Functional Brain Asymmetry and Menopausal Treatments: Is There a Link?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hausmann, M. Hemispheric asymmetry in spatial attention across the menstrual cycle. Neuropsychologia 2005, 43, 1559–1567. [Google Scholar] [CrossRef]
- Duboc, V.; Dufourcq, P.; Blader, P.; Roussigné, M. Asymmetry of the Brain: Development and Implications. Annu. Rev. Genet. 2015, 49, 647–672. [Google Scholar] [CrossRef] [PubMed]
- Ocklenburg, S.; Güntürkün, O. Brain Asymmetries—Two Millennia of Speculation, Research and Discoveries. In The Lateralized Brain; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–25. [Google Scholar]
- Nadeau, S.E. Hemispheric asymmetry: What, why, and at what cost? J. Int. Neuropsychol. Soc. 2010, 16, 593–595. [Google Scholar] [CrossRef]
- Brown, H.D.; Kosslyn, S.M. Cerebral lateralization. Curr. Opin. Neurobiol. 1993, 3, 183–186. [Google Scholar] [CrossRef]
- Hausmann, M.; Güntürkün, O. Steroid fluctuations modify functional cerebral asymmetries: The hypothesis of progesterone-mediated interhemispheric decoupling. Neuropsychologia 2000, 38, 1362–1374. [Google Scholar] [CrossRef]
- Wisniewski, A. Sexually-dimorphic patterns of cortical asymmetry, and the role for sex steroid hormones in determining cortical patterns of lateralization. Psychoneuroendocrinology 1998, 23, 519–547. [Google Scholar] [CrossRef]
- Hampson, E. Variations in sex-related cognitive abilities across the menstrual cycle. Brain Cogn. 1990, 14, 26–43. [Google Scholar] [CrossRef]
- McEwen, B.S.; Milner, T.A. Understanding the broad influence of sex hormones and sex differences in the brain. J. Neurosci. Res. 2017, 95, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Cicinelli, E.; De Tommaso, M.; Cianci, A.; Colacurci, N.; Rella, L.; Loiudice, L.; Cicinelli, M.V.; Livrea, P. Oral contraceptive therapy modulates hemispheric asymmetry in spatial attention. Contraception 2011, 84, 634–636. [Google Scholar] [CrossRef]
- Maki, P.; Hogervorst, E. HRT and cognitive decline. Best Pract. Res. Clin. Endocrinol. Metab. 2003, 17, 105–122. [Google Scholar] [CrossRef]
- De Franciscis, P.; Colacurci, N.; Riemma, G.; Conte, A.; Pittana, E.; Guida, M.; Schiattarella, A. A Nutraceutical Approach to Menopausal Complaints. Medicina 2019, 55, 544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Franciscis, P.; Grauso, F.; Luisi, A.; Schettino, M.T.; Torella, M.; Colacurci, N. Adding Agnus Castus and Magnolia to Soy Isoflavones Relieves Sleep Disturbances Besides Postmenopausal Vasomotor Symptoms-Long Term Safety and Effectiveness. Nutrients 2017, 9, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Franciscis, P.; Guida, M.; Schiattarella, A.; Riemma, G.; Colacurci, N. Safety of non-hormonal medications for managing hot flashes. Expert Opin. Drug Saf. 2022, 21, 215–221. [Google Scholar] [CrossRef]
- De Franciscis, P.; Conte, A.; Schiattarella, A.; Riemma, G.; Cobellis, L.; Colacurci, N. Non-hormonal Treatments For Menopausal Symptoms and Sleep Disturbances: A Comparison Between Purified Pollen Extracts and Soy Isoflavones. Curr. Pharm. Des. 2020, 26, 4509–4514. [Google Scholar] [CrossRef] [PubMed]
- Riemma, G.; Schiattarella, A.; La Verde, M.; Zarobbi, G.; Garzon, S.; Cucinella, G.; Calagna, G.; Labriola, D.; De Franciscis, P. Efficacy of Low-Dose Paroxetine for the Treatment of Hot Flushes in Surgical and Physiological Postmenopausal Women: Systematic Review and Meta-Analysis of Randomized Trials. Medicina 2019, 55, 554. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Liu, Y.; Zhuang, X.; Luan, F.; Zhao, C. The Interaction of Isoflavone Phytoestrogens with ERα and ERβ by Molecular Docking and Molecular Dynamics Simulations. Curr. Comput.-Aided Drug Des. 2020, 16, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Bisiach, E.; Capitani, E.; Colombo, A.; Spinnler, H. Halving a horizontal segment: A study on hemisphere-damaged patients with cerebral focal lesions. Schweiz. Arch. Fur Neurol. Neurochir. Und Psychiatr. = Arch. Suisses Neurol. Neurochir. Psychiatr. 1976, 118, 199–206. [Google Scholar]
- Hausmann, M.; Waldie, K.E.; Corballis, M.C. Developmental changes in line bisection: A result of callosal maturation? Neuropsychology 2003, 17, 155–160. [Google Scholar] [CrossRef]
