The Effect of Scapular Fixation on Scapular and Humeral Head Movements during Glenohumeral Axial Distraction Mobilization
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Djade, C.D.; Porgo, T.V.; Zomahoun, H.T.V.; Perrault-Sullivan, G.; Dionne, C.E. Incidence of shoulder pain in 40 years old and over and associated factors: A systematic review. Eur. J. Pain 2020, 24, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Ludewig, P.M.; Cook, T.M. Translations of the Humerus in Persons with Shoulder Impingement Symptoms. J. Orthop. Sports Phys. Ther. 2002, 32, 248–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, M.J.; Shaffer, M.A.; Kuhn, J.E.; Michener, L.A.; Seitz, A.L.; Uhl, T.L.; Godges, J.J.; McClure, P.W. Shoulder Pain and Mobility Deficits: Adhesive Capsulitis. J. Orthop. Sports Phys. Ther. 2013, 43, A1–A31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noten, S.; Meeus, M.; Stassijns, G.; Van Glabbeek, F.; Verborgt, O.; Struyf, F. Efficacy of Different Types of Mobilization Techniques in Patients with Primary Adhesive Capsulitis of the Shoulder: A Systematic Review. Arch. Phys. Med. Rehabil. 2016, 97, 815–825. [Google Scholar] [CrossRef]
- Espinoza, H.J.G.; Pavez, F.; Guajardo, C.; Acosta, M.B. Glenohumeral posterior mobilization versus conventional physiotherapy for primary adhesive capsulitis: A randomized clinical trial. Medwave 2015, 15, e6267. [Google Scholar] [CrossRef]
- Johnson, A.J.; Godges, J.J.; Zimmerman, G.J.; Ounanian, L.L. The Effect of Anterior Versus Posterior Glide Joint Mobilization on External Rotation Range of Motion in Patients with Shoulder Adhesive Capsulitis. J. Orthop. Sports Phys. Ther. 2007, 37, 88–99. [Google Scholar] [CrossRef]
- Hsu, A.-T.; Ho, L.; Ho, S.; Hedman, T. Immediate response of glenohumeral abduction range of motion to a caudally directed translational mobilization: A fresh cadaver simulation. Arch. Phys. Med. Rehabil. 2000, 81, 1511–1516. [Google Scholar] [CrossRef]
- Graichen, H.; Stammberger, T.; Bonel, H.M.; Englmeier, K.-H.; Reiser, M.; Eckstein, F. Glenohumeral translation during active and passive elevation of the shoulder—A 3D open-MRI study. J. Biomech. 2000, 33, 609–613. [Google Scholar] [CrossRef]
- Chopp, J.N.; O’Neill, J.M.; Hurley, K.; Dickerson, C.R. Superior humeral head migration occurs after a protocol designed to fatigue the rotator cuff: A radiographic analysis. J. Shoulder Elb. Surg. 2010, 19, 1137–1144. [Google Scholar] [CrossRef]
- Kaltenborn, F.; Evjenth, O.; Kaltenborn, T.; Morgan, D.; Vollowitz, E. Manual Mobilization of the Joints: Joint Examination and Basic Treatment: The Extremities; Olaf Norlis Bokhandel: Oslo, Norway, 2015; Volume I. [Google Scholar]
- Ho, K.-Y.; Hsu, A.-T. Displacement of the head of humerus while performing “mobilization with movements” in glenohumeral joint: A cadaver study. Man. Ther. 2009, 14, 160–166. [Google Scholar] [CrossRef]
