Oxcarbazepine and Hyponatremia
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Clinical and Demographic Characteristics
3.2. Hyponatremia and Clinical Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beydoun, A.; DuPont, S.; Zhou, D.; Matta, M.; Nagire, V.; Lagae, L. Current role of carbamazepine and oxcarbazepine in the management of epilepsy. Seizure 2020, 83, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, R.T.; Radtke, R.A.; Smith, M.; Vossler, D.G.; Strom, L.; Trinka, E.; Cheng, H.; Grinnell, T.; Blum, D.; Vieira, M.; et al. Serum sodium levels and related treatment-emergent adverse events during eslicarbazepine acetate use in adults with epilepsy. Epilepsia 2019, 60, 1341–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ley, M.; Principe, A.; Rocamora, R. Long-term effects of dibenzazepines on metabolic parameters: Retrospective comparison of carbamazepine, oxcarbazepine and eslicarbazepine acetate in the real world. Rev. Neurol. 2020, 71, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Kim, D.W.; Jung, K.-H.; Lee, S.-T.; Kang, B.S.; Byun, J.-I.; Yeom, J.S.; Chu, K.; Lee, S.K. Frequency of and risk factors for oxcarbazepine-induced severe and symptomatic hyponatremia. Seizure 2014, 23, 208–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendlebury, S.C.; Moses, D.K.; Eadie, M.J. Hyponatraemia during Oxcarbazepine Therapy. Hum. Toxicol. 1989, 8, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Sachdeo, R.C.; Wasserstein, A.; Mesenbrink, P.J.; D’Souza, J. Effects of oxcarbazepine on sodium concentration and water handling. Ann. Neurol. 2002, 51, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Berghuis, B.; De Haan, G.-J.; Broek, M.P.H.V.D.; Sander, J.; Lindhout, D.; Koeleman, B.P.C. Epidemiology, pathophysiology and putative genetic basis of carbamazepine- and oxcarbazepine-induced hyponatremia. Eur. J. Neurol. 2016, 23, 1393–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berghuis, B.; van der Palen, J.; De Haan, G.-J.; Lindhout, D.; Koeleman, B.P.C.; Sander, J.W. The EpiPGX Consortium Carbamazepine- and oxcarbazepine-induced hyponatremia in people with epilepsy. Epilepsia 2017, 58, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Lu, C.-H.; Wang, F.-J.; Tsai, M.-H.; Chang, W.-N.; Tsai, N.-W.; Lai, S.-L.; Tseng, Y.-L.; Chuang, Y.-C. Risk Factors of Oxcarbazepine-Induced Hyponatremia in Patients with Epilepsy. Clin. Neuropharmacol. 2010, 33, 293–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berghuis, B.; Stapleton, C.; Sonsma, A.C.M.; Hulst, J.; De Haan, G.-J.; Lindhout, D.; Demurtas, R.; EpiPGX Consortium; Krause, R.; Depondt, C.; et al. A genome-wide association study of sodium levels and drug metabolism in an epilepsy cohort treated with carbamazepine and oxcarbazepine. Epilepsia Open 2019, 4, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Wang, X. Hyponatremia induced by antiepileptic drugs in patients with epilepsy. Expert Opin. Drug Saf. 2017, 16, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Buggy, Y.; Layton, D.; Fogg, C.; Shakir, S.A. Safety profile of oxcarbazepine: Results from a prescription-event monitoring study. Epilepsia 2010, 51, 818–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, O.A.; Johannessen, A.C.; Bardrum, B. Oxcarbazepine-induced hyponatremia, a cross-sectional study. Epilepsy Res. 1988, 2, 269–271. [Google Scholar] [CrossRef]
