Neurol. 2017, 8, 433. [Google Scholar] [CrossRef] [Green Version]
- Tintore, M.; Rovira, À.; Rio, J.; Otero-Romero, S.; Arrambide, G.; Tur, C.; Comabella, M.; Nos, C.; Arevalo, M.J.; Negrotto, L.; et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain 2015, 138 Pt 7, 1863–1874. [Google Scholar] [CrossRef] [Green Version]
- Brownlee, W.J.; Altmann, D.R.; Prados, F.; Miszkiel, K.A.; Eshaghi, A.; Wheeler-Kingshott, C.A.G.; Barkhof, F.; Ciccarelli, O. Early imaging predictors of long-term outcomes in relapse-onset multiple sclerosis. Brain 2019, 142, 2276–2287. [Google Scholar] [CrossRef]
- Khoury, S.J.; Guttmann, C.; Orav, E.J.; Hohol, M.J.; Ahn, S.S.; Hsu, L.; Kikinis, R.; Mackin, G.A.; Jolesz, F.A.; Weiner, H.L. Longitudinal MRI in multiple sclerosis: Correlation between disability and lesion burden. Neurology 1994, 44, 2120–2124. [Google Scholar] [CrossRef]
- Rex, P.E.A.B.; Iccarelli, O.L.C.; O’Riordan, J.; Ailer, M.I.S.; Thompson, A.; Iller, D.A.H.M. A Longitudinal Study of Abnormalities on MRI and Disability from Multiple Sclerosis. N. Engl. J. Med. 2002, 346, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Rudick, R.A.; Lee, J.-C.; Simon, J.; Fisher, E. Significance of T2 lesions in multiple sclerosis: A 13-year longitudinal study. Ann. Neurol. 2006, 60, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Fisniku, L.K.; Brex, P.A.; Altmann, D.R.; Miszkiel, K.A.; Benton, C.E.; Lanyon, R.; Thompson, A.J.; Miller, D.H. Disability and T2 MRI lesions: A 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain 2008, 131 Pt 3, 808–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Optic Neuritis Study Group. Multiple sclerosis risk after optic neuritis: Final optic neuritis treatment trial follow-up. Arch. Neurol. 2008, 65, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Davda, N.; Tallantyre, E.; Robertson, N.P. Early MRI predictors of prognosis in multiple sclerosis. J. Neurol. 2019, 266, 3171–3173. [Google Scholar] [CrossRef] [Green Version]
- Sormani, M.P.; Rovaris, M.; Comi, G.; Filippi, M. A reassessment of the plateauing relationship between T2 lesion load and disability in MS. Neurology 2009, 73, 1538–1542. [Google Scholar] [CrossRef]
- Swanton, J.K.; Fernando, K.T.; Dalton, C.M.; Miszkiel, K.A.; Altmann, D.R.; Plant, G.T.; Thompson, A.; Miller, D.H. Early MRI in optic neuritis: The risk for disability. Neurology 2009, 72, 542–550. [Google Scholar] [CrossRef]
- Li, D.; Held, U.; Petkau, J.; Daumer, M.; Barkhof, F.; Fazekas, F.; Frank, J.A.; Kappos, L.; Miller, D.H.; Simon, J.H.; et al. MRI T2 lesion burden in multiple sclerosis: A plateauing relationship with clinical disability. Neurology 2006, 66, 1384–1389. [Google Scholar] [CrossRef]
- Minneboo, A.; Barkhof, F.; Polman, C.H.; Uitdehaag, B.M.J.; Knol, D.L.; Castelijns, J.A. Infratentorial Lesions Predict Long-term Disability in Patients with Initial Findings Suggestive of Multiple Sclerosis. Arch. Neurol. 2004, 61, 217–221. [Google Scholar] [CrossRef] [Green Version]
- Tintore, M.; Rovira, A.; Arrambide, G.; Mitjana, R.; Rio, J.; Auger, C.; Nos, C.; Edo, M.C.; Castillo, J.; Horga, A.; et al. Brainstem lesions in clinically isolated syndromes. Neurology 2010, 75, 1933–1938. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, W.J.; Altmann, D.R.; Da Mota, P.A.; Swanton, J.K.; A Miszkiel, K.; Wheeler-Kingshott, C.A.G.; Ciccarelli, O.; Miller, D.H. Association of asymptomatic spinal cord lesions and atrophy with disability 5 years after a clinically isolated syndrome. Mult. Scler. J. 2016, 23, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Arrambide, G.; Rovira, A.; Garriga, J.S.; Tur, C.; Castilló, J.; Rio, J.; Vidal-Jordana, A.; Galan, I.; Acevedo, B.R.; Midaglia, L.; et al. Spinal cord lesions: A modest contributor to diagnosis in clinically isolated syndromes but a relevant prognostic factor. Mult. Scler. J. 2018, 24, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Dekker, I.; Sombekke, M.H.; Balk, L.J.; Moraal, B.; Geurts, J.J.; Barkhof, F.; Uitdehaag, B.M.; Killestein, J.; Wattjes, M.P. Infratentorial and spinal cord lesions: Cumulative predictors of long-term disability? Mult. Scler. J. 2019, 26, 1381–1391. [Google Scholar] [CrossRef] [Green Version]
- Bodini, B.; Battaglini, M.; de Stefano, N.; Khaleeli, Z.; Barkhof, F.; Chard, D.; Filippi, M.; Montalban, X.; Polman, C.; Rovaris, M.; et al. T2 lesion location really matters: A 10 year follow-up study in primary progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2011, 82, 72–77. [Google Scholar] [CrossRef]
- Barkhof, F. Brain atrophy measurements should be used to guide therapy monitoring in MS—NO. Mult. Scler. J. 2016, 22, 1524–1526. [Google Scholar] [CrossRef]
- Dworkin, J.; Linn, K.; Oguz, I.; Fleishman, G.; Bakshi, R.; Nair, G.; Calabresi, P.; Henry, R.; Oh, J.; Papinutto, N.; et al. An Automated Statistical Technique for Counting Distinct Multiple Sclerosis Lesions. Am. J. Neuroradiol. 2018, 39, 626–633. [Google Scholar] [CrossRef] [Green Version]
