The Effects of Short- and Long-Term Spinal Brace Use with and without Exercise on Spine, Balance, and Gait in Adolescents with Idiopathic Scoliosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design, Setting, Participants and Ethics
2.2. Randomization and Blinding
2.3. Evaluation of Clinical, Radiological, and Biomechanical Parameters
2.4. Treatment with Spinal Brace Immediate (Short-Time 24 h Isolated)
2.5. Specific Exercise Program Protocol
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Penha, P.J.; Ramos, N.L.J.P.; de Carvalho, B.K.G.; Andrade, R.M.; Schmitt, A.C.B.; João, S.M.A. Prevalence of Adolescent Idiopathic Scoliosis in the State of São Paulo, Brazil. Spine 2018, 43, 1710–1718. [Google Scholar] [CrossRef]
- Yılmaz, H.; Zateri, C.; Kusvuran Ozkan, A.; Kayalar, G.; Berk, H. Prevalence of adolescent idiopathic scoliosis in Turkey: An epidemiological study. Spine J. 2020, 20, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Smania, N.; Picelli, A.; Romano, M.; Negrini, S. Neurophysiological basis of rehabilitation of adolescent idiopathic scoliosis. Disabil. Rehabil. 2008, 30, 763–771. [Google Scholar] [CrossRef]
- Lee, C.F.; Fong, D.Y.; Cheung, K.M.; Cheng, J.C.; Ng, B.K.; Lam, T.P.; Mak, K.H.; Yip, P.S.; Luk, K.D. Referral criteria for school scoliosis screening: Assessment and recommendations based on a large longitudinally followed cohort. Spine 2010, 35, E1492–E1498. [Google Scholar] [CrossRef]
- Pau, M.; Leban, B.; Pilloni, G.; Porta, M.; Cubeddu, F.; Secci, C.; Piras, V.; Monticone, M. Trunk rotation alters postural sway but not gait in female children and early adolescents: Results from a school-based screening for scoliosis. Gait Posture 2018, 61, 301–305. [Google Scholar] [CrossRef]
- Kim, D.S.; Park, S.H.; Goh, T.S.; Son, S.M.; Lee, J.S. A meta-analysis of gait in adolescent idiopathic scoliosis. J. Clin. Neurosci. 2020, 81, 196–200. [Google Scholar] [CrossRef]
- Lee, S.W.; Verghese, J.; Holtzer, R.; Mahoney, J.R.; Oh-Park, M. Trunk sway during walking among older adults: Norms and correlation with gait velocity. Gait Posture 2014, 40, 676–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freidel, K.; Petermann, F.; Reichel, D.; Steiner, A.; Warschburger, P.; Weiss, H.R. Quality of life in women with idiopathic scoliosis. Spine 2002, 27, E87–E91. [Google Scholar] [CrossRef]
- Belabbassi, H.; Haddouche, A.; Ouadah, A. Pes cavus and idiopathic scoliosis from school screening. Scoliosis 2013, 8, O6. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Sim, T.; Suh, S.W.; Yang, J.H.; Koo, H.; Mun, J.H. Analysis of coordination between thoracic and pelvic kinematic movements during gait in adolescents with idiopathic scoliosis. Eur. Spine J. 2016, 25, 385–393. [Google Scholar] [CrossRef]
- Yang, J.H.; Suh, S.W.; Sung, P.S.; Park, W.H. Asymmetrical gait in adolescents with idiopathic scoliosis. Eur. Spine J. 2013, 22, 2407–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samadi, B.; Raison, M.; Achiche, S.; Fortin, C. Identification of the most relevant intervertebral effort indicators during gait of adolescents with idiopathic scoliosis. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 664–674. [Google Scholar] [CrossRef]
- Kramers-de Quervain, I.A.; Müller, R.; Stacoff, A.; Grob, D.; Stüssi, E. Gait analysis in patients with idiopathic scoliosis. Eur. Spine J. 2004, 13, 449–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daryabor, A.; Arazpour, M.; Sharifi, G.; Bani, M.A.; Aboutorabi, A.; Golchin, N. Gait and energy consumption in adolescent idiopathic scoliosis: A literature review. Ann. Phys. Rehabil. Med. 2017, 60, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Bruyneel, A.V.; Chavet, P.; Bollini, G.; Mesure, S. Gait initiation reflects the adaptive biomechanical strategies of adolescents with idiopathic scoliosis. Ann. Phys. Rehabil. Med. 2010, 53, 372–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haber, C.K.; Sacco, M. Scoliosis: Lower limb asymmetries during the gait cycle. Arch. Physiother. 2015, 5, 4. [Google Scholar] [CrossRef]
