COVID-19 Induced Taste Dysfunction and Recovery: Association with Smell Dysfunction and Oral Health Behaviour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Survey Design and Dissemination, Data Gathering and Processing
2.3. Sample Size and Statistical Power
2.4. Statistical Analyses
3. Results
3.1. Relationship between Resolution of Smell and Taste Loss
3.2. Differences between Severity of Loss of Different Taste Qualities
3.3. Differences between Rapid (≤28 Days) and Prolonged (>28 Days) Taste Recovery
4. Discussion
4.1. Relationship between Taste and Smell Loss
4.2. Differences between Individual Taste Modalities
4.3. Differences between Prolonged and Rapid Taste Recovery
4.4. Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menni, C.; Valdes, A.M.; Freidin, M.B.; Ganesh, S.; El-Sayed Moustafa, J.S.; Visconti, A.; Hysi, P.; Bowyer, R.C.E.; Mangino, M.; Falchi, M.; et al. Loss of smell and taste in combination with other symptoms is a strong predictor of COVID-19 infection. medRxiv 2020. [Google Scholar] [CrossRef]
- Sudre, C.H.; Keshet, A.; Graham, M.S.; Joshi, A.D.; Shilo, S.; Rossman, H.; Murray, B.; Molteni, E.; Klaser, K.; Canas, L.D. Anosmia, ageusia, and other COVID-19-like symptoms in association with a positive SARS-CoV-2 test, across six national digital surveillance platforms: An observational study. Lancet Digit. Health 2021, 3, e577–e586. [Google Scholar] [CrossRef]
- George, B.; McGee, J.; Giangrasso, E.; Finkelstein, S.; Wu, S.; Glatt, A.E. What Is the Predictive Value of a Single Nasopharyngeal SARS-CoV-2 PCR Swab Test in a Patient With COVID-Like Symptoms and/or Significant COVID-19 Exposure? Open Forum Infect. Dis. 2020, 7, ofaa399. [Google Scholar] [CrossRef] [PubMed]
- Haehner, A.; Draf, J.; Dräger, S.; de With, K.; Hummel, T. Predictive Value of Sudden Olfactory Loss in the Diagnosis of COVID-19. ORL J. Otorhinolaryngol. Relat. Spec. 2020, 82, 175–180. [Google Scholar] [CrossRef]
- Sedaghat, A.R.; Gengler, I.; Speth, M.M. Olfactory Dysfunction: A Highly Prevalent Symptom of COVID-19 With Public Health Significance. Otolaryngol. Neck Surg. 2020, 163, 12–15. [Google Scholar] [CrossRef]
- Callejon-Leblic, M.A.; Moreno-Luna, R.; Del Cuvillo, A.; Reyes-Tejero, I.M.; Garcia-Villaran, M.A.; Santos-Peña, M.; Maza-Solano, J.M.; Martín-Jimenez, D.I.; Palacios-Garcia, J.M.; Fernandez-Velez, C.; et al. Loss of Smell and Taste Can Accurately Predict COVID-19 Infection: A Machine-Learning Approach. J. Clin. Med. 2021, 10, 570. [Google Scholar] [CrossRef]
- Lechien, J.R.; Chiesa-Estomba, C.M.; Hans, S.; Barillari, M.R.; Jouffe, L.; Saussez, S. Loss of smell and taste in 2013 European patients with mild to moderate COVID-19. Ann. Intern. Med. 2020, 173, 672–675. [Google Scholar] [CrossRef]
- Lee, Y.; Min, P.; Lee, S.; Kim, S.-W. Prevalence and Duration of Acute Loss of Smell or Taste in COVID-19 Patients. J. Korean Med. Sci. 2020, 35, e174. [Google Scholar] [CrossRef]