- Senbursa, G.; Baltacı, G.; Atay, A. Comparison of conservative treatment with and without manual physical therapy for patients with shoulder impingement syndrome: A prospective, randomized clinical trial. Knee Surg. Sports Traumatol. Arthrosc. 2007, 15, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Şenbursa, G.; Baltaci, G.; Atay, A. The effectiveness of manual therapy in supraspinatus tendinopathy. Acta Orthop. Traumatol. Turc. 2011, 45, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-T.; Hsu, A.-T.; An, K.-N.; Chien, J.-R.C.; Kuan, T.-S.; Chang, G.-L. Reliability of stiffness measured in glenohumeral joint and its application to assess the effect of end-range mobilization in subjects with adhesive capsulitis. Man. Ther. 2008, 13, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Bang, M.D.; Deyle, G.D. Comparison of Supervised Exercise with and Without Manual Physical Therapy for Patients with Shoulder Impingement Syndrome. J. Orthop. Sports Phys. Ther. 2000, 30, 126–137. [Google Scholar] [CrossRef] [Green Version]
- Conroy, D.E.; Hayes, K.W. The Effect of Joint Mobilization as a Component of Comprehensive Treatment for Primary Shoulder Impingement Syndrome. J. Orthop. Sports Phys. Ther. 1998, 28, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, R.; Goes, R.; Mazzer, N.; Fonseca, M. The influence of joint mobilization on tendinopathy of the biceps brachii and supraspinatus muscles. Braz. J. Phys. Ther. 2008, 12, 298–303. [Google Scholar] [CrossRef]
- Ong, H.S.; Ji, T.; Zhang, C.P. The Pedicled Latissimus Dorsi Myocutaneous Flap in Head and Neck Reconstruction. Oral Maxillofac. Surg. Clin. N. Am. 2014, 26, 427–434. [Google Scholar] [CrossRef]
- Brudvig, T.J.; Kulkarni, H.; Shah, S. The Effect of Therapeutic Exercise and Mobilization on Patients with Shoulder Dysfunction: A Systematic Review with Meta-analysis. J. Orthop. Sports Phys. Ther. 2011, 41, 734–748. [Google Scholar] [CrossRef]
- Witt, D.W.; Talbott, N.R. In-vivo measurements of force and humeral movement during inferior glenohumeral mobilizations. Man. Ther. 2016, 21, 198–203. [Google Scholar] [CrossRef]
- Witt, D.W.; Talbott, N.R. The effect of shoulder position on inferior glenohumeral mobilization. J. Hand Ther. 2018, 31, 381–389. [Google Scholar] [CrossRef]
- Soldado, F.; Ghizoni, M.F.; Bertelli, J. Injury mechanisms in supraclavicular stretch injuries of the brachial plexus. Hand Surg. Rehabil. 2016, 35, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Zapałowicz, K.; Radek, M. The distribution of brachial plexus lesions after experimental traction: A cadaveric study. J. Neurosurg. Spine 2018, 29, 704–710. [Google Scholar] [CrossRef] [Green Version]
- Tavakkolizadeh, A.; Saifuddin, A.; Birch, R. Imaging of Adult Brachial Plexus Traction Injuries. J. Hand Surg. 2001, 26, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates Inc.: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Garwood, E.R.; Souza, R.B.; Zhang, A.; Zhang, A.L.; Ma, C.B.; Link, T.M.; Motamedi, D. Axial traction magnetic resonance imaging (MRI) of the glenohumeral joint in healthy volunteers: Initial experience. Clin. Imaging 2017, 42, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Moon, G.D.; Lim, J.Y.; Kim, D.Y.; Kim, T.H. Comparison of Maitland and Kaltenborn mobilization techniques for improving shoulder pain and range of motion in frozen shoulders. J. Phys. Ther. Sci. 2015, 27, 1391–1395. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, S.; Raza, S.; Moiz, J.A.; Anwer, S.; Alghadir, A.H. Effects of two different mobilization techniques on pain, range of motion and functional disability in patients with adhesive capsulitis: A comparative study. J. Phys. Ther. Sci. 2016, 28, 3342–3349. [Google Scholar] [CrossRef] [Green Version]