- Giakas, G.; Baltzopoulos, V.; Dangerfield, P.H.; Dorgan, J.C.; Dalmira, S. Comparison of gait patterns between healthy and scoliotic patients using time and frequency domain analysis of ground reaction forces. Spine 1996, 21, 2235–2242. [Google Scholar] [CrossRef]
- Mahaudens, P.; Thonnard, J.L.; Detrembleur, C. Influence of structural pelvic disorders during standing and walking in adolescents with idiopathic scoliosis. Spine J. 2005, 5, 427–433. [Google Scholar] [CrossRef]
- Alves, V.L.; Avanzi, O. Objective assessment of the cardiorespiratory function of adolescents with idiopathic scoliosis through the six-minute walk test. Spine 2009, 34, E926–E929. [Google Scholar] [CrossRef]
- Beaulieu, M.; Toulotte, C.; Gatto, L.; Rivard, C.H.; Teasdale, N.; Simoneau, M.; Allard, P. Postural imbalance in non-treated adolescent idiopathic scoliosis at different periods of progression. Eur. Spine J. 2009, 18, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Gauchard, G.C.; Lascombes, P.; Kuhnast, M.; Perrin, P.P. Influence of different types of progressive idiopathic scoliosis on static and dynamic postural control. Spine 2001, 26, 1052–1058. [Google Scholar] [CrossRef] [PubMed]
- Nault, M.L.; Allard, P.; Hinse, S.; Le Blanc, R.; Caron, O.; Labelle, H.; Sadeghi, H. Relations between standing stability and body posture parameters in adolescent idiopathic scoliosis. Spine 2002, 27, 1911–1917. [Google Scholar] [CrossRef]
- Burger, M.; Coetzee, W.; du Plessis, L.Z.; Geldenhuys, L.; Joubert, F.; Myburgh, E.; van Rooyen, C.; Vermeulen, N. The effectiveness of Schroth exercises in adolescents with idiopathic scoliosis: A systematic review and meta-analysis. S. Afr. J. Physiother. 2019, 75, a904. [Google Scholar] [CrossRef] [PubMed]
- Day, J.M.; Fletcher, J.; Coghlan, M.; Ravine, T. Review of scoliosis-specific exercise methods used to correct adolescent idiopathic scoliosis. Arch. Physiother. 2019, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Białek, M. Conservative treatment of idiopathic scoliosis according to FITS 52 concept: Presentation of the method and preliminary, short term radiological and clinical results based on SOSORT and SRS criteria. Scoliosis 2011, 6, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaelin, A.J. Adolescent idiopathic scoliosis: Indications for bracing and conservative treatments. Ann. Transl. Med. 2020, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Almansour, H.; Pepke, W.; Bruckner, T.; Diebo, B.G.; Akbar, M. Three-dimensional analysis of initial brace correction in the setting of adolescent idiopathic scoliosis. J. Clin. Med. 2019, 8, 1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minsk, M.K.; Venuti, K.D.; Daumit, G.L.; Sponseller, P.D. Effectiveness of the Rigo Chêneau versus Boston-style orthoses for adolescent idiopathic scoliosis: A retrospective study. Scoliosis Spinal Disord. 2017, 12, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, H.R.; Çolak, T.K.; Lay, M.; Borysov, M. Brace treatment for patients with scoliosis: State of the art. S. Afr. J. Physiother. 2021, 77, 1573. [Google Scholar] [CrossRef] [PubMed]
- Nachemson, A.L.; Peterson, L.E. Effectiveness of treatment with a brace in girls who have adolescent idiopathic scoliosis. A prospective, controlled study based on data from the Brace Study of the Scoliosis Research Society. J. Bone Jt. Surg. 1995, 77, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, S.L.; Dolan, L.A.; Wright, J.G.; Dobbs, M.D. Effects of Bracing in Adolescents with Idiopathic Scoliosis. N. Engl. J. Med. 2013, 369, 1512–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negrini, S.; Minozzi, S.; Bettany-Saltikov, J.; Chockalingam, N.; Grivas, T.B.; Kotwicki, T.; Maruyama, T.; Romano, M.; Zaina, F. Braces for idiopathic scoliosis in adolescents. Cochrane Database Syst. Rev. 2015, CD006850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Z.D.; Li, T.P.; Xie, X.H.; Luo, C.; Lian, X.Y.; Wang, Z.Y. Quality of life in adolescent patients with idiopathic scoliosis after brace treatment: A meta-analysis. Medicine 2017, 96, e6828. [Google Scholar] [CrossRef]
- Kalichman, L.; Kendelker, L.; Bezalel, T. Bracing and exercise-based treatment for idiopathic scoliosis. J. Bodyw. Mov. Ther. 2016, 20, 56–64. [Google Scholar] [CrossRef]