- Boscolo-Rizzo, P.; Tirelli, G.; Meloni, P.; Hopkins, C.; Madeddu, G.; De Vito, A.; Gardenal, N.; Valentinotti, R.; Tofanelli, M.; Borsetto, D.; et al. Coronavirus disease 2019 (COVID-19)-related smell and taste impairment with widespread diffusion of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) Omicron variant. Int. Forum Allergy Rhinol 2022. Early View. [Google Scholar] [CrossRef]
- Gardner, A.; Carpenter, G.H. Anatomical stability of human fungiform papillae and relationship with oral perception measured by salivary response and intensity rating. Sci. Rep. 2019, 9, 9759. [Google Scholar] [CrossRef]
- Roper, S.D.; Chaudhari, N. Taste buds: Cells, signals and synapses. Nat. Rev. Neurosci. 2017, 18, 485. [Google Scholar] [CrossRef] [PubMed]
- Gilbertson, A.T.; Damak, S.; Margolskee, R.F. The molecular physiology of taste transduction. Curr. Opin. Neurobiol. 2000, 10, 519–527. [Google Scholar] [CrossRef]
- Pinto, J.M. Olfaction. Proc. Am. Thorac. Soc. 2011, 8, 46–52. [Google Scholar] [CrossRef]
- Kinnamon, S.C.; Margolskee, R. Mechanisms of taste transduction. Curr. Opin. Neurobiol. 1996, 6, 506–513. [Google Scholar] [CrossRef]
- Rinaldi, A. The scent of life. The exquisite complexity of the sense of smell in animals and humans. EMBO Rep. 2007, 8, 629–633. [Google Scholar] [CrossRef]
- Bushdid, C.; Magnasco, M.O.; Vosshall, L.B.; Keller, A. Humans Can Discriminate More than 1 trillion Olfactory Stimuli. Science 2014, 343, 1370–1372. [Google Scholar] [CrossRef] [Green Version]
- Castro, J.B.; Ramanathan, A.; Chennubhotla, C.S. Categorical Dimensions of Human Odor Descriptor Space Revealed by Non-Negative Matrix Factorization. PLoS ONE 2013, 8, e73289. [Google Scholar] [CrossRef] [Green Version]
- Eshraghi, A.A.; Mirsaeidi, M.; Davies, C.; Telischi, F.F.; Chaudhari, N.; Mittal, R. Potential Mechanisms for COVID-19 Induced Anosmia and Dysgeusia. Front. Physiol. 2020, 11, 1039. [Google Scholar] [CrossRef]
- Lozada-Nur, F.; Chainani-Wu, N.; Fortuna, G.; Sroussi, H. Dysgeusia in COVID-19: Possible Mechanisms and Implications. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 130, 344–346. [Google Scholar] [CrossRef]
- Tsuchiya, H. Oral Symptoms Associated with COVID-19 and Their Pathogenic Mechanisms: A Literature Review. Dent. J. 2021, 9, 32. [Google Scholar] [CrossRef]
- Hannum, E.M.; Ramirez, A.V.; Lipson, S.J.; Herriman, R.D.; Toskala, A.K.; Lin, C.; Joseph, P.V.; Reed, D.R. Objective sensory testing methods reveal a higher prevalence of olfactory loss in COVID-19–positive patients compared to subjective methods: A systematic review and meta-analysis. Chem. Senses 2020, 45, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Risso, D.; Drayna, D.; Morini, G. Alteration, Reduction and Taste Loss: Main Causes and Potential Implications on Dietary Habits. Nutrients 2020, 12, 3284. [Google Scholar] [CrossRef] [PubMed]
- Printza, A.; Katotomichelakis, M.; Valsamidis, K.; Metallidis, S.; Panagopoulos, P.; Panopoulou, M.; Petrakis, V.; Constantinidis, J. Smell and Taste Loss Recovery Time in COVID-19 Patients and Disease Severity. J. Clin. Med. 2021, 10, 966. [Google Scholar] [CrossRef]
