Cervical Cancer Prevention in the Era of the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- To collect and compare data on the implementation of CC prevention in Poland under the public health care from the resources of the National Health Fund (NHF), which is the only entity in Poland who finances public health services from obligatory health insurance fees, and in the private sector on the example of one of the main private medical service providers in Poland (subscription-paid system);
- To consider the impact of the onset of the COVID-19 pandemic on the level of implementation of CC prevention in public and private health care;
- An attempt to estimate the level of CC-screening implementation by 2026 under public and private health care;
- To propose implementation schemes for CC prevention resilient to external factors such as pandemic, disaster, or war.
2.2. Data
2.2.1. Public Health Care
Screening CC
2.2.2. Private Health Care
Screening CC
HPV Vaccination
Preventative Actions
2.2.3. Other
2.3. Statistical Analyses
2.3.1. Prediction
2.3.2. Correlation
2.4. Ethics
3. Results
3.1. Cervical Cancer Screening
3.2. Human Papillomavirus Vaccination
4. Discussion
4.1. Cervical Cancer Screening
4.2. Human Papillomavirus Vaccination
5. Conclusions
- (a)
- Patient interest in publicly funded CC screening has steadily declined each year. The COVID-19 pandemic significantly exacerbated this adverse trend.
- (b)
- The percentage of population coverage with Pap smear-based screening for both public and private health care is expected to continue to decline over the next few years.
- (c)
- The private CC-screening model has a higher efficiency measured as a percentage of population coverage. There is a growing patient interest in the more modern screening methods, such as LBC and HPV testing. Reporting based solely on Pap smear becomes inadequate.
- (d)
- The approach to the onset of the COVID-19 pandemic in private health care had a smaller effect on the decline of interest in CC screening compared to the effect observed within public health care.
- (e)
- Based on private health care data, the percentage of the Polish population vaccinated against HPV should be considered insufficient.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2020; Available online: https://gco.iarc.fr/today (accessed on 22 January 2022).
- Ferrall, L.; Lin, K.Y.; Roden, R.B.S.; Hung, C.F.; Wu, T.C. Cervical Cancer Immunotherapy: Facts and Hopes. Clin. Cancer Res. 2021, 27, 4953–4973. [Google Scholar] [CrossRef] [PubMed]
- Wierzba, W.; Jankowski, M.; Placiszewski, K.; Ciompa, P.; Jakimiuk, A.J.; Danska-Bidzinska, A. Overall survival (OS) in patients after chemotherapy for cervical cancer in Poland in years 2008–2015. Ginekol Pol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, A.; Wojciechowska, U.; Wieszczy, P.; Cybulski, M.; Kamiński, M.F.; Didkowska, J. Trends in cervical cancer incidence and mortality in Poland: Is there an impact of the introduction of the organised screening? Eur. J. Epidemiol. 2017, 32, 529–532. [Google Scholar] [CrossRef]
- Nowakowski, A.; Arbyn, M.; Turkot, M.H.; Wieszczy, P.; Miłosz, K.; Kaminski, M.; Didkowska, J.; Bidziński, M.; Olszewski, W.; Wielgoś, M.; et al. A roadmap for a comprehensive control of cervical cancer in Poland: Integration of available solutions into current practice in primary and secondary prevention. Eur. J. Cancer Prev. 2020, 29, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Simms, K.T.; Steinberg, J.; Caruana, M.; Smith, M.A.; Lew, J.B.; Soerjomataram, I.; Castle, P.E.; Bray, F.; Canfell, K. Impact of scaled up human papillomavirus vaccination and cervical screening and the potential for global elimination of cervical cancer in 181 countries, 2020–2099: A modelling study. Lancet Oncol. 2019, 20, 394–407. [Google Scholar] [CrossRef]