- Dong, X.; Leppik, I.E.; White, J.; Rarick, J. Hyponatremia from oxcarbazepine and carbamazepine. Neurology 2005, 65, 1976–1978. [Google Scholar] [CrossRef] [PubMed]
- Letmaier, M.; Painold, A.; Holl, A.K.; Vergin, H.; Engel, R.; Konstantinidis, A.; Kasper, S.; Grohmann, R. Hyponatraemia during psychopharmacological treatment: Results of a drug surveillance programme. Int. J. Neuropsychopharmacol. 2012, 15, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Martinez, W.; Ingenito, A.; Blakeslee, M.; Barkley, G.L.; McCague, K.; D’Souza, J. Efficacy, safety, and tolerability of oxcarbazepine monotherapy. Epilepsy Behav. 2006, 9, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Peri, A. Management of hyponatremia: Causes, clinical aspects, differential diagnosis and treatment. Expert Rev. Endocrinol. Metab. 2019, 14, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Berghuis, B.; Hulst, J.; Sonsma, A.; McCormack, M.; de Haan, G.-J.; Sander, J.W.; Lindhout, D.; Koeleman, B.O.C. Symptomatology of carbamazepine- and oxcarbazepine-induced hyponatremia in people with epilepsy. Epilepsia 2021, 62, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Rondon-Berrios, H.; Berl, T. Mild Chronic Hyponatremia in the Ambulatory Setting: Significance and Management. Clin. J. Am. Soc. Nephrol. 2015, 10, 2268–2278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Refardt, J.; Kling, B.; Krausert, K.; Fassnacht, M.; Von Felten, S.; Christ-Crain, M.; Fenske, W. Impact of chronic hyponatremia on neurocognitive and neuromuscular function. Eur. J. Clin. Investig. 2018, 48, e13022. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total (n = 105) | OXC Group (n = 31) | Other ASM Group (n = 43) | Control Group (n = 31) |
---|---|---|---|---|
Age (y), m ± SD | 45.7 ± 13.9 | 47.26 ± 15.8 | 42.1 ± 11.4 | 49.39 ± 14.3 |
Gender | ||||
Male, n (%) | 44 (41.9%) | 11 (35.5%) | 16 (37.2%) | 17 (54.8%) |
Female, n (%) | 61 (58.1%) | 20 (64.5%) | 27 (62.8%) | 14 (45.2%) |
ASMs therapy (n = 74) | ||||
Monotherapy, n (%) | 25 (33.8%) | 8 (25.8%) | 17 (39.5%) | - |
Polytherapy, n (%) | 49 (66.2%) | 23 (74.2%) | 26 (60.5%) | - |
Duration of ASM therapy (y), m ± SD | 7.7 ± 4.7 | 8.7 ± 5.5 | 6.9 ± 3.8 | - |
Serum sodium concentration mmol/L, mean ± SD | 137.1 ± 4.1 | 133.1 ± 5.1 * | 138.7 ± 2.3 | 138.9 ± 1.5 |
Monotherapy | 136.2 ± 4.4 | 132.5 ± 6.6 * | 138.2 ± 2.3 | - |
Polytherapy | 136.4 ± 4.7 | 133.3 ± 5.0 * | 139.0 ± 2.0 | - |
Male | 137.5 ± 4.0 | 134.0 ± 3.4 * | 139.7 ± 2.1 | 139.1 ± 1.3 |
Female | 135.7 ± 4.8 | 132.7 ± 5.8 * | 138.0 ± 2.1 | 138.7 ± 1.7 |
Hyponatremia, n (%) | 23 (21.9%) | 19 (61.3%) * | 3 (7.0%) | 1 (3.2%) |