- Lechien, J.R.; Journe, F.; Hans, S.; Chiesa-Estomba, C.M.; Mustin, V.; Beckers, E.; Vaira, L.A.; De Riu, G.; Hopkins, C.; Saussez, S. Severity of anosmia as an early symptom of COVID-19 infection may predict lasting loss of smell. Front. Med. 2020, 7, 582802. [Google Scholar] [CrossRef] [PubMed]
- Catton, G.; Gardner, A. Relationship between Recovery from COVID-19-Induced Smell Loss and General and Oral Health Factors. Medicina 2022, 58, 283. [Google Scholar] [CrossRef]
- Song, J.; Deng, Y.-K.; Wang, H.; Wang, Z.-C.; Liao, B.; Ma, J.; He, C.; Pan, L.; Liu, Y.; Alobid, I.; et al. Self-reported Taste and Smell Disorders in Patients with COVID-19: Distinct Features in China. Curr. Med. Sci. 2021, 41, 14–23. [Google Scholar] [CrossRef]
- Boscolo-Rizzo, P.; Guida, F.; Polesel, J.; Marcuzzo, A.V.; Antonucci, P.; Capriotti, V.; Sacchet, E.; Cragnolini, F.; D’Alessandro, A.; Zanelli, E.; et al. Self-reported smell and taste recovery in coronavirus disease 2019 patients: A one-year prospective study. Eur. Arch. Oto-Rhino-Laryngol. 2021, 279, 515–520. [Google Scholar] [CrossRef]
- Nguyen, N.N.; Hoang, V.T.; Lagier, J.-C.; Raoult, D.; Gautret, P. Long-term persistence of olfactory and gustatory disorders in COVID-19 patients. Clin. Microbiol. Infect. 2021, 27, 931–932. [Google Scholar] [CrossRef]
- Niklassen, A.S.; Draf, J.; Huart, C.; Hintschich, C.; Bocksberger, S.; Trecca, E.M.C.; Klimek, L.; Le Bon, S.D.; Altundag, A.; Hummel, T. COVID-19: Recovery from chemosensory dysfunction. a multicentre study on smell and taste. Laryngoscope 2021, 131, 1095–1100. [Google Scholar] [CrossRef]
- Alwan, N.A.; Johnson, L. Defining long COVID: Going back to the start. Medicine 2021, 2, 501–504. [Google Scholar] [CrossRef]
- Burges Watson, D.L.; Campbell, M.; Hopkins, C.; Smith, B.; Kelly, C.; Deary, V. Altered smell and taste: Anosmia, parosmia and the impact of long Covid-19. PLoS ONE 2021, 16, e0256998. [Google Scholar] [CrossRef] [PubMed]
- Alshakhs, A.; AlMomen, A.; Alyaeesh, I.; AlOmairin, A.; Almutairi, A.A.; Alammar, Z.; AlMomen, H.; AlMomen, Z. The Association of Smell and Taste Dysfunction with COVID19, and Their Functional Impacts. Indian J. Otolaryngol. Head Neck Surg. 2021, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R. Sample size and its role in Central Limit Theorem (CLT). Comput. Appl. Math. J. 2018, 4, 1–7. [Google Scholar]
- Ciofalo, A.; Cavaliere, C.; Masieri, S.; Di Chicco, A.; Fatuzzo, I.; Re, F.L.; Baroncelli, S.; Begvarfaj, E.; Adduci, A.; Mezzaroma, I.; et al. Long-Term Subjective and Objective Assessment of Smell and Taste in COVID-19. Cells 2022, 11, 788. [Google Scholar] [CrossRef]
- Ali, G.; Akhter, N.; Akram, R.; Kazmi, S.A.J.; Khan, M.S.; Iqbal, S. The Loss of Smell and Taste in the COVID-19 Outbreak, a Cross Sectional Study. Haya Saudi J. Life Sci. 2022, 7, 24–28. [Google Scholar] [CrossRef]