- Basta, T.; Knapp, P.; Blecharz, P.; Bodnar, L.; Gawron, I.; Babczyk, D.; Piróg, M.; Kluz, T.; Markowska, A.; Horbaczewska, A.; et al. Current management of cervical cancer in Poland-Analysis of the questionnaire trial for the years 2002-2014 in relation to ASCO 2016 recommendations. PLoS ONE 2019, 14, e0209901. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Bedell, S.L.; Goldstein, L.S.; Goldstein, A.R.; Goldstein, A.T. Cervical Cancer Screening: Past, Present, and Future. Sex. Med. Rev. 2020, 8, 28–37. [Google Scholar] [CrossRef]
- Eun, T.J.; Perkins, R.B. Screening for Cervical Cancer. Med. Clin. N. Am. 2020, 104, 1063–1078. [Google Scholar] [CrossRef]
- Davies-Oliveira, J.C.; Smith, M.A.; Grover, S.; Canfell, K.; Crosbie, E.J. Eliminating Cervical Cancer: Progress and Challenges for High-income Countries. Clin. Oncol. 2021, 33, 550–559. [Google Scholar] [CrossRef]
- Trzeszcz, M.; Mazurec, M.; Jach, R.; Mazurec, K.; Jach, Z.; Kotkowska-Szeps, I.; Kania, M.; Wantuchowicz, M.; Prokopyk, A.; Barcikowski, P.; et al. Is Primary HPV with Secondary p16/Ki67 Dual-Stain an Alternative HSIL-Risk Detection Strategy in Cervical Cancer Screening for Women under 30 Years? Diagnostics 2021, 11, 2012. [Google Scholar] [CrossRef] [PubMed]
- Shamseddine, A.A.; Burman, B.; Lee, N.Y.; Zamarin, D.; Riaz, N. Tumor Immunity and Immunotherapy for HPV-Related Cancers. Cancer Discov. 2021, 11, 1896–1912. [Google Scholar] [CrossRef] [PubMed]
- Kamolratanakul, S.; Pitisuttithum, P. Human Papillomavirus Vaccine Efficacy and Effectiveness against Cancer. Vaccines 2021, 9, 1413. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Pan, W.; Jin, L.; Huang, W.; Li, Y.; Wu, D.; Gao, C.; Ma, D.; Liao, S. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge. Cancer Lett. 2020, 471, 88–102. [Google Scholar] [CrossRef]
- Meites, E.; Szilagyi, P.G.; Chesson, H.W.; Unger, E.R.; Romero, J.R.; Markowitz, L.E. Human Papillomavirus Vaccination for Adults: Updated Recommendations of the Advisory Committee on Immunization Practices. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 698–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macios, A.; Didkowska, J.; Wojciechowska, U.; Komerska, K.; Glińska, P.; Kamiński, M.F.; Nowakowski, A. Risk factors of cervical cancer after a negative cytological diagnosis in Polish cervical cancer screening programme. Cancer Med. 2021, 10, 3449–3460. [Google Scholar] [CrossRef]
- Zimmer, M.; Bidzinski, M.; Wielgos, M. (Eds.) Cervical Cancer Screening—Recommendations of the Polish Society of GyneCologists and Obstetricians. 2021. Available online: https://ptgin.pl/node/82 (accessed on 23 January 2022).
- Osowiecka, K.; Yahuza, S.; Szwiec, M.; Gwara, A.; Kasprzycka, K.; Godawska, M.; Olejniczak, D.; Nowacka, A.; Nowakowski, J.J.; Nawrocki, S.; et al. Students’ Knowledge about Cervical Cancer Prevention in Poland. Medicina 2021, 57, 1045. [Google Scholar] [CrossRef]
- Trzeszcz, M.; Mazurec, M.; Jach, R.; Mazurec, K.; Jach, Z.; Kotkowska-Szeps, I.; Kania, M.; Wantuchowicz, M.; Prokopyk, A.; Barcikowski, P.; et al. Liquid-Based Screening Tests Results: HPV, Liquid-Based Cytology, and P16/Ki67 Dual-Staining in Private-Based Opportunistic Cervical Cancer Screening. Diagnostics 2021, 11, 1420. [Google Scholar] [CrossRef]
- The Maria Sklodowska-Curie National Research Institute of Oncology. Available online: https://www.pib-nio.pl/wp-content/uploads/2021/02/Algorytmu-postepowania-w-Pilotazu-badan-HPV-DNA.pdf (accessed on 3 April 2022).