- Sarkari, E.; Dhakshinamoorthy, P.; Multani, N.K. Comparison of Caudal and Antero-Posterior Glide Mobilisation for the Improvement of Abduction Range of Motion. J. Exerc. Sci. Physiother. 2006, 2, 59–65. [Google Scholar]
- Estébanez-De-Miguel, E.; López-De-Celis, C.; Caudevilla-Polo, S.; González-Rueda, V.; Bueno-Gracia, E.; Pérez-Bellmunt, A. The effect of high, medium and low mobilization forces applied during a hip long-axis distraction mobilization on the strain on the inferior ilio-femoral ligament and psoas muscle: A cadaveric study. Musculoskelet. Sci. Pract. 2020, 47, 102148. [Google Scholar] [CrossRef]
- Estébanez-De-Miguel, E.; Caudevilla-Polo, S.; González-Rueda, V.; Bueno-Gracia, E.; Pérez-Bellmunt, A.; López-De-Celis, C. Ultrasound measurement of the effects of high, medium and low hip long-axis distraction mobilization forces on the joint space width and its correlation with the joint strain. Musculoskelet. Sci. Pract. 2020, 50, 102225. [Google Scholar] [CrossRef]
- Estébanez-De-Miguel, E.; González-Rueda, V.; Bueno-Gracia, E.; Pérez-Bellmunt, A.; López-De-Celis, C.; Caudevilla-Polo, S. The immediate effects of 5-minute high-force long axis distraction mobilization on the strain on the inferior ilio-femoral ligament and hip range of motion: A cadaveric study. Musculoskelet. Sci. Pract. 2020, 50, 102262. [Google Scholar] [CrossRef]
- Rollo, G.; Huri, G.; Meccariello, L.; Familiari, F.; Çetik, R.M.; Cataldi, C.; Conteduca, J.; Giaracuni, M.; Bisaccia, M.; Longo, D.; et al. Scapular body fractures: Short-term results of surgical management with extended indications. Injury 2021, 52, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Estébanez-De-Miguel, E.; Fortún-Agud, M.; Jimenez-Del-Barrio, S.; Caudevilla-Polo, S.; Bueno-Gracia, E.; Tricás-Moreno, J.M. Comparison of high, medium and low mobilization forces for increasing range of motion in patients with hip osteoarthritis: A randomized controlled trial. Musculoskelet. Sci. Pract. 2018, 36, 81–86. [Google Scholar] [CrossRef]
- Vermeulen, H.M.; Rozing, P.M.; Obermann, W.R.; le Cessie, S.; Vlieland, T.V. Comparison of High-Grade and Low-Grade Mobilization Techniques in the Management of Adhesive Capsulitis of the Shoulder: Randomized Controlled Trial. Phys. Ther. 2006, 86, 355–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, S.; Creighton, D.; Kondratek, M.; Krauss, J.; Qu, X. The effect of tibio-femoral traction mobilization on passive knee flexion motion impairment and pain: A case series. J. Man. Manip. Ther. 2010, 18, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courtney, C.A.; Steffen, A.D.; Fernández-De-Las-Peñas, C.; Kim, J.; Chmell, S.J. Joint Mobilization Enhances Mechanisms of Conditioned Pain Modulation in Individuals with Osteoarthritis of the Knee. J. Orthop. Sports Phys. Ther. 2016, 46, 168–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courtney, C.A.; Witte, P.O.; Chmell, S.J.; Hornby, T.G. Heightened Flexor Withdrawal Response in Individuals with Knee Osteoarthritis Is Modulated by Joint Compression and Joint Mobilization. J. Pain 2010, 11, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-S.; Kim, B.-K.; Moon, O.-K.; Choi, W.-S. Effects of joint position on the distraction distance during grade III glenohumeral joint distraction in healthy individuals. J. Phys. Ther. Sci. 2015, 27, 3279–3281. [Google Scholar] [CrossRef] [Green Version]