- Cecchetto, C.; Di Pizio, A.; Genovese, F.; Calcinoni, O.; Macchi, A.; Dunkel, A.; Ohla, K.; Spinelli, S.; Farruggia, M.C.; Joseph, P.V.; et al. Assessing the extent and timing of chemosensory impairments during COVID-19 pandemic. Sci. Rep. 2021, 11, 17504. [Google Scholar] [CrossRef]
- Coelho, D.H.; Reiter, E.R.; Budd, S.G.; Shin, Y.; Kons, Z.A.; Costanzo, R.M. Predictors of smell recovery in a nationwide prospective cohort of patients with COVID-19. Am. J. Otolaryngol. 2021, 43, 103239. [Google Scholar] [CrossRef]
- Speth, M.M.; Singer-Cornelius, T.; Oberle, M.; Gengler, I.; Brockmeier, S.J.; Sedaghat, A.R. Olfactory dysfunction and sinonasal symptomatology in COVID-19: Prevalence, severity, timing, and associated characteristics. Otolaryngol. Head Neck Surg. 2020, 163, 114–120. [Google Scholar] [CrossRef]
- D’Amico, C.; Bocchieri, S.; De Stefano, R.; Gorassini, F.; Surace, G.; Amoroso, G.; Scoglio, C.; Mastroieni, R.; Gambino, D.; Amantia, E.M.; et al. Dental Office Prevention of Coronavirus Infection. Eur. J. Dent. 2020, 14, S146–S151. [Google Scholar] [CrossRef]
- Asadi, M.M.; Shankayi, Z.; Bahrami, F.; Mohammadzadeh, T.; Amini, H.; Naderi, M. Quantitative analysis of taste disorder in COVID-19 patients, the hypersensitivity to salty quality. New Microbes New Infect. 2021, 43, 100919. [Google Scholar] [CrossRef]
- Konstantinidis, I.; Delides, A.; Tsakiropoulou, E.; Maragoudakis, P.; Sapounas, S.; Tsiodras, S. Short-Term Follow-Up of Self-Isolated COVID-19 Patients with Smell and Taste Dysfunction in Greece: Two Phenotypes of Recovery. ORL J. Otorhinolaryngol. Relat. Spec. 2020, 82, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Mazzatenta, A.; Neri, G.; D’Ardes, D.; De Luca, C.; Marinari, S.; Porreca, E.; Cipollone, F.; Vecchiet, J.; Falcicchia, C.; Panichi, V.; et al. Smell and Taste in Severe CoViD-19: Self-Reported vs. Testing. Front. Med. 2020, 7, 589409. [Google Scholar] [CrossRef] [PubMed]
- Hintschich, C.A.; Niv, M.Y.; Hummel, T. The taste of the pandemic—Contemporary review on the current state of research on gustation in coronavirus disease 2019 (COVID-19). Int. Forum Allergy Rhinol. 2021, 12, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.E.A.; da Silva, M.G.; Barbosa, D.A.M.; Gomes, A.L.D.V.; Galindo, L.C.M.; Aragão, R.D.S.; Ferraz-Pereira, K.N. Onset and duration of symptoms of loss of smell/taste in patients with COVID-19: A systematic review. Am. J. Otolaryngol. 2021, 42, 102889. [Google Scholar] [CrossRef] [PubMed]
- Marouf, N.; Cai, W.; Said, K.N.; Daas, H.; Diab, H.; Chinta, V.R.; Hssain, A.A.; Nicolau, B.; Sanz, M.; Tamimi, F. Association between periodontitis and severity of COVID-19 infection: A case-control study. J. Clin. Periodontol. 2021, 48, 483–491. [Google Scholar] [CrossRef]
- Kamel, A.H.M.; Basuoni, A.; Salem, Z.A.; AbuBakr, N. The impact of oral health status on COVID-19 severity, recovery period and C-reactive protein values. Br. Dent. J. 2021, 1–7. [Google Scholar] [CrossRef]