- Augustynowicz, A.; Borowska, M.; Lewtak, K.; Borowicz, J.; Waszkiewicz, M.; Karakiewicz, B.; Opolski, J.; Banaś, T.; Czerw, A. Financing of Immunization Programs by Local Government Units in Poland as an Element of Health Policy. Vaccines 2021, 10, 28. [Google Scholar] [CrossRef]
- Sobeczek, K.; Gujski, M.; Raciborski, F. HPV Vaccination: Polish-Language Facebook Discourse Analysis. Int. J. Environ. Res. Public Health 2022, 19, 914. [Google Scholar] [CrossRef]
- Pinkas, W.; Jankowski, M.; Wierzba, W. Factors Associated with Attitudes towards Preventing Head and Neck Cancer through HPV Vaccination in Poland: A Nationwide Cross-Sectional Survey in 2021. Vaccines 2022, 10, 632. [Google Scholar] [CrossRef] [PubMed]
- Chrysostomou, A.C.; Stylianou, D.C.; Constantinidou, A.; Kostrikis, L.G. Cervical Cancer Screening Programs in Europe: The Transition Towards HPV Vaccination and Population-Based HPV Testing. Viruses 2018, 10, 729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Strategy to Accelerate the Elimination of Cervical Cancer as a Public Health Problem; World Health Organization: Geneva, Switzerland, 2020.
- Arbyn, M.; Gultekin, M.; Morice, P.; Nieminen, P.; Cruickshank, M.; Poortmans, P.; Kelly, D.; Poljak, M.; Bergeron, C.; Ritchie, D.; et al. The European response to the WHO call to eliminate cervical cancer as a public health problem. Int. J. Cancer 2021, 148, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Koczkodaj, P.; Kamiński, M.F.; Ciuba, A.; Didkowska, J. Cancer screening coverage in Poland—From bad to better to the worst during the SARS-CoV-2 pandemic. Arch. Med. Sci. 2021, 17, 1132–1133. [Google Scholar] [CrossRef]
- Kregting, L.M.; Kaljouw, S.; de Jonge, L.; Jansen, E.E.L.; Peterse, E.F.P.; Heijnsdijk, E.A.M.; van Ravesteyn, N.T.; Lansdorp-Vogelaar, I.; de Kok, I.M.C.M. Effects of cancer screening restart strategies after COVID-19 disruption. Br. J. Cancer 2021, 124, 1516–1523. [Google Scholar] [CrossRef]
- Le Bihan Benjamin, C.; Simonnet, J.A.; Rocchi, M.; Khati, I.; Ménard, E.; Houas-Bernat, E.; Méric, J.-B.; Bousquet, P.-J. Monitoring the impact of COVID-19 in France on cancer care: A differentiated impact. Sci. Rep. 2022, 12, 4207. [Google Scholar] [CrossRef]
- Ginsburg, O.; Basu, P.; Kapambwe, S.; Canfell, K. Eliminating cervical cancer in the COVID-19 era. Nat. Cancer 2021, 2, 133–134. [Google Scholar] [CrossRef]
- Medicover. Available online: https://www.medicover.pl/uslugi-medicover/przewodnik-po-medicover/ (accessed on 2 May 2022).
- Central Statistical Office. Available online: https://stat.gov.pl/ (accessed on 22 January 2022).
- State eTlemedicine Platform P1. Available online: https://cez.gov.pl/ (accessed on 22 January 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 30 April 2022).