- Zivadinov, R.; Zorzon, M.; de Masi, R.; Nasuelli, D.; Cazzato, G. Effect of intravenous methylprednisolone on the number, size and confluence of plaques in relapsing–remitting multiple sclerosis. J. Neurol. Sci. 2008, 267, 28–35. [Google Scholar] [CrossRef]
- Guttmann, C.R.; Rousset, M.; Roch, J.A.; Hannoun, S.; Durand-Dubief, F.; Belaroussi, B.; Cavallari, M.; Rabilloud, M.; Sappey-Marinier, D.; Vukusic, S.; et al. Multiple sclerosis lesion formation and early evolution revisited: A weekly high-resolution magnetic resonance imaging study. Mult. Scler. J. 2016, 22, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.O.; Frank, J.A.; Patronas, N.; McFarlin, D.E.; McFarland, H.F. Serial gadolinium-enhanced magnetic resonance imaging scans in patients with early, relapsing-remitting multiple sclerosis: Implications for clinical trials and natural history. Ann. Neurol. 1991, 29, 548–555. [Google Scholar] [CrossRef]
- Río, J.; Rovira, À.; Tintore, M.; Otero-Romero, S.; Comabella, M.; Vidal-Jordana, A.; Galan, I.; Castilló, J.; Arrambide, G.; Nos, C.; et al. Disability progression markers over 6–12 years in interferon-β-treated multiple sclerosis patients. Mult. Scler. J. 2018, 24, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Altermatt, A.; Gaetano, L.; Magon, S.; Häring, D.A.; Tomic, D.; Wuerfel, J.; Radue, E.-W.; Kappos, L.; Sprenger, T. Clinical Correlations of Brain Lesion Location in Multiple Sclerosis: Voxel-Based Analysis of a Large Clinical Trial Dataset. Brain Topogr. 2018, 31, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Sbardella, E.; Petsas, N.; Tona, F.; Prosperini, L.; Raz, E.; Pace, G.; Pozzilli, C.; Pantano, P. Assessing the Correlation between Grey and White Matter Damage with Motor and Cognitive Impairment in Multiple Sclerosis Patients. PLoS ONE 2013, 8, e63250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar-Zohar, D.; Agosta, F.; Goldstaub, D.; Filippi, M. Magnetic resonance imaging metrics and their correlation with clinical outcomes in multiple sclerosis: A review of the literature and future perspectives. Mult. Scler. J. 2008, 14, 719–727. [Google Scholar] [CrossRef]
- Moll, N.M.; Rietsch Bs, A.M.; Thomas, S.; Ransohoff, A.J.; Lee, J.-C.; Fox, R.; Chang, A.; Ransohoff, R.M.; Fisher, E. Multiple sclerosis normal-appearing white matter: Pathology-imaging correlations. Ann. Neurol. 2011, 70, 764–773. [Google Scholar] [CrossRef]
- Shao, Y.; Chen, Z.; Ming, S.; Ye, Q.; Shu, Z.; Gong, C.; Pang, P.; Gong, X. Predicting the Development of Normal-Appearing White Matter with Radiomics in the Aging Brain: A Longitudinal Clinical Study. Front. Aging Neurosci. 2018, 10, 393. [Google Scholar] [CrossRef]
- Agosta, F.; Rovaris, M.; Pagani, E.; Sormani, M.P.; Comi, G.; Filippi, M. Magnetization transfer MRI metrics predict the accumulation of disability 8 years later in patients with multiple sclerosis. Brain 2006, 129 Pt 10, 2620–2627. [Google Scholar] [CrossRef] [Green Version]
- Traboulsee, A.; Dehmeshki, J.; Peters, K.R.; Griffin, C.M.; Brex, P.A.; Silver, N.; Ciccarrelli, O.; Chard, D.T.; Barker, G.J.; Thompson, A.J.; et al. Disability in multiple sclerosis is related to normal appearing brain tissue MTR histogram abnormalities. Mult. Scler. J. 2003, 9, 566–573. [Google Scholar] [CrossRef]
- Cairns, J.; Vavasour, I.M.; Traboulsee, A.; Carruthers, R.; Kolind, S.H.; Li, D.K.B.; Moore, G.R.W.; Laule, C. Diffusely abnormal white matter in multiple sclerosis. J. Neuroimaging 2021, 32, 5–16. [Google Scholar] [CrossRef]
- Liu, Z.; Pardini, M.; Yaldizli, Ö.; Sethi, V.; Muhlert, N.; Wheeler-Kingshott, C.A.G.; Samson, R.; Miller, D.H.; Chard, D.T. Magnetization transfer ratio measures in normal-appearing white matter show periventricular gradient abnormalities in multiple sclerosis. Brain 2015, 138, 1239–1246. [Google Scholar] [CrossRef] [Green Version]
- Filippi, M.; A Rocca, M. Magnetization transfer magnetic resonance imaging of the brain, spinal cord, and optic nerve. Neurotherapeutics 2007, 4, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Schmierer, K.; Scaravilli, F.; Altmann, D.R.; Barker, G.J.; Miller, D.H. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann. Neurol. 2004, 56, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Inglese, M.; van Waesberghe, J.; Rovaris, M.; Beckmann, K.; Barkhof, F.; Hahn, D.; Kappos, L.; Miller, D.; Polman, C.; Pozzilli, C.; et al. The effect of interferon -1b on quantities derived from MT MRI in secondary progressive MS. Neurology 2003, 60, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Button, T.; Altmann, D.; Tozer, D.; Dalton, C.; Hunter, K.; Compston, A.; Coles, A.; Miller, D. Magnetization transfer imaging in multiple sclerosis treated with alemtuzumab. Mult. Scler. J. 2013, 19, 241–244. [Google Scholar] [CrossRef]