- Juzikis, E.; Klimenko, J.; Žilinskas, J.; Ivanauskienė, E. The effect of new acrylic full removable dentures on food taste. Stomatologija 2021, 23, 48–50. [Google Scholar]
- Kaur, K.; Sculley, D.; Veysey, M.; Lucock, M.; Wallace, J.; Beckett, E.L. Bitter and sweet taste perception: Relationships to self-reported oral hygiene habits and oral health status in a survey of Australian adults. BMC Oral Health 2021, 21, 553. [Google Scholar] [CrossRef]
- Neyraud, E.; Morzel, M. Biological films adhering to the oral soft tissues: Structure, composition, and potential impact on taste perception. J. Texture Stud. 2018, 50, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Worthington, H.V.; MacDonald, L.; Poklepovic Pericic, T.; Sambunjak, D.; Johnson, T.M.; Imai, P.; Clarkson, J.E. Home use of interdental cleaning devices, in addition to toothbrushing, for preventing and controlling periodontal diseases and dental caries. Cochrane Database Syst. Rev. 2019, 4, 1–159. [Google Scholar] [CrossRef] [Green Version]
- Quirynen, M.; Avontroodt, P.; Soers, C.; Zhao, H.; Pauwels, M.; Van Steenberghe, D. Impact of tongue cleansers on microbial load and taste. J. Clin. Periodontol. 2004, 31, 506–510. [Google Scholar] [CrossRef]
- Hyde, R.; Feller, R.; Sharon, I. Tongue Brushing, Dentifrice, and Age Effects on Taste and Smell. J. Dent. Res. 1981, 60, 1730–1734. [Google Scholar] [CrossRef]
- Matsuda, S.; Saito, T.; Yoshida, H.; Yoshimura, H.; Sano, K. Prevalence of Tongue Cleaning Using a Toothbrush: A Questionnaire Survey in Fukui Prefecture, Japan. BioMed Res. Int. 2019, 2019, 6320261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madiloggovit, J.; Chotechuang, N.; Trachootham, D. Impact of self-tongue brushing on taste perception in Thai older adults: A pilot study. Geriatr. Nurs. 2015, 37, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Elibol, E.; Baran, H. The relation between serum D-dimer, ferritin and vitamin D levels, and dysgeusia symptoms, in patients with coronavirus disease 2019. J. Laryngol. Otol. 2021, 135, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.A.; Turner, L.; Ruiz, C.J.M.; Tanaka, M.L.; Congrave-Wilson, Z.; Lee, Y.; Jumarang, J.; Perez, S.; Peralta, A.; Pannaraj, P.S. Clinical manifestations of COVID-19 differ by age and obesity status. Influ. Other Respir. Viruses 2021, 16, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Andrews, P.J.; Pendolino, A.L.; Ottaviano, G.; Scarpa, B.; Grant, J.; Gaudioso, P.; Bordin, A.; Marchese-Ragona, R.; Leoni, D.; Cattelan, A. Olfactory and taste dysfunction among mild-to-moderate symptomatic COVID-19 positive health care workers: An international survey. Laryngoscope Investig. Otolaryngol. 2020, 5, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Henin, D.; Pellegrini, G.; Carmagnola, D.; Attisano, G.C.L.; Lopez, G.; Ferrero, S.; Amendola, A.; De Angelis, D.; Tanzi, E.; Dellavia, C. Morphological and Immunopathological Aspects of Lingual Tissues in COVID-19. Cells 2022, 11, 1248. [Google Scholar] [CrossRef]