- Eddelbuettel, D.; Francois, R. Rcpp: Seamless R and C++ Integration. J. Stat. Softw. 2011, 40, 1–18. Available online: https://www.jstatsoft.org/v40/i08/ (accessed on 30 April 2022). [CrossRef] [Green Version]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Hyndman, R.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay, L.; O’Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang, E.; Yasmeen, F. Forecast: Forecasting Functions for Time Series and Linear Models. R Package Version 8.15. 2021. Available online: https://pkg.robjhyndman.com/forecast (accessed on 30 April 2022).
- Henry, L.; Wickham, H. rlang: Functions for Base Types and Core R and ‘Tidyverse’ Features. R package version 1.0.1. 2022. Available online: https://CRAN.R-project.org/package=rlang (accessed on 30 April 2022).
- Makowski, D.; Ben-Shachar, M.S.; Patil, I.; Lüdecke, D. Automated Results Reporting as a Practical Tool to Improve Reproducibility and Methodological Best Practices Adoption. CRAN. 2020. Available online: https://github.com/easystats/report (accessed on 30 April 2022).
- Taylor, S.J.; Letham, B. Prophet: Automatic Forecasting Procedure. R package version 1.0. 2021. Available online: https://CRAN.R-project.org/package=prophet (accessed on 30 April 2022).
- Taylor, S.J.; Letham, B. Forecasting at Scale. Am. Stat. 2018, 72, 37–45. [Google Scholar] [CrossRef]
- Hayashi, H. FAQ on Time Series Forecasting with Prophet. 2020. Available online: https://exploratory.io/note/hideaki/FAQ-on-Time-Series-Forecasting-with-Prophet-GuL5xAD0Uw (accessed on 30 April 2022).
- Harvey, A.C.; Peters, S. Estimation procedures for structural time series models. J. Forecast. 1990, 9, 89–108. [Google Scholar] [CrossRef]
- Harvey, A.C.; Shephard, N. Structural time series models. In Handbook of Statistics; Maddala, G.S., Rao, C.R., Vinod, H.D., Eds.; North-Holland: Amsterdam, The Netherlands, 1993; Volume 11, pp. 261–302. [Google Scholar]
- Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A Probabilistic Programming Language. J. Stat. Softw. 2017, 76, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, R. Practical Methods of Optimization, 2nd ed.; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Smith, M.A.; Burger, E.A.; Castanon, A.; de Kok, I.M.C.M.; Hanley, S.J.B.; Rebolj, M.; Hall, M.T.; Jansen, E.E.L.; Killen, J.; O’Farrell, X.; et al. Impact of disruptions and recovery for established cervical screening programs across a range of high-income country program designs, using COVID-19 as an example: A modelled analysis. Prev. Med. 2021, 151, 106623. [Google Scholar] [CrossRef] [PubMed]
- Bonadio, R.C.; Messias, A.P.; Moreira, O.A.; Leis, L.V.; Orsi, B.Z.; Testa, L.; Estevez-Diz, M.d. Impact of the COVID-19 pandemic on breast and cervical cancer stage at diagnosis in Brazil. Ecancermedicalscience 2021, 15, 1299. [Google Scholar] [CrossRef]
- Puricelli Perin, D.M.; Elfström, K.M.; Bulliard, J.L.; Burón, A.; Campbell, C.; Flugelman, A.A.; Giordano, L.; Kamineni, A.; Ponti, A.; Rabeneck, L.; et al. Early assessment of the first wave of the COVID-19 pandemic on cancer screening services: The International Cancer Screening Network COVID-19 survey. Prev. Med. 2021, 151, 106642. [Google Scholar] [CrossRef]
- Snyder, A.; Jang, S.; Nazari, I.S.; Som, A.; Flores, E.J.; Succi, M.D.; Little, B.P. Google search volume trends for cancer screening terms during the COVID-19 pandemic. J. Med. Screen. 2021, 28, 210–212. [Google Scholar] [CrossRef]