- Filippi, M.; Rocca, M.A.; Pagani, E.; Iannucci, G.; Sormani, M.P.; Fazekas, F.; Ropele, S.; Hommes, O.R.; Comi, G. European Study on Intravenous Immunoglobulin in Multiple Sclerosis: Results of magnetization transfer magnetic resonance imaging analysis. Arch. Neurol. 2004, 61, 1409–1412. [Google Scholar] [CrossRef] [Green Version]
- Horsfield, M.A.; Barker, G.J.; Barkhof, F.; Miller, D.H.; Thompson, A.J.; Filippi, M. Guidelines for using quantitative magnetization transfer magnetic resonance imaging for monitoring treatment of multiple sclerosis. J. Magn. Reson. Imaging 2003, 17, 389–397. [Google Scholar] [CrossRef]
- Ropele, S.; Filippi, M.; Valsasina, P.; Korteweg, T.; Barkhof, F.; Tofts, P.; Samson, R.; Miller, D.H.; Fazekas, F. Assessment and correction ofB1-induced errors in magnetization transfer ratio measurements. Magn. Reson. Med. 2005, 53, 134–140. [Google Scholar] [CrossRef]
- Inglese, M.; Bester, M. Diffusion imaging in multiple sclerosis: Research and clinical implications. NMR Biomed. 2010, 23, 865–872. [Google Scholar] [CrossRef] [Green Version]
- Kolasa, M.; Hakulinen, U.; Brander, A.; Hagman, S.; Dastidar, P.; Elovaara, I.; Sumelahti, M.-L. Diffusion tensor imaging and disability progression in multiple sclerosis: A 4-year follow-up study. Brain Behav. 2019, 9, e01194. [Google Scholar] [CrossRef]
- Sbardella, E.; Tona, F.; Petsas, N.; Pantano, P. DTI Measurements in Multiple Sclerosis: Evaluation of Brain Damage and Clinical Implications. Mult. Scler. Int. 2013, 2013, 671730. [Google Scholar] [CrossRef] [Green Version]
- Eijlers, A.J.C.; van Geest, Q.; Dekker, I.; Steenwijk, M.D.; Meijer, K.A.; Hulst, H.; Barkhof, F.; Uitdehaag, B.M.J.; Schoonheim, M.M.; Geurts, J.J.G. Predicting cognitive decline in multiple sclerosis: A 5-year follow-up study. Brain 2018, 141, 2605–2618. [Google Scholar] [CrossRef] [PubMed]
- Mesaros, S.; Rocca, M.A.; Pagani, E.; Sormani, M.P.; Petrolini, M.; Comi, G.; Filippi, M. Thalamic Damage Predicts the Evolution of Primary-Progressive Multiple Sclerosis at 5 Years. Am. J. Neuroradiol. 2011, 32, 1016–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grech-Sollars, M.; Hales, P.; Miyazaki, K.; Raschke, F.; Rodriguez, D.; Wilson, M.; Gill, S.K.; Banks, T.; Saunders, D.E.; Clayden, J.; et al. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain. NMR Biomed. 2015, 28, 468–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Provenzale, J.M.; Taylor, B.; Wilde, E.A.; Boss, M.; Schneider, W. Analysis of variability of fractional anisotropy values at 3T using a novel diffusion tensor imaging phantom. Neuroradiol. J. 2018, 31, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Laguna, P.A.L.; Combes, A.J.; Streffer, J.; Einstein, S.; Timmers, M.; Williams, S.C.; Dell′Acqua, F. Reproducibility, reliability and variability of FA and MD in the older healthy population: A test-retest multiparametric analysis. NeuroImage Clin. 2020, 26, 102168. [Google Scholar] [CrossRef]
- Sajja, B.R.; Wolinsky, J.S.; Narayana, P.A. Proton Magnetic Resonance Spectroscopy in Multiple Sclerosis. Neuroimaging Clin. N. Am. 2009, 19, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Swanberg, K.M.; Landheer, K.; Pitt, D.; Juchem, C. Quantifying the Metabolic Signature of Multiple Sclerosis by in vivo Proton Magnetic Resonance Spectroscopy: Current Challenges and Future Outlook in the Translation from Proton Signal to Diagnostic Biomarker. Front. Neurol. 2019, 10, 1173. [Google Scholar] [CrossRef]
- Llufriu, S.; Kornak, J.; Ratiney, H.; Oh, J.; Brenneman, D.; Cree, B.A.; Sampat, M.; Hauser, S.L.; Nelson, S.J.; Pelletier, D. Magnetic Resonance Spectroscopy Markers of Disease Progression in Multiple Sclerosis. JAMA Neurol. 2014, 71, 840–847. [Google Scholar] [CrossRef] [Green Version]
- De Stefano, N.; Filippi, M.; Miller, D.; Pouwels, P.J.; Rovira, A.; Gass, A.; Enzinger, C.; Matthews, P.M.; Arnold, D.L. Guidelines for using proton MR spectroscopy in multicenter clinical MS studies. Neurology 2007, 69, 1942–1952. [Google Scholar] [CrossRef]
- Elliott, C.; Wolinsky, J.S.; Hauser, S.L.; Kappos, L.; Barkhof, F.; Bernasconi, C.; Wei, W.; Belachew, S.; Arnold, D.L. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult. Scler. J. 2019, 25, 1915–1925. [Google Scholar] [CrossRef]
- Frischer, J.; Ms, S.D.W.; Guo, Y.; Kale, N.; Parisi, J.E.; Pirko, I.; Mandrekar, J.; Bramow, S.; Metz, I.; Brück, W.; et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 2015, 78, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Absinta, M.; Sati, P.; Masuzzo, F.; Nair, G.; Sethi, V.; Kolb, H.; Ohayon, J.; Wu, T.; Cortese, I.C.M.; Reich, D.S. Association of Chronic Active Multiple Sclerosis Lesions with Disability In Vivo. JAMA Neurol. 2019, 76, 1474–1483. [Google Scholar] [CrossRef] [PubMed]