- Thompson, R.M.; Hubbard, E.W.; Jo, C.H.; Virostek, D.; Karol, L.A. Brace Success Is Related to Curve Type in Patients with Adolescent Idiopathic Scoliosis. J. Bone Jt. Surg. Am. 2017, 99, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Fan, J.; Shen, H.; Yang, C.; Chen, Y.; Li, M. Characteristics of Cobb angle distribution in the main thoracolumbar/lumbar curve in adolescent idiopathic scoliosis: A retrospective controlled clinical study. Medicine 2018, 97, e11216. [Google Scholar] [CrossRef] [PubMed]
- Aulisa, A.G.; Guzzanti, V.; Perisano, C.; Marzetti, E.; Falciglia, F.; Aulisa, L. Treatment of lumbar curves in scoliotic adolescent females with progressive action short brace: A case series based on the Scoliosis Research Society Committee Criteria. Spine 2012, 37, E786–E791. [Google Scholar] [CrossRef] [PubMed]
- Aulisa, A.G.; Guzzanti, V.; Marzetti, E.; Giordano, M.; Falciglia, F.; Aulisa, L. Brace treatment in juvenile idiopathic scoliosis: A prospective study in accordance with the SRS criteria for bracing studies—SOSORT award 2013 winner. Scoliosis 2014, 9, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aulisa, A.G.; Guzzanti, V.; Falciglia, F.; Giordano, M.; Marzetti, E.; Aulisa, L. Lyon bracing in adolescent females with thoracic idiopathic scoliosis: A prospective study based on SRS and SOSORT criteria. BMC Musculoskelet. Disord. 2015, 16, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negrini, S.; Donzelli, S.; Lusini, M.; Minnella, S.; Zaina, F. The effectiveness of combined bracing and exercise in adolescent idiopathic scoliosis based on SRS and SOSORT criteria: A prospective study. BMC Musculoskelet. Disord. 2014, 15, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaborowska-Sapeta, K.; Kowalski, I.M.; Kotwicki, T.; Protasiewicz-Fałdowska, H.; Kiebzak, W. Effectiveness of Chêneau brace treatment for idiopathic scoliosis: Prospective study in 79 patients followed to skeletal maturity. Scoliosis 2011, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coillard, C.; Vachon, V.; Circo, A.B.; Beauséjour, M.; Rivard, C.H. Effectiveness of the SpineCor brace based on the new standardized criteria proposed by the scoliosis research society for adolescent idiopathic scoliosis. J. Pediatr. Orthop. 2007, 27, 375–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gammon, S.R.; Mehlman, C.T.; Chan, W.; Heifetz, J.; Durrett, G.; Wall, E.J. A comparison of thoracolumbosacral orthoses and SpineCor treatment of adolescent idiopathic scoliosis patients using the Scoliosis Research Society standardized criteria. J. Pediatr. Orthop. 2010, 30, 531–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCoy, C.E. Understanding the Intention-to-treat Principle in Randomized Controlled Trials. West. J. Emerg. Med. 2017, 18, 1075–1078. [Google Scholar] [CrossRef] [PubMed]
- Barsotti, C.E.G.; Junior, C.A.B.B.; Andrade, R.M.; Torini, A.P.; Ribeiro, A.P. The effect of direct vertebral rotation on the spine parameters (coronal and sagittal) in adolescent idiopathic scoliosis. J. Back Musculoskelet. Rehabil. 2021, 34, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.P.; João, S.M.; Dinato, R.C.; Tessutti, V.D.; Sacco, I.C. Dynamic Patterns of Forces and Loading Rate in Runners with Unilateral Plantar Fasciitis: A Cross-Sectional Study. PLoS ONE 2015, 10, e0136971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaina, F.; Romano, M.; Knott, P.; de Mauroy, J.C.; Grivas, T.B.; Kotwicki, T.; Maruyama, T.; O’Brien, J.; Rigo, M.; Negrini, S. Research quality in scoliosis conservative treatment: State of the art. Scoliosis 2015, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Negrini, S.; Marchini, G. Efficacy of the symmetric, patient-oriented, rigid, threedimensional, active (SPoRT) concept of bracing for scoliosis: A prospective study of the Sforzesco versus Lyon brace. Eur. Medicophys. 2007, 43, 171–181. [Google Scholar]