- Frisch, M.F.; Scott, K.W.; Binagwaho, A. An Implementation Research Approach to Re-orient Health Supply Chains Toward an Equity Agenda in the COVID-19 Era. Ann. Glob. Health 2021, 87, 42. [Google Scholar] [CrossRef] [PubMed]
- Serrano, B.; Ibáñez, R.; Robles, C.; Peremiquel-Trillas, P.; de Sanjosé, S.; Bruni, L. Worldwide use of HPV self-sampling for cervical cancer screening. Prev. Med. 2022, 154, 106900. [Google Scholar] [CrossRef]
- Masson, H. Cervical pap smears and pandemics: The effect of COVID-19 on screening uptake & opportunities to improve. Womens Health 2021, 17, 17455065211017070. [Google Scholar] [CrossRef]
- Campbell, C.; Sommerfield, T.; Clark, G.R.C.; Porteous, L.; Milne, A.M.; Millar, R.; Syme, T.; Thomson, C.S. COVID-19 and cancer screening in Scotland: A national and coordinated approach to minimising harm. Prev. Med. 2021, 151, 106606. [Google Scholar] [CrossRef]
- Ortiz, A.P.; Gierbolini-Bermúdez, A.; Ramos-Cartagena, J.M.; Colón-López, V.; Sonawane, K.; Deshmukh, A.A.; Ortiz-Ortiz, K.J. Cervical Cancer Screening Among Medicaid Patients During Natural Disasters and the COVID-19 Pandemic in Puerto Rico, 2016 to 2020. JAMA Netw. Open 2021, 4, e2128806. [Google Scholar] [CrossRef]
- Ivanuš, U.; Jerman, T.; Gašper Oblak, U.; Meglič, L.; Florjančič, M.; Strojan Fležar, M.; Premru Sršen, T.; Smrkolj, Š.; Pakiž, M.; Primic Žakelj, M.; et al. The impact of the COVID-19 pandemic on organised cervical cancer screening: The first results of the Slovenian cervical screening programme and registry. Lancet Reg. Health Eur. 2021, 5, 100101. [Google Scholar] [CrossRef] [PubMed]
- DeGroff, A.; Miller, J.; Sharma, K.; Sun, J.; Helsel, W.; Kammerer, W.; Rockwell, T.; Sheu, A.; Melillo, S.; Uhd, J.; et al. COVID-19 impact on screening test volume through the National Breast and Cervical Cancer early detection program, January-June 2020, in the United States. Prev. Med. 2021, 151, 106559. [Google Scholar] [CrossRef] [PubMed]
- Poniewierza, P.; Śniadecki, M.; Brzeziński, M.; Klasa-Mazurkiewicz, D.; Panek, G. Secondary prevention and treatment of cervical cancer—An update from Poland. Nowotw. J. Oncol. 2022, 72, 20–25. [Google Scholar] [CrossRef]
- Nessler, K.; Ball, F.; Chan, S.K.F.; Chwalek, M.; Krztoń-Królewiecka, A.; Windak, A. Barriers and attitudes towards cervical cancer screening in primary healthcare in Poland—Doctors’ perspective. BMC Fam. Pract. 2021, 22, 260. [Google Scholar] [CrossRef] [PubMed]
- Feletto, E.; Grogan, P.; Nickson, C.; Smith, M.; Canfell, K. How has COVID-19 impacted cancer screening? Adaptation of services and the future outlook in Australia. Public Health Res. Pract. 2020, 30, 3042026. [Google Scholar] [CrossRef]
- Poljak, M.; Cuschieri, K.; Waheed, D.E.; Baay, M.; Vorsters, A. Impact of the COVID-19 pandemic on human papillomavirus-based testing services to support cervical cancer screening. Acta Dermatovenerol. Alp. Pannonica Adriat 2021, 30, 21–26. [Google Scholar] [CrossRef] [PubMed]
- de Rycke, Y.; Tubach, F.; Lafourcade, A.; Guillo, S.; Dalichampt, M.; Dahlab, A.; Bresse, X.; Uhart, M.; Bergeron, C.; Borne, H.; et al. Cervical cancer screening coverage, management of squamous intraepithelial lesions and related costs in France. PLoS ONE 2020, 15, e0228660. [Google Scholar] [CrossRef]
- E-Health Center. Available online: https://cez.gov.pl/ (accessed on 22 January 2022).