- Hemond, C.C.; Reich, D.S.; Dundumadappa, S.K. Paramagnetic Rim Lesions in Multiple Sclerosis: Comparison of Visualization at 1.5-T and 3-T MRI. Am. J. Roentgenol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Eisele, P.; Fischer, K.; Szabo, K.; Platten, M.; Gass, A. Characterization of Contrast-Enhancing and Non-contrast-enhancing Multiple Sclerosis Lesions Using Susceptibility-Weighted Imaging. Front. Neurol. 2019, 10, 1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Absinta, M.; Sati, P.; Fechner, A.; Schindler, M.; Nair, G.; Reich, D.S. Identification of Chronic Active Multiple Sclerosis Lesions on 3T MRI. Am. J. Neuroradiol. 2018, 39, 1233–1238. [Google Scholar] [CrossRef]
- Hametner, S.; Bianco, A.D.; Trattnig, S.; Lassmann, H. Iron related changes in MS lesions and their validity to characterize MS lesion types and dynamics with Ultra-high field magnetic resonance imaging. Brain Pathol. 2018, 28, 743–749. [Google Scholar] [CrossRef] [Green Version]
- Preziosa, P.; Filippi, M.; Rocca, M.A. Chronic active lesions: A new MRI biomarker to monitor treatment effect in multiple sclerosis? Expert Rev. Neurother. 2021, 21, 837–841. [Google Scholar] [CrossRef]
- Calvi, A.; Haider, L.; Prados, F.; Tur, C.; Chard, D.; Barkhof, F. In vivo imaging of chronic active lesions in multiple sclerosis. Mult. Scler. J. 2020, 1352458520958589. [Google Scholar] [CrossRef]
- Luchetti, S.; Fransen, N.; van Eden, C.G.; Ramaglia, V.; Mason, M.; Huitinga, I. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: A retrospective autopsy cohort analysis. Acta Neuropathol. 2018, 135, 511–528. [Google Scholar] [CrossRef] [Green Version]
- Kwong, K.C.N.K.; Mollison, D.; Meijboom, R.; York, E.N.; Kampaite, A.; Thrippleton, M.J.; Chandran, S.; Waldman, A.D. The prevalence of paramagnetic rim lesions in multiple sclerosis: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0256845. [Google Scholar] [CrossRef]
- Elliott, C.; Belachew, S.; Wolinsky, J.S.; Hauser, S.L.; Kappos, L.; Barkhof, F.; Bernasconi, C.; Fecker, J.; Model, F.; Wei, W.; et al. Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis. Brain 2019, 142, 2787–2799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kappos, L.; Wolinsky, J.S.; Giovannoni, G.; Arnold, D.L.; Wang, Q.; Bernasconi, C.; Model, F.; Koendgen, H.; Manfrini, M.; Belachew, S.; et al. Contribution of Relapse-Independent Progression vs. Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurol. 2020, 77, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Klistorner, S.; Barnett, M.H.; Yiannikas, C.; Barton, J.; Parratt, J.; You, Y.; Graham, S.L.; Klistorner, A. Expansion of chronic lesions is linked to disease progression in relapsing–remitting multiple sclerosis patients. Mult. Scler. J. 2021, 27, 1533–1542. [Google Scholar] [CrossRef] [PubMed]
- Absinta, M.; Dal-Bianco, A. Slowly expanding lesions are a marker of progressive MS—Yes. Mult. Scler. J. 2021, 27, 1679–1681. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.; Cambron, M.; Dobai, A.; Vanheule, E.; Casselman, J.W. Smoldering lesions in MS: If you like it then you should put a rim on it. Neuroradiology 2021, 1–12. [Google Scholar] [CrossRef]
- Blindenbacher, N.; Brunner, E.; Asseyer, S.; Scheel, M.; Siebert, N.; Rasche, L.; Bellmann-Strobl, J.; Brandt, A.; Ruprecht, K.; Meier, D.; et al. Evaluation of the ‘ring sign’ and the ‘core sign’ as a magnetic resonance imaging marker of disease activity and progression in clinically isolated syndrome and early multiple sclerosis. Mult. Scler. J. -Exp. Transl. Clin. 2020, 6, 2055217320915480. [Google Scholar] [CrossRef]
- Sethi, V.; Nair, G.; Absinta, M.; Sati, P.; Venkataraman, A.; Ohayon, J.; Wu, T.; Yang, K.; Shea, C.; Dewey, B.E.; et al. Slowly eroding lesions in multiple sclerosis. Mult. Scler. J. 2016, 23, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Arnold, D.L.; Belachew, S.; Gafson, A.R.; Gaetano, L.; Bernasconi, C.; Elliott, C. Slowly expanding lesions are a marker of progressive MS—No. Mult. Scler. J. 2021, 27, 1681–1683. [Google Scholar] [CrossRef]
- MacLaren, J.; Han, Z.; Vos, S.B.; Fischbein, N.; Bammer, R. Reliability of brain volume measurements: A test-retest dataset. Sci. Data 2014, 1, 140037. [Google Scholar] [CrossRef] [Green Version]
- Audoin, B.; Ibarrola, D.; Malikova, I.; Soulier, E.; Confort-Gouny, S.; Duong, M.V.A.; Reuter, F.; Viout, P.; Ali-Chérif, A.; Cozzone, P.J.; et al. Onset and underpinnings of white matter atrophy at the very early stage of multiple sclerosis—A two-year longitudinal MRI/MRSI study of corpus callosum. Mult. Scler. J. 2007, 13, 41–51. [Google Scholar] [CrossRef]
- Chu, R.; Tauhid, S.; Glanz, B.I.; Healy, B.C.; Kim, G.; Oommen, V.V.; Khalid, F.; Neema, M.; Bakshi, R. Whole Brain Volume Measured from 1.5T versus 3T MRI in Healthy Subjects and Patients with Multiple Sclerosis. J. Neuroimaging 2016, 26, 62–67. [Google Scholar] [CrossRef]