- Lyoo, K.-S.; Kim, H.M.; Lee, B.; Che, Y.H.; Kim, S.-J.; Song, D.; Hwang, W.; Lee, S.; Park, J.-H.; Na, W. Direct neuronal infection of SARS-CoV-2 reveals cellular and molecular pathology of chemosensory impairment of COVID-19 patients. Emerg. Microbes Infect. 2022, 11, 406–411. [Google Scholar] [CrossRef]
- Sinjari, B.; D’Ardes, D.; Santilli, M.; Rexhepi, I.; D’Addazio, G.; Di Carlo, P.; Chiacchiaretta, P.; Caputi, S.; Cipollone, F. SARS-CoV-2 and Oral Manifestation: An Observational, Human Study. J. Clin. Med. 2020, 9, 3218. [Google Scholar] [CrossRef]
- Graves, R.C.; Disney, J.A.; Stamm, J.W. Comparative Effectiveness of Flossing and Brushing in Reducing Interproximal Bleeding. J. Periodontol. 1989, 60, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Carroll, G.C.; Sebor, R.J. Dental Flossing, and Its Relationship to Transient Bacteremia. J. Periodontol. 1980, 51, 691–692. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Mohindra, R.; Chauhan, P.; Singla, V.; Goyal, K.; Sahni, V.; Gaur, R.; Verma, D.; Ghosh, A.; Soni, R. SARS-CoV-2 detection in gingival crevicular fluid. J. Dent. Res. 2021, 100, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Cazzolla, A.P.; Lovero, R.; Muzio, L.L.; Testa, N.F.; Schirinzi, A.; Palmieri, G.; Pozzessere, P.; Procacci, V.; Di Comite, M.; Ciavarella, D.; et al. Taste and Smell Disorders in COVID-19 Patients: Role of Interleukin-6. ACS Chem. Neurosci. 2020, 11, 2774–2781. [Google Scholar] [CrossRef]
- Shimada, Y.; Komatsu, Y.; Ikezawa-Suzuki, I.; Tai, H.; Sugita, N.; Yoshie, H. The effect of periodontal treatment on serum leptin, interleukin-6, and C-reactive protein. J. Periodontol. 2010, 81, 1118–1123. [Google Scholar] [CrossRef]
- Attin, T.; Hornecker, E. Tooth brushing and oral health: How frequently and when should tooth brushing be performed? Oral Health Prev. Dent. 2005, 3, 135–140. [Google Scholar]
- Zimmermann, H.; Zimmermann, N.; Hagenfeld, D.; Veile, A.; Kim, T.-S.; Becher, H. Is frequency of tooth brushing a risk factor for periodontitis? A systematic review and meta-analysis. Community Dent. Oral Epidemiol. 2014, 43, 116–127. [Google Scholar] [CrossRef]
- Saniasiaya, J.; Islam, A.; Abdullah, B. Prevalence and Characteristics of Taste Disorders in Cases of COVID-19: A Meta-analysis of 29,349 Patients. Otolaryngol. Neck Surg. 2020, 165, 33–42. [Google Scholar] [CrossRef]
- Seok, J.; Shim, Y.J.; Rhee, C.-S.; Kim, J.-W. Correlation between olfactory severity ratings based on olfactory function test scores and self-reported severity rating of olfactory loss. Acta Oto-Laryngol. 2017, 137, 750–754. [Google Scholar] [CrossRef]
- Le Bon, S.-D.; Payen, L.; Prunier, L.; Steffens, Y.; Horoi, M.; Vaira, L.A.; Hopkins, C.; Lechien, J.R.; Saussez, S. Making scents of loss of taste in COVID-19: Is self-reported loss of taste due to olfactory dysfunction? A prospective study using psychophysical testing. Int. Forum Allergy Rhinol. 2021, 11, 1504–1507. [Google Scholar] [CrossRef]