- Kurth, F.; Spencer, D.; Hines, M.; Luders, E. Sex differences in associations between spatial ability and corpus callosum morphology. J. Neurosci. Res. 2018, 96, 1380–1387. [Google Scholar] [CrossRef]
- Genc, S.; Malpas, C.B.; Ball, G.; Silk, T.J.; Seal, M.L. Age, sex, and puberty related development of the corpus callosum: A multi-technique diffusion MRI study. Brain Struct. Funct. 2018, 223, 2753–2765. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Ruch, W.; Kohler, G.; Van Thriel, C. Assessing the “humorous temperament“: Construction of the facet and standard trait forms of the State-Trait-Cheerfulness-Inventory—STCI. Humor-Int. J. Humor Res. 1996, 9, 303–340. [Google Scholar] [CrossRef] [Green Version]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Doty, R.L.; Kisat, M.; Tourbier, I. Estrogen replacement therapy induces functional asymmetry on an odor memory/discrimination test. Brain Res. 2008, 1214, 35–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolcos, F.; Rice, H.J.; Cabeza, R. Hemispheric asymmetry and aging: Right hemisphere decline or asymmetry reduction. Neurosci. Biobehav. Rev. 2002, 26, 819–825. [Google Scholar] [CrossRef]
- Cabeza, R. Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychol. Aging 2002, 17, 85–100. [Google Scholar] [CrossRef]
- Piefke, M.; Onur, Ö.A.; Fink, G.R. Aging-related changes of neural mechanisms underlying visual-spatial working memory. Neurobiol. Aging 2012, 33, 1284–1297. [Google Scholar] [CrossRef]
- McCourt, M. Visuospatial attention in line bisection: Stimulusmodulation of pseudoneglect. Neuropsychologia 1999, 37, 843–855. [Google Scholar] [CrossRef]
Variables | Group A (n = 30) | Group B (n = 30) | Group C (n = 30) | p-Value | |
---|---|---|---|---|---|
Age (year) | Mean (SD) | 53.5 (1.2) | 52.9 (1.5) | 53.0 (1.4) | 0.20 |
BMI (kg/m2) | Mean (SD) | 23.5 (0.9) | 23.4 (1.3) | 23.6 (1.2) | 0.79 |
Time after menopause (year) | Mean (SD) | 2.3 (1.2) | 2.0 (1.5) | 3.5 (1.4) | 0.01 |
Duration of treatment (months) | Mean (SD) | 15.5 (6.2) | 14.7 (5.6) | 15.1 (4.4) | 0.85 |
Education | Primary school | 4 | 6 | 6 | 0.99 |
Middle school | 9 | 8 | 8 | ||
High school | 11 | 10 | 10 | ||
University | 6 | 6 | 6 |
Variables | Group A (n = 30) | p-Value | Group B (n = 30) | p-Value | Group C (n = 30) | p-Value | |
---|---|---|---|---|---|---|---|
Age (year) >55 years | HR (95% CI) | 1.44 (0.85–1.86) | 0.41 | 1.34 (0.89–1.48) | 0.56 | 1.14 (0.75–1.26) | 0.36 |
BMI (kg/m2) >24 kg/m2 | HR (95% CI) | 1.09 (0.67–1.16) | 0.17 | 1.23 (0.77–1.46) | 0.24 | 1.17 (0.60–1.44) | 0.41 |
Time after menopause (years) >2 years | HR (95% CI) | 1.12 (0.59–1.24) | 0.46 | 1.19 (0.79–1.35) | 0.19 | 1.22 (0.88–1.44) | 0.34 |
Duration of treatment (months) >15 months | HR (95% CI) | 1.03 (0.87–1.11) | 0.20 | 1.30 (0.81–1.44) | 0.23 | 1.16 (0.97–1.31) | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Digesu, G.A.; Riemma, G.; Torella, M.; La Verde, M.; Schiattarella, A.; Munno, G.M.; Fasulo, D.D.; Celardo, A.; Vagnetti, P.; Annona, S.; et al. Functional Brain Asymmetry and Menopausal Treatments: Is There a Link? Medicina 2022, 58, 616. https://doi.org/10.3390/medicina58050616
Digesu GA, Riemma G, Torella M, La Verde M, Schiattarella A, Munno GM, Fasulo DD, Celardo A, Vagnetti P, Annona S, et al. Functional Brain Asymmetry and Menopausal Treatments: Is There a Link? Medicina. 2022; 58(5):616. https://doi.org/10.3390/medicina58050616
Chicago/Turabian StyleDigesu, Giuseppe Alessandro, Gaetano Riemma, Marco Torella, Marco La Verde, Antonio Schiattarella, Gaetano Maria Munno, Diego Domenico Fasulo, Angela Celardo, Primo Vagnetti, Salvatore Annona, and et al. 2022. "Functional Brain Asymmetry and Menopausal Treatments: Is There a Link?" Medicina 58, no. 5: 616. https://doi.org/10.3390/medicina58050616
APA StyleDigesu, G. A., Riemma, G., Torella, M., La Verde, M., Schiattarella, A., Munno, G. M., Fasulo, D. D., Celardo, A., Vagnetti, P., Annona, S., Schettino, M. T., Guida, M., & De Franciscis, P. (2022). Functional Brain Asymmetry and Menopausal Treatments: Is There a Link? Medicina, 58(5), 616. https://doi.org/10.3390/medicina58050616