- Barkhof, F.; Calabresi, P.A.; Miller, D.H.; Reingold, S.C. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat. Rev. Neurol. 2009, 5, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Smeets, D.; Ribbens, A.; Sima, D.M.; Cambron, M.; Horáková, D.; Jain, S.; Maertens, A.; van Vlierberghe, E.; Terzopoulos, V.; Vanbinst, A.-M.; et al. Reliable measurements of brain atrophy in individual patients with multiple sclerosis. Brain Behav. 2016, 6, e00518. [Google Scholar] [CrossRef] [PubMed]
- Takao, H.; Hayashi, N.; Ohtomo, K. Effect of scanner in longitudinal studies of brain volume changes. J. Magn. Reson. Imaging 2011, 34, 438–444. [Google Scholar] [CrossRef]
- Streitbürger, D.-P.; Pampel, A.; Krueger, G.; Lepsien, J.; Schroeter, M.L.; Mueller, K.; Möller, H.E. Impact of image acquisition on voxel-based-morphometry investigations of age-related structural brain changes. NeuroImage 2014, 87, 170–182. [Google Scholar] [CrossRef]
- Han, X.; Jovicich, J.; Salat, D.; van der Kouwe, A.; Quinn, B.; Czanner, S.; Busa, E.; Pacheco, J.; Albert, M.; Killiany, R.; et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer. NeuroImage 2006, 32, 180–194. [Google Scholar] [CrossRef]
- Jovicich, J.; Czanner, S.; Greve, D.; Haley, E.; van der Kouwe, A.; Gollub, R.; Kennedy, D.; Schmitt, F.; Brown, G.; MacFall, J.; et al. Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data. NeuroImage 2006, 30, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, H.-J.; Kröll-Seger, J.; Klöppel, S.; Ganz, R.E.; Kassubek, J. Intra- and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures. NeuroImage 2010, 49, 2216–2224. [Google Scholar] [CrossRef] [PubMed]
- Uher, T.; Bergsland, N.; Krasensky, J.; Dwyer, M.G.; Andelova, M.; Sobisek, L.; Havrdova, E.K.; Horakova, D.; Zivadinov, R.; Vaneckova, M. Interpretation of Brain Volume Increase in Multiple Sclerosis. J. Neuroimaging 2021, 31, 401–407. [Google Scholar] [CrossRef]
- Lu, X.-W.; Guo, H.; Sun, J.-R.; Dong, Q.-L.; Zhao, F.-T.; Liao, X.-H.; Zhang, L.; Zhang, Y.; Li, W.-H.; Li, Z.-X.; et al. A shared effect of paroxetine treatment on gray matter volume in depressive patients with and without childhood maltreatment: A voxel-based morphometry study. CNS Neurosci. Ther. 2018, 24, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Lyoo, I.K.; Dager, S.R.; E Kim, J.; Yoon, S.J.; Friedman, S.; Dunner, D.L.; Renshaw, P.F. Lithium-Induced Gray Matter Volume Increase as a Neural Correlate of Treatment Response in Bipolar Disorder: A Longitudinal Brain Imaging Study. Neuropsychopharmacology 2010, 35, 1743–1750. [Google Scholar] [CrossRef] [PubMed]
- Moncrieff, J.; Leo, J. A systematic review of the effects of antipsychotic drugs on brain volume. Psychol. Med. 2010, 40, 1409–1422. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, K.N.; Nesvåg, R.; Nerland, S.; Mørch-Johnsen, L.; Westlye, L.T.; Lange, E.H.; Haukvik, U.K.; Hartberg, C.B.; Melle, I.; Andreassen, O.A.; et al. Brain volume change in first-episode psychosis: An effect of antipsychotic medication independent of BMI change. Acta Psychiatr. Scand. 2017, 135, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Veijola, J.; Guo, J.Y.; Moilanen, J.S.; Jaaskelainen, E.; Miettunen, J.; Kyllönen, M.; Haapea, M.; Huhtaniska, S.; Alaräisänen, A.; Mäki, P.; et al. Longitudinal Changes in Total Brain Volume in Schizophrenia: Relation to Symptom Severity, Cognition and Antipsychotic Medication. PLoS ONE 2014, 9, e101689. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Joo, E.; Suh, S.; Kim, J.-H.; Kim, S.T.; Hong, S.B. Effects of long-term treatment on brain volume in patients with obstructive sleep apnea syndrome. Hum. Brain Mapp. 2016, 37, 395–409. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Brown, R.A.; Araujo, D.; Narayanan, S.; Arnold, D.L. Correlation between brain volume change and T2 relaxation time induced by dehydration and rehydration: Implications for monitoring atrophy in clinical studies. NeuroImage Clin. 2014, 6, 166–170. [Google Scholar] [CrossRef] [Green Version]
- Meyers, S.M.; Tam, R.; Lee, J.S.; Kolind, S.H.; Vavasour, I.M.; Mackie, E.; Zhao, Y.; Laule, C.; Mädler, B.; Li, D.K.; et al. Does hydration status affect MRI measures of brain volume or water content? J. Magn. Reson. Imaging 2016, 44, 296–304. [Google Scholar] [CrossRef]
- Sormani, M.P.; Arnold, D.L.; de Stefano, N. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann. Neurol. 2014, 75, 43–49. [Google Scholar] [CrossRef]
- Uher, T.; Krasensky, J.; Malpas, C.; Bergsland, N.; Dwyer, M.G.; Havrdova, E.K.; Vaneckova, M.; Horakova, D.; Zivadinov, R.; Kalincik, T. Evolution of Brain Volume Loss Rates in Early Stages of Multiple Sclerosis. Neurol.-Neuroimmunol. Neuroinflammation 2021, 8, e979. [Google Scholar] [CrossRef]