- Jit, M.; Prem, K.; Benard, E.; Brisson, M. From cervical cancer elimination to eradication of vaccine-type human papillomavirus: Feasibility, public health strategies and cost-effectiveness. Prev. Med. 2021, 144, 106354. [Google Scholar] [CrossRef]
- Bruni, L.; Saura-Lázaro, A.; Montoliu, A.; Brotons, M.; Alemany, L.; Diallo, M.S.; Afsar, O.Z.; LaMontagne, D.S.; Mosina, L.; Contreras, M.; et al. HPV vaccination introduction worldwide and WHO and UNICEF estimates of national HPV immunization coverage 2010–2019. Prev. Med. 2021, 144, 106399. [Google Scholar] [CrossRef]
- Augustynowicz, A.; Bojar, I.; Borowska, M.; Bobiński, K.; Czerw, A. Self-government HPV vaccination programmes in Poland, 2009–2016. Ann. Agric. Environ. Med. 2020, 27, 379–383. [Google Scholar] [CrossRef]
- Ministry of Health. Available online: https://www.gov.pl/web/zdrowie/informacja-ministra-zdrowia-w-sprawie-wlaczenia-do-wykazu-refundowanych-lekow-szczepionki-przeciw-wirusowi-brodawczaka-ludzkiego-hpv-oraz-zmian-w-e-karcie-szczepien (accessed on 12 February 2022).
- Olagoke, A.A.; Carnahan, L.R.; Olagoke, O.; Molina, Y. Shared Determinants for Human Papillomavirus and COVID-19 Vaccination Intention: An Opportunity for Resource Consolidation. Am. J. Health Promot. 2021, 5, 8901171211053933. [Google Scholar] [CrossRef]
- Saxena, K.; Marden, J.R.; Carias, C.; Bhatti, A.; Patterson-Lomba, O.; Gomez-Lievano, A.; Yao, L.; Chen, Y.T. Impact of the COVID-19 pandemic on adolescent vaccinations: Projected time to reverse deficits in routine adolescent vaccination in the United States. Curr. Med. Res. Opin. 2021, 37, 2077–2087. [Google Scholar] [CrossRef]
- Sycinska-Dziarnowska, M.; Paradowska-Stankiewicz, I.; Woźniak, K. The Global Interest in Vaccines and Its Prediction and Perspectives in the Era of COVID-19. Real-Time Surveillance Using Google Trends. Int. J. Environ. Res. Public Health 2021, 18, 7841. [Google Scholar] [CrossRef]
- Ganczak, M.; Bielecki, K.; Drozd-Dąbrowska, M.; Topczewska, K.; Biesiada, D.; Molas-Biesiada, A.; Dubiel, P.; Gorman, D. Vaccination concerns, beliefs and practices among Ukrainian migrants in Poland: A qualitative study. BMC Public Health. 2021, 21, 93. [Google Scholar] [CrossRef]
- Kepka, D.; Christini, K.; McGough, E.; Wagner, A.; Del Fiol, G.; Gibson, B.; Ayres, S.; Brandt, H.M.; Mann, S.; Petrik, A.F.; et al. Successful Multi-Level HPV Vaccination Intervention at a Rural Healthcare Center in the Era of COVID-19. Front. Digit. Health 2021, 3, 719138. [Google Scholar] [CrossRef]
Public Health Care | |
---|---|
Cervical Cancer Screening | HPV Vaccination |
|
|
Private Health Care | |
---|---|
Cervical Cancer Screening | HPV Vaccination |
|
|
Publicly Funded Cervical Cancer Screening (Pap Smear) | |||
---|---|---|---|
Year | Number of Women Screened | Number of Women Qualified for the Screening | % Population Coverage |
2014 | 2,212,647 | 9,906,366 | 22.34 |
2015 | 2,148,973 | 9,894,022 | 21.72 |