OXC Group (n = 31) | ||||
---|---|---|---|---|
Total Group (n = 31) | Eunatremia (n = 12) | Hyponatremia (n = 19) | p Values | |
Age (y), m ± SD | 47.26 ± 15.8 | 43.4 ± 16.5 | 49.7 ± 15.2 | 0.287 |
Gender | ||||
Male (N = 11), n (%) | 11 (35.5%) | 4 (36.4%) | 7 (63.6%) | 0.577 |
Female (N = 20), n (%) | 20 (64.5%) | 8 (40.0%) | 12 (60.0%) | |
OXC therapy | ||||
Monotherapy (N = 8), n, % | 8 (25.8%) | 3 (37.5%) | 5 (62.5%) | 0.638 |
Polytherapy (N = 23), n, % | 23 (74.2%) | 9 (39.1%) | 14 (60.9%) | |
Dosage mg/day, m ± SD | 1014.5 ± 430.1 | 962.5 ± 449.8 | 1047.3 ± 426.3 | 0.562 |
Serum concentration µg/mL, m ± SD | 15.4 ± 6.3 | 14.2 ± 5.8 | 16.1 ± 6.6 | 0.306 |
Duration (y), m ± SD | 8.7 ± 5.5 | 5.6 ± 4.8 | 10.7 ± 5.1 | 0.018 |
Factor | r | p |
---|---|---|
Age in years | −0.294 | 0.109 |
Dosage of OXC mg/day | 0.288 | 0.116 |
Serum concentration of OXC µg/mL | −0.300 | 0.101 |
Duration of OXC therapy in years | −0.427 | 0.017 |
Na ≤ 128 mmol/L | 128 < Na < 136 mmol/L | Na ≥ 136 mmol/L | |
---|---|---|---|
Overall (N = 31) | 6 (19.4%) | 13 (41.9%) | 12 (38.7%) |
OXC therapy | |||
Monotherapy (N = 8) | 2 (25.0%) | 3 (37.5%) | 3 (37.5%) |
Polytherapy (N = 23) | 4 (17.4%) | 10 (43.5%) | 9 (39.1%) |
Gender | |||
Male (N = 11) | 0 | 7 (63.6%) | 4 (36.4%) |
Female (N = 20) | 6 (30%) | 6 (30%) | 8 (40%) |
Age (y) | |||
m ± SD | 62.3 ± 6.3 * | 43.8 ± 14.7 | 43.4 ± 16.5 |
median (range) | 64 (51–68) | 50 (20–61) | 37 (27–77) |
Dosage of OXC mg/day | |||
m ± SD | 1150 ± 122.4 | 1000 ± 508.6 | 962.5 ± 449.8 |
median (range) | 1200 (900–1200) | 900 (300–1800) | 750 (450–1950) |
Serum concentration of OXC | |||
µg/mL, m ± SD | 19.2 ± 5.3 | 14.6 ± 6.8 | 14.2 ± 5.8 |
median (range) | 19.1 (12.5–27.6) | 14.59 (3.8–26.8) | 12.98 (8.2–28.8) |
Duration of OXC therapy (y) | |||
m ± SD | 13.2 ± 5.4 #11 {8–20} | 9.5 ± 4.7 | 5.6 ± 4.9 |
median (range) | 8 (2–21) | 2.5 (1–15) |
Factor | Exp (B) | 95% Cl | p |
---|---|---|---|
Age (each additional year) | 0.988 | 0.922–1.059 | 0.737 |
Gender (man) | 1.723 | 0.191–15.507 | 0.628 |
Duration of therapy (each additional year) | 1.326 | 1.027–1.712 | 0.031 |
Dosage of OXC mg/day | 0.998 | 0.993–1.004 | 0.572 |
Serum concentration of OXC µg/mL | 1.200 | 0.784–1.837 | 0.401 |
Polytherapy | 1.617 | 0.169–15.463 | 0.278 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čiauškaitė, J.; Gelžinienė, G.; Jurkevičienė, G. Oxcarbazepine and Hyponatremia. Medicina 2022, 58, 559. https://doi.org/10.3390/medicina58050559
Čiauškaitė J, Gelžinienė G, Jurkevičienė G. Oxcarbazepine and Hyponatremia. Medicina. 2022; 58(5):559. https://doi.org/10.3390/medicina58050559
Chicago/Turabian StyleČiauškaitė, Julija, Giedrė Gelžinienė, and Giedrė Jurkevičienė. 2022. "Oxcarbazepine and Hyponatremia" Medicina 58, no. 5: 559. https://doi.org/10.3390/medicina58050559
APA StyleČiauškaitė, J., Gelžinienė, G., & Jurkevičienė, G. (2022). Oxcarbazepine and Hyponatremia. Medicina, 58(5), 559. https://doi.org/10.3390/medicina58050559