- Radue, E.-W.; Barkhof, F.; Kappos, L.; Sprenger, T.; Häring, D.A.; de Vera, A.; von Rosenstiel, P.; Bright, J.R.; Francis, G.; Cohen, J.A. Correlation between brain volume loss and clinical and MRI outcomes in multiple sclerosis. Neurology 2015, 84, 784–793. [Google Scholar] [CrossRef] [Green Version]
- Eshaghi, A.; Prados, F.; Brownlee, W.J.; Altmann, D.R.; Tur, C.; Cardoso, M.J.; de Angelis, F.; van de Pavert, S.H.; Cawley, N.; De Stefano, N.; et al. Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann. Neurol. 2018, 83, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Sastre-Garriga, J.; Ingle, G.T.; Chard, D.T.; Cercignani, M.; Ramió-Torrentà, L.; Miller, D.H.; Thompson, A.J. Grey and white matter volume changes in early primary progressive multiple sclerosis: A longitudinal study. Brain 2005, 128, 1454–1460. [Google Scholar] [CrossRef]
- Kalkers, N.F.; Ameziane, N.; Bot, J.C.J.; Minneboo, A.; Polman, C.H.; Barkhof, F. Longitudinal Brain Volume Measurement in Multiple Sclerosis: Rate of Brain Atrophy Is Independent of the Disease Subtype. Arch. Neurol. 2002, 59, 1572–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biberacher, V.; Schmidt, P.; Keshavan, A.; Boucard, C.C.; Righart, R.; Sämann, P.; Preibisch, C.; Fröbel, D.; Aly, L.; Hemmer, B.; et al. Intra- and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis. NeuroImage 2016, 142, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Rocca, M.A.; Battaglini, M.; Benedict, R.H.; de Stefano, N.; Geurts, J.J.; Henry, R.G.; Horsfield, M.A.; Jenkinson, M.; Pagani, E.; Filippi, M. Brain MRI atrophy quantification in MS: From methods to clinical application. Neurology 2017, 88, 403–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal-Jordana, A.; Sastre-Garriga, J.; Pérez-Miralles, F.; Tur, C.; Tintore, M.; Horga, A.; Auger, C.; Rio, J.; Nos, C.; Edo, M.C.; et al. Early brain pseudoatrophy while on natalizumab therapy is due to white matter volume changes. Mult. Scler. J. 2013, 19, 1175–1181. [Google Scholar] [CrossRef]
- Fragoso, Y.D.; Willie, P.R.; Goncalves, M.V.M.; Brooks, J.B.B. Critical analysis on the present methods for brain volume measurements in multiple sclerosis. Arq. Neuropsiquiatr. 2017, 75, 464–469. [Google Scholar] [CrossRef] [Green Version]
- De Stefano, N.; Airas, L.; Grigoriadis, N.; Mattle, H.P.; O’Riordan, J.; Oreja-Guevara, C.; Sellebjerg, F.; Stankoff, B.; Walczak, A.; Wiendl, H.; et al. Clinical Relevance of Brain Volume Measures in Multiple Sclerosis. CNS Drugs 2014, 28, 147–156. [Google Scholar] [CrossRef]
- Casserly, C.; Seyman, E.; Alcaide-Leon, P.; Guenette, M.; Lyons, C.; Sankar, S.; Svendrovski, A.; Baral, S.; Oh, J. Spinal Cord Atrophy in Multiple Sclerosis: A Systematic Review and Meta-Analysis. J. Neuroimaging 2018, 28, 556–586. [Google Scholar] [CrossRef]
- Lin, X.; Tench, C.R.; Turner, B.; Blumhardt, L.D.; Constantinescu, C. Spinal cord atrophy and disability in multiple sclerosis over four years: Application of a reproducible automated technique in monitoring disease progression in a cohort of the interferon -1a (Rebif) treatment trial. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1090–1094. [Google Scholar] [CrossRef]
- Abdel-Aziz, K.; Ciccarelli, O. Rationale for quantitative MRI of the human spinal cord and clinical applications. In Wheeler-Kingshott CAMBT-QMRI of the SC; Chapter 1.1; Cohen-Adad, J., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 3–21. [Google Scholar] [CrossRef]
- Sastre-Garriga, J.; on behalf of the MAGNIMS Study Group; Pareto, D.; Battaglini, M.; Rocca, M.A.; Ciccarelli, O.; Enzinger, C.; Wuerfel, J.; Sormani, M.P.; Barkhof, F.; et al. MAGNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice. Nat. Rev. Neurol. 2020, 16, 171–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bo, L.; Geurts, J.J.G.; Mork, S.J.; van der Valk, P. Grey matter pathology in multiple sclerosis. Acta Neurol. Scand. 2006, 113, 48–50. [Google Scholar] [CrossRef] [PubMed]
- Pirko, I.; Lucchinetti, C.F.; Sriram, S.; Bakshi, R. Gray matter involvement in multiple sclerosis. Neurology 2007, 68, 634–642. [Google Scholar] [CrossRef]
- Calabrese, M.; Favaretto, A.; Martini, V.; Gallo, P. Grey matter lesions in MS: From histology to clinical implications. Prion 2013, 7, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Uher, T.; Horakova, D.; Bergsland, N.; Tyblova, M.; Ramasamy, D.P.; Seidl, Z.; Vaneckova, M.; Krasensky, J.; Havrdova, E.; Zivadinov, R. MRI correlates of disability progression in patients with CIS over 48 months. NeuroImage Clin. 2014, 6, 312–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raz, E.; Cercignani, M.; Sbardella, E.; Totaro, P.; Pozzilli, C.; Bozzali, M.; Pantano, P. Gray- and White-Matter Changes 1 Year after First Clinical Episode of Multiple Sclerosis: MR Imaging. Radiology 2010, 257, 448–454. [Google Scholar] [CrossRef] [Green Version]