- Mauroy, J.C.; Lecante, C.; Barral, F.; Pourret, S. Prospective study and new concepts based on scoliosis detorsion of the first 225 early in-brace radiological results with the new Lyon brace: ARTbrace. Scoliosis 2014, 9, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawary, R.E.; Zaaroor-Regev, D.; Floman, Y.; Lonner, B.S.; Alkhalife, Y.I.; Betz, R.R. Brace treatment in adolescent idiopathic scoliosis: Risk factors for failure-a literature review. Spine J. 2019, 19, 1917–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Liu, Z.; Zhu, Z.; Qiu, Y. Predictors of ultimate postoperative cervical sagittal alignment in main thoracic adolescent idiopathic scoliosis: A long-term follow-up study. Medicine 2017, 96, e8799. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Xu, L.; Qiu, Y. Current progress in genetic research of adolescent idiopathic scoliosis. Ann. Transl. Med. 2015, 3 (Suppl. S1), S19. [Google Scholar] [CrossRef]
- Charles, Y.P.; Canavese, F.; Diméglio, A. Curve progression risk in a mixed series of braced and nonbraced patients with idiopathic scoliosis related to skeletal maturity assessment on the olecranon. J. Pediatr. Orthop. B 2017, 26, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Karavidas, N. Bracing In The Treatment Of Adolescent Idiopathic Scoliosis: Evidence To Date. Adolesc. Health Med. Ther. 2019, 10, 153–172. [Google Scholar] [CrossRef] [Green Version]
- Clin, J.; Aubin, C.É.; Sangole, A.; Labelle, H.; Parent, S. Correlation between immediate in-brace correction and biomechanical effectiveness of brace treatment in adolescent idiopathic scoliosis. Spine 2010, 35, 1706–1713. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Wang, L.; Zhao, L.; Wang, Y.; Chen, M.; Wang, S.; Lv, Z.; Luo, Y. Balance vs. Sagittal Profile in Adolescent Idiopathic Scoliosis, Are They Correlated? Front. Pediatr. 2019, 7, 2296–2360. [Google Scholar] [CrossRef]
- Cațan, L.; Cerbu, S.; Amaricai, E.; Suciu, O.; Horhat, D.I.; Popoiu, C.M.; Adam, O.; Boia, E. Assessment of Static Plantar Pressure, Stabilometry, Vitamin D and Bone Mineral Density in Female Adolescents with Moderate Idiopathic Scoliosis. Int. J. Environ. Res. Public Health 2020, 17, 2167. [Google Scholar] [CrossRef] [Green Version]
- Paolucci, T.; Morone, G.; Di Cesare, A.; Grasso, M.R.; Fusco, A.; Paolucci, S.; Saraceni, V.M.; Iosa, M. Effect of Chêneau brace on postural balance in adolescent idiopathic scoliosis: A pilot study. Eur. J. Phys. Rehabil. Med. 2013, 49, 649–657. [Google Scholar]
- Weiss, H.R. Rehabilitation of adolescent patients with scoliosis—What do we know? A review of the literature. Pediatr. Rehabil. 2003, 6, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Weiss, H.R. Die konservative Behandlung der idiopathischen Skoliose durch Krankengymnastik und Orthesen [Conservative treatment of idiopathic scoliosis with physical therapy and orthoses]. Orthopade 2003, 32, 146–156. (In German) [Google Scholar] [CrossRef] [PubMed]
- Wu, K.W.; Wang, T.M.; Hu, C.C.; Hong, S.W.; Lee, P.A.; Lu, T.W. Postural adjustments in adolescent idiopathic thoracic scoliosis during walking. Gait Posture 2019, 68, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Nishida, M.; Nagura, T.; Fujita, N.; Hosogane, N.; Tsuji, T.; Nakamura, M.; Matsumoto, M.; Watanabe, K. Position of the major curve influences asymmetrical trunk kinematics during gait in adolescent idiopathic scoliosis. Gait Posture 2017, 51, 142–148. [Google Scholar] [CrossRef] [PubMed]
Training | Description of the Exercises | Execution of the Specific Exercises |
---|---|---|
Training with axial growth exercises and spinal self-correction (frontal and sagittal planes) | Axial growth with breathing Spinal self-correction | Sitting, with feet and knees apart and aligned forward with hands pushing the legs for axial trunk growth with scoliotic curvature correction associated with inspiration. Sitting, with feet and knees apart and aligned forward, with one hand on the back of the head and the other contralateral to the thoracic curve, pushing the leg for axial growth of the trunk associated with respiratory expansion to correct the convexity of the curvature. Sitting, with feet and knees apart and aligned forward, with symmetrical upper limbs with a stick followed by a resistive elastic band associated with breathing to correct the scoliotic curvature. |
Intensity Parameters | Frequency | 2 sessions/monthly |
Repetition | 10 maintaining three respiratory cycles | |
Duration Rest | 3 to 5 min 30 s every 5 reps | |