Magnitude of Force | ICC3, 1 (95% CI) | SEM | MDD95 |
---|---|---|---|
Baseline | 0.996 (0.986–0.999) | 0.01 mm | 0.02 |
Low-force GADM | 0.993 (0.972–0.998) | 0.02 mm | 0.05 |
Medium-force GADM | 0.996 (0.972–0.998) | 0.01 mm | 0.02 |
High-force GADM | 0.997 (0.990–0.999) | 0.01 mm | 0.02 |
Mean ± SD or N (%) | |
---|---|
Age (year) | 28.67 ± 9.31 |
Gender | |
Men | 11 (73.3%) |
Women | 4 (26.7%) |
Dominance | |
Right | 13 (86.7%) |
Left | 2 (13.3%) |
Height (cm) | 175 ± 8.28 |
Weight (kg) | 71.80 ± 11.80 |
BMI (kg/m2) | 23.40 ± 2.47 |
Variable | Magnitude of GADM Force | Scapular Fixation | Non-Scapular Fixation | Mean Difference (95%CI) | Effect Size | p Value |
---|---|---|---|---|---|---|
Caudal movement of the humeral head | Low-force (16.21 ± 5.10 N) | 0.74 ± 0.55 mm | 1.21 ± 0.67 mm | 0.47 mm (0.11, 0.83) p = 0.012 | 0.78 | F = 5.262 p = 0.008 |
Medium-force (46.71 ± 12.39 N) | 1.62 ± 0.82 mm | 3.04 ± 1.45 mm | 1.42 mm (0.89, 1.94) p < 0.001 | 1.21 | ||
High-force (200.98 ± 51.19 N) | 5.38 ± 1.95 mm | 6.15 ± 2.39 mm | 0.77 mm (1.02, 1.45) p = 0.026 | 0.35 | ||
Scapular movement | Low-force (16.21 ± 5.10 N) | 55.05 ± 0.12° | 57.06 ± 57° | 2.01° (1.78, 2.23) p < 0.001 | 4.88 | F = 1966.56 p < 0.001 |
Medium-force (46.71 ± 12.39 N) | 55.75 ± 0.58° | 62.58 ± 78° | 6.84° (6.49, 7.19) p < 0.001 | 9.94 | ||
High-force (200.98 ± 51.19 N) | 55.91 ± 0.12° | 74.55 ± 1.37° | 18.63° (18.80, 19.18) p < 0.001 | 19.17 |
Low-Force | Medium-Force | High-Force | ||||
---|---|---|---|---|---|---|
T1 N (%) | T2 N (%) | T1 N (%) | T2 N (%) | T1 N (%) | T2 N (%) | |
Scapular Fixation | ||||||
Nowhere | 22 (78.6%) | 23 (82.1%) | 2 (7.1%) | 1 (3.6%) | 0 (0%) | 0 (0%) |
Glenohumeral joint | 6 (21.4%) | 5 (17.9%) | 26 (92.9%) | 27 (96.4%) | 24 (85.7%) | 24 (85.7%) |
Shoulder girdle | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 4 (14.3%) | 4 (14.3%) |
Neck | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Non-scapular Fixation | ||||||
Nowhere | 22 (78.6%) | 21 (75%) | 17 (60.7%) | 17 (60.7%) | 4 (14.3%) | 4 (14.3%) |
Glenohumeral joint | 0 (0%) | 0 (0%) | 2 (7.1%) | 1 (3.6%) | 0 (0%) | 0 (0%) |
Shoulder girdle | 5 (17.9%) | 2 (7.1%) | 6 (21.4%) | 6 (21.4%) | 18 (64.3 %) | 16 (57.1%) |
Neck | 1 (3.6%) | 5 (17.9%) | 3 (10.7%) | 4 (14.3%) | 6 (21.4%) | 8 (28.6%) |
p value * | <0.002 | <0.001 | <0.001 | <0.003 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-de-Celis, C.; Estébanez-de-Miguel, E.; Pérez-Bellmunt, A.; Caudevilla-Polo, S.; González-Rueda, V.; Bueno-Gracia, E. The Effect of Scapular Fixation on Scapular and Humeral Head Movements during Glenohumeral Axial Distraction Mobilization. Medicina 2022, 58, 454. https://doi.org/10.3390/medicina58030454
López-de-Celis C, Estébanez-de-Miguel E, Pérez-Bellmunt A, Caudevilla-Polo S, González-Rueda V, Bueno-Gracia E. The Effect of Scapular Fixation on Scapular and Humeral Head Movements during Glenohumeral Axial Distraction Mobilization. Medicina. 2022; 58(3):454. https://doi.org/10.3390/medicina58030454
Chicago/Turabian StyleLópez-de-Celis, Carlos, Elena Estébanez-de-Miguel, Albert Pérez-Bellmunt, Santos Caudevilla-Polo, Vanessa González-Rueda, and Elena Bueno-Gracia. 2022. "The Effect of Scapular Fixation on Scapular and Humeral Head Movements during Glenohumeral Axial Distraction Mobilization" Medicina 58, no. 3: 454. https://doi.org/10.3390/medicina58030454