- Varosanec, M.; Uher, T.; Horáková, D.; Hagemeier, J.; Bergsland, N.; Tyblova, M.; Seidl, Z.; Vaneckova, M.; Krasensky, J.; Dwyer, M.; et al. Longitudinal Mixed-Effect Model Analysis of the Association between Global and Tissue-Specific Brain Atrophy and Lesion Accumulation in Patients with Clinically Isolated Syndrome. Am. J. Neuroradiol. 2015, 36, 1457–1464. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Al-Radaideh, A.; Athamneh, I.; Alabadi, H.; Hbahbih, M. Deep gray matter changes in relapsing-remitting multiple sclerosis detected by multi-parametric, high-resolution magnetic resonance imaging (MRI). Eur. Radiol. 2021, 31, 706–715. [Google Scholar] [CrossRef]
- Sepulcre, J.; Sastre-Garriga, J.; Cercignani, M.; Ingle, G.T.; Miller, D.H.; Thompson, A.J. Regional Gray Matter Atrophy in Early Primary Progressive Multiple Sclerosis: A Voxel-Based Morphometry Study. Arch. Neurol. 2006, 63, 1175–1180. [Google Scholar] [CrossRef] [Green Version]
- Zivadinov, R.; Bergsland, N.; Dolezal, O.; Hussein, S.; Seidl, Z.; Dwyer, M.; Vaneckova, M.; Krasensky, J.; Potts, J.; Kalincik, T.; et al. Evolution of Cortical and Thalamus Atrophy and Disability Progression in Early Relapsing-Remitting MS during 5 Years. Am. J. Neuroradiol. 2013, 34, 1931–1939. [Google Scholar] [CrossRef] [Green Version]
- Zivadinov, R.; Havrdova, E.K.; Bergsland, N.; Tyblova, M.; Hagemeier, J.; Seidl, Z.; Dwyer, M.G.; Vaneckova, M.; Krasensky, J.; Carl, E.; et al. Thalamic Atrophy Is Associated with Development of Clinically Definite Multiple Sclerosis. Radiology 2013, 268, 831–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hänninen, K.; Viitala, M.; Paavilainen, T.; Karhu, J.O.; Rinne, J.; Koikkalainen, J.; Lötjönen, J.; Soilu-Hänninen, M. Thalamic Atrophy without Whole Brain Atrophy Is Associated with Absence of 2-Year NEDA in Multiple Sclerosis. Front. Neurol. 2019, 10, 459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, R.; Hurwitz, S.; Tauhid, S.; Bakshi, R. Automated segmentation of cerebral deep gray matter from MRI scans: Effect of field strength on sensitivity and reliability. BMC Neurol. 2017, 17, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiri, H.; de Sitter, A.; Bendfeldt, K.; Battaglini, M.; Wheeler-Kingshott, C.A.G.; Calabrese, M.; Geurts, J.J.; Rocca, M.A.; Garriga, J.S.; Enzinger, C.; et al. Urgent challenges in quantification and interpretation of brain grey matter atrophy in individual MS patients using MRI. NeuroImage Clin. 2018, 19, 466–475. [Google Scholar] [CrossRef]
- Raji, A.; Ostwaldt, A.-C.; Opfer, R.; Suppa, P.; Spies, L.; Winkler, G. MRI-Based Brain Volumetry at a Single Time Point Complements Clinical Evaluation of Patients with Multiple Sclerosis in an Outpatient Setting. Front. Neurol. 2018, 9, 545. [Google Scholar] [CrossRef]
- Van Munster, C.E.; Jonkman, L.E.; Weinstein, H.C.; Uitdehaag, B.M.; Geurts, J.J. Gray matter damage in multiple sclerosis: Impact on clinical symptoms. Neuroscience 2015, 303, 446–461. [Google Scholar] [CrossRef]
- Geurts, J.J.G.; Bö, L.; Pouwels, P.J.W.; Castelijns, J.A.; Polman, C.H.; Barkhof, F. Cortical Lesions in Multiple Sclerosis: Combined Postmortem MR Imaging and Histopathology. Am. J. Neuroradiol. 2005, 26, 572–577. [Google Scholar]
- Seewann, A.; Kooi, E.J.; Roosendaal, S.D.; Pouwels, P.J.W.; Wattjes, M.P.; van der Valk, P.; Barkhof, F.; Polman, C.H.; Geurts, J.J.G. Postmortem verification of MS cortical lesion detection with 3D DIR. Neurology 2012, 78, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Tallantyre, E.; Morgan, P.; Dixon, J.E.; Al-Radaideh, A.; Brookes, M.; Morris, P.G.; Evangelou, N. 3 Tesla and 7 Tesla MRI of multiple sclerosis cortical lesions. J. Magn. Reson. Imaging 2010, 32, 971–977. [Google Scholar] [CrossRef]
- Treaba, C.A.; Granberg, T.E.; Sormani, M.P.; Herranz, E.; Ouellette, R.A.; Louapre, C.; Sloane, J.A.; Kinkel, R.P.; Mainero, C. Longitudinal Characterization of Cortical Lesion Development and Evolution in Multiple Sclerosis with 7.0-T MRI. Radiology 2019, 291, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, M.; Poretto, V.; Favaretto, A.; Alessio, S.; Bernardi, V.; Romualdi, C.; Rinaldi, F.; Perini, P.; Gallo, P. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain 2012, 135 Pt 10, 2952–2961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scalfari, A.; Neuhaus, A.; Degenhardt, A.; Rice, G.P.; Muraro, P.; Daumer, M.; Ebers, G. The natural history of multiple sclerosis, a geographically based study 10: Relapses and long-term disability. Brain 2010, 133 Pt 7, 1914–1929. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, F.; Calabrese, M.; Grossi, P.; Puthenparampil, M.; Perini, P.; Gallo, P. Cortical lesions and cognitive impairment in multiple sclerosis. Neurol. Sci. 2010, 31 (Suppl. 2), 235–237. [Google Scholar] [CrossRef]
- Jasperse, B.; Valsasina, P.; Neacsu, V.; Knol, D.L.; de Stefano, N.; Enzinger, C.; Smith, S.; Ropele, S.; Korteweg, T.; Giorgio, A.; et al. Intercenter agreement of brain atrophy measurement in multiple sclerosis patients using manually-edited SIENA and SIENAX. J. Magn. Reson. Imaging 2007, 26, 881–885. [Google Scholar] [CrossRef] [Green Version]