Progression Parameters | Symptoms | No pain or muscle fatigue |
Training | Description of the Exercises | Execution of the Specific Exercises |
---|---|---|
Training of rotation, stabilization, mobilization, and stretching exercises | Rotation with stabilization Rotation with decompression Rotation with mobilization and strength resistance | Sitting, with feet and knees apart and aligned forward, hands on the stick (vertical, diagonal, and horizontal direction) supported on the concave side of the scoliotic curve, and keeping the elbows perpendicular to the stick, perform correction of the curvature in the sagittal plane associated with breathing of chest expansion with trunk rotation to the concave side of the curvature. Sitting, with feet and knees apart and aligned forward, hand up with shoulder abducted 180 degrees from the concave side of the thoracic curve to decompress, and the other hand pushing the thigh for axial growth of the body, perform sagittal plane rotation correction associated with chest expansion breathing with trunk rotation to the concave side of the curvature. Sitting, with feet and knees apart and aligned forward, hand on the vertical stick on the concave side of the scoliotic curvature and the other hand holding the open door handle, and keeping the elbow perpendicular to the floor, perform rotation correction in the sagittal plane associated with chest expansion breathing with trunk rotation to the concave side of the curvature. Standing, with the feet facing forward, the lower limb on the concave side of the scholtic curvature in front in hip flexion, and the foot holding the end of the elastic band, and hands holding the other end of the elastic band with the elbows high, perform rotation correction in the sagittal plane associated with chest expansion breathing with trunk rotation to the concave side of the curvature. |
Intensity Parameters | Frequency | 2 sessions/monthly |
Repetition | 10 maintaining three respiratory cycles | |
Duration Rest | 3 to 5 min 30 s every 5 reps | |
Progression Parameters | Symptoms | No Pain or Muscle Fatigue |
Training | Description of the Exercises | Execution of the Exercises |
---|---|---|
Motor coordination training: dual task, functionality and balance | Coordination with lower limb forward and feet on the floor in static posture Coordination with the front and back lower limb simulating dynamic gait with or without footrests on proprioceptive disc | Standing, with hands and forearms resting on the door frame and shoulders in 110° of abduction, the lower limb on the convex side of the scoliotic curve forward with the knee in flexion, and the lower limb on the concave side of the curve backward with the knee in extension, perform rotation correction with maintenance of curvature in the sagittal plane associated with breathing (thoracic expansion). Standing, with hands resting on the waist and open elbows, feet parallel and aligned forward, and lower limb forward on the convex side of the scoliotic curvature, perform rotation correction and maintenance of curvature in the sagittal plane. Next, perform a step forward of the lower limb on the convex side of the curvature, with the knee in flexion and feet on the floor progressing to the proprioceptive disc, and the contralateral (concave side of the curve) backwards, with the knee in extension. Then, perform rotation correction with maintenance of curvature in the sagittal plane associated with breathing (thoracic expansion). |
Intensity Parameters | Frequency | 2 sessions/monthly |
Repetition | 10 maintaining three respiratory cycles | |
Duration Rest | 3 to 5 min 30 s every 5 reps | |
Progression Parameters | Symptoms | Completed repetitions with cyclic respiratory parameters |
Characteristics Anthropometric | T0 Baseline | T1 Immediate Brace (Short Term) | T6 Brace and Exercise (Long Term) | p |
---|---|---|---|---|
Age (years) | 13.2 ± 1.6 | 13.4 ± 1.6 | 13.6 ± 1.7 | 0.687 |
Stature (m) | 1.5 ± 0.1 | 1.5 ± 0.2 | 1.5 ± 0.2 | 0.339 |
Body mass (kg) | 49.2 ± 8.0 | 49.1 ± 8.0 | 50.2 ± 8.8 | 0.858 |
Body Mass Index BMI (kg/cm2) | 16.5 ± 4.5 | 16.4 ± 3.5 | 15.8 ± 2.6 | 0.840 |
Risser (sign) | 2.0 