Variable | Test | Short Smell Loss (≤28 Days) Mean ±95% CI | Long Smell Loss (>28 Days) Mean ±95% CI | Test Statistic | p-Value | ||
---|---|---|---|---|---|---|---|
Age | t-test | 31.73 (30.50–32.96) | 36.66 (33.07–40.25) | −3.23 | 0.001 ** | ||
BMI | t-test | 26.74 (25.88–27.60) | 26.16 (24.70–27.62) | 0.62 | 0.54 | ||
Fruit/vegetable intake | t-test | 2.98 (2.75–3.22) | 3.20 (2.65–3.75) | −0.79 | 0.43 | ||
Illness severity | Mann–Whitney | 4.42 (4.15–4.70) | 4.98 (4.42–5.54) | −1.87 | 0.061 | ||
Smell loss severity | Mann–Whitney | 8.46 (8.07–8.84) | 8.36 (7.53–9.18) | −0.31 | 0.75 | ||
Taste loss severity | Mann–Whitney | 7.79 (7.41–8.12) | 7.56 (6.82–8.31) | −0.69 | 0.49 | ||
Sex | Fisher’s exact | M | 70 (65) | M | 12 (17) | NA | 0.13 |
F | 112 (117) | F | 35 (30) | ||||
Vitamin D | Fisher’s exact | No | 154 (157) | No | 44 (41) | NA | 0.15 |
Yes | 28 (25) | Yes | 3 (6) | ||||
Antidepressant | Fisher’s exact | No | 161 (161) | No | 42 (42) | NA | 1.00 |
Yes | 21 (21) | Yes | 5 (5) | ||||
Flossing | Fisher’s exact | No | 46 (52) | No | 19 (13) | NA | 0.047 * |
Yes | 136 (130) | Yes | 28 (34) | ||||
Missing teeth | Fisher’s exact | No | 153 (153) | No | 39 (39) | NA | 0.81 |
Yes | 25 (25) | Yes | 7 (7) | ||||
Appliances | Fisher’s exact | No | 147 (147) | No | 38 (38) | NA | 1.00 |
Yes | 35 (35) | Yes | 9 (9) | ||||
Brushing freq. | Pearson’s Chi2 | Daily | 58 (53) | Daily | 9 (14) | 4.25 | 0.12 |
2 × day | 114 (116) | 2 × day | 32 (30) | ||||
>2 × day | 9 (11) | >2 × day | 5 (3) | ||||
Alcohol freq. | Pearson’s Chi2 | Never | 35 (37) | Never | 11 (9) | 1.34 | 0.72 |
Monthly | 43 (43) | Monthly | 11 (11) | ||||
Weekly | 64 (65) | Weekly | 18 (17) | ||||
Daily | 40 (37) | Daily | 7 (10) | ||||
Smoking status | Pearson’s Chi2 | Never | 145 (142) | Never | 34 (37) | 1.19 | 0.55 |
Former | 12 (13) | Former | 9 (7) | ||||
Current | 25 (27) | Current | 4 (3) | ||||
No. of fillings | Pearson’s Chi2 | None | 44 (48) | None | 16 (12) | 2.93 | 0.40 |
<5 | 84 (80) | <5 | 16 (21) | ||||
5–10 | 39 (40) | 5–10 | 12 (11) | ||||
>10 | 13 (13) | >10 | 3 (3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catton, G.; Gardner, A. COVID-19 Induced Taste Dysfunction and Recovery: Association with Smell Dysfunction and Oral Health Behaviour. Medicina 2022, 58, 715. https://doi.org/10.3390/medicina58060715
Catton G, Gardner A. COVID-19 Induced Taste Dysfunction and Recovery: Association with Smell Dysfunction and Oral Health Behaviour. Medicina. 2022; 58(6):715. https://doi.org/10.3390/medicina58060715
Chicago/Turabian StyleCatton, Georgia, and Alexander Gardner. 2022. "COVID-19 Induced Taste Dysfunction and Recovery: Association with Smell Dysfunction and Oral Health Behaviour" Medicina 58, no. 6: 715. https://doi.org/10.3390/medicina58060715
APA StyleCatton, G., & Gardner, A. (2022). COVID-19 Induced Taste Dysfunction and Recovery: Association with Smell Dysfunction and Oral Health Behaviour. Medicina, 58(6), 715. https://doi.org/10.3390/medicina58060715