- Eshaghi, A.; Marinescu, R.V.; Young, A.; Firth, N.C.; Prados, F.; Cardoso, M.J.; Tur, C.; de Angelis, F.; Cawley, N.; Brownlee, W.J.; et al. Progression of regional grey matter atrophy in multiple sclerosis. Brain 2018, 141, 1665–1677. [Google Scholar] [CrossRef] [Green Version]
- Rocca, M.A.; Valsasina, P.; Meani, A.; Gobbi, C.; Zecca, C.; Rovira, A.; Sastre-Garriga, J.; Kearney, H.; Ciccarelli, O.; Matthews, L.; et al. Association of Gray Matter Atrophy Patterns with Clinical Phenotype and Progression in Multiple Sclerosis. Neurology 2021, 96, e1561–e1573. [Google Scholar] [CrossRef]
- Valsasina, P.; Benedetti, B.; Rovaris, M.; Sormani, M.P.; Comi, G.; Filippi, M. Evidence for progressive gray matter loss in patients with relapsing-remitting MS. Neurology 2005, 65, 1126–1128. [Google Scholar] [CrossRef]
- Tiberio, M.; Chard, D.; Altmann, D.R.; Davies, G.; Griffin, C.M.; Rashid, W.; Sastre-Garriga, J.; Thompson, A.J.; Miller, D.H. Gray and white matter volume changes in early RRMS: A 2-year longitudinal study. Neurology 2005, 64, 1001–1007. [Google Scholar] [CrossRef]
- Geurts, J.J.; Calabrese, M.; Fisher, E.; Rudick, R.A. Measurement and clinical effect of grey matter pathology in multiple sclerosis. Lancet Neurol. 2012, 11, 1082–1092. [Google Scholar] [CrossRef]
- Storelli, L.; Rocca, M.A.; Pagani, E.; van Hecke, W.; Horsfield, M.A.; de Stefano, N.; Rovira, A.; Garriga, J.S.; Palace, J.; Sima, D.M.; et al. Measurement of Whole-Brain and Gray Matter Atrophy in Multiple Sclerosis: Assessment with MR Imaging. Radiology 2018, 288, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Fisher, E.; Lee, J.-C.; Nakamura, K.; Rudick, R.A. Gray matter atrophy in multiple sclerosis: A longitudinal study. Ann. Neurol. 2008, 64, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Inglese, M.; Oesingmann, N.; Casaccia, P.; Fleysher, L. Progressive Multiple Sclerosis and Gray Matter Pathology: An MRI Perspective. Mt. Sinai J. Med. 2011, 78, 258–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Miralles, F.; Sastre-Garriga, J.; Tintore, M.; Arrambide, G.; Nos, C.; Perkal, H.; Rio, J.; Edo, M.C.; Horga, A.; Castilló, J.; et al. Clinical impact of early brain atrophy in clinically isolated syndromes. Mult. Scler. J. 2013, 19, 1878–1886. [Google Scholar] [CrossRef] [PubMed]
- Koskimäki, F.; Bernard, J.; Yong, J.; Arndt, N.; Carroll, T.; Lee, S.-K.; Reder, A.T.; Javed, A. Gray matter atrophy in multiple sclerosis despite clinical and lesion stability during natalizumab treatment. PLoS ONE 2018, 13, e0209326. [Google Scholar] [CrossRef]
- Moccia, M.; Quarantelli, M.; Lanzillo, R.; Cocozza, S.; Carotenuto, A.; Alfano, B.; Prinster, A.; Triassi, M.; Nardone, A.; Palladino, R.; et al. Grey:white matter ratio at diagnosis and the risk of 10-year multiple sclerosis progression. Eur. J. Neurol. 2017, 24, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Brown, F.S.; Glasmacher, S.A.; Kearns, P.; MacDougall, N.; Hunt, D.; Connick, P.; Chandran, S. Systematic review of prediction models in relapsing remitting multiple sclerosis. PLoS ONE 2020, 15, e0233575. [Google Scholar] [CrossRef]
- Pisani, A.I.; Scalfari, A.; Crescenzo, F.; Romualdi, C.; Calabrese, M. A novel prognostic score to assess the risk of progression in relapsing−remitting multiple sclerosis patients. Eur. J. Neurol. 2021, 28, 2503–2512. [Google Scholar] [CrossRef]
- Tutuncu, M.; Altintas, A.; Dogan, B.V.; Uygunoglu, U.; Icen, N.K.; Karakaya, A.E.; Coban, E.; Alpaslan, B.G.; Sosyal, A. The use of Modified Rio score for determining treatment failure in patients with multiple sclerosis: Retrospective descriptive case series study. Acta Neurol. Belg. 2021, 121, 1693–1698. [Google Scholar] [CrossRef]
- Sormani, M.; Signori, A.; Stromillo, M.; de Stefano, N. Refining response to treatment as defined by the Modified Rio Score. Mult. Scler. J. 2013, 19, 1246–1247. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiu, V.E.; Enache, I.; Panea, C.A.; Tiu, C.; Popescu, B.O. Predictive MRI Biomarkers in MS—A Critical Review. Medicina 2022, 58, 377. https://doi.org/10.3390/medicina58030377
Tiu VE, Enache I, Panea CA, Tiu C, Popescu BO. Predictive MRI Biomarkers in MS—A Critical Review. Medicina. 2022; 58(3):377. https://doi.org/10.3390/medicina58030377
Chicago/Turabian StyleTiu, Vlad Eugen, Iulian Enache, Cristina Aura Panea, Cristina Tiu, and Bogdan Ovidiu Popescu. 2022. "Predictive MRI Biomarkers in MS—A Critical Review" Medicina 58, no. 3: 377. https://doi.org/10.3390/medicina58030377
APA StyleTiu, V. E., Enache, I., Panea, C. A., Tiu, C., & Popescu, B. O. (2022). Predictive MRI Biomarkers in MS—A Critical Review. Medicina, 58(3), 377. https://doi.org/10.3390/medicina58030377