2016 | 2,028,217 | 9,896,007 | 20.5 |
2017 | 1,846,369 | 9,855,788 | 18.73 |
2018 | 1,689,552 | 9,874,141 | 17.11 |
2019 | 1,614,045 | 9,953,205 | 16.22 |
2020 | 1,380,428 | 9,977,646 | 13.84 |
2021 | 1,267,119 | 10,058,829 | 12.6 |
Cervical Cancer Screening (Pap Smear) | |||
---|---|---|---|
Year | Number of Women Screened | Number of Women Qualified for the Screening | % Population Coverage |
2017 | 106,885 | 142,157 | 75.19% |
2018 | 116,485 | 158,419 | 73.53% |
2019 | 128,588 | 175,578 | 73.24% |
2020 | 127,308 | 178,711 | 71.24% |
2021 | 143,077 | 198,967 | 71.91% |
Criterion | LBC | HPV Tests | Total Number of Members Covered by Private Health Care | |
---|---|---|---|---|
Year | ||||
2017 | 0 | 597 | 495,242 | |
2018 | 0 | 824 | 559,246 | |
2019 | 8 | 985 | 620,595 | |
2020 | 57 | 877 | 655,649 | |
2021 | 107 | 1669 | 728,031 |
Year | CIll | CIul | |
---|---|---|---|
2022 | 11.30 | 10.97 | 11.60 |
2023 | 9.93 | 8.61 | 11.25 |
2024 | 7.56 | 5.03 | 10.30 |
2025 | 6.31 | 2.00 | 10.67 |
2026 | 5.02 | <0.00 | 11.24 |
Year | CIll | CIul | |
---|---|---|---|
2022 | 72.28% | 70.49% | 73.78% |
2023 | 72.35% | 65.37% | 77.85% |
2024 | 66.88% | 53.69% | 77.81% |
2025 | 67.55% | 46.37% | 84.80% |
2026 | 67.92% | 38.10% | 93.18% |
Number of Full HPV-Vaccinated (3 Doses) Female Members Aged 9–18 Years | Number of Female Members Aged 9–18 | Percentage of Vaccinated Female Members Ages 9–18 |
---|---|---|
1245 | 28,642 | 4.3% |
Year | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
---|---|---|---|---|---|---|---|
Criterion | |||||||
Number of participants in preventative actions | No data available | No data available | No data available | 265 | 104 | 700 |
Phase | Action | Evaluation Indicators |
---|---|---|
I |
|
|
II | Active telephone communication with unscreened individuals with appointments | Percentage of appointments with a scheduled test date |
IIIa | Priority admission for those not tested | Percentage of outstanding screening tests performed |
IIIb | Launch of screening for the general population | Percentage of screening coverage for the entire population |
Strategic Level |
|
|
|
Management level |
|
|
|
|
|
Operational level |
|
|
|
Plan for Organizing HPV Vaccination |
---|
|
|
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poniewierza, P.; Panek, G. Cervical Cancer Prevention in the Era of the COVID-19 Pandemic. Medicina 2022, 58, 732. https://doi.org/10.3390/medicina58060732
Poniewierza P, Panek G. Cervical Cancer Prevention in the Era of the COVID-19 Pandemic. Medicina. 2022; 58(6):732. https://doi.org/10.3390/medicina58060732
Chicago/Turabian StylePoniewierza, Patryk, and Grzegorz Panek. 2022. "Cervical Cancer Prevention in the Era of the COVID-19 Pandemic" Medicina 58, no. 6: 732. https://doi.org/10.3390/medicina58060732
APA StylePoniewierza, P., & Panek, G. (2022). Cervical Cancer Prevention in the Era of the COVID-19 Pandemic. Medicina, 58(6), 732. https://doi.org/10.3390/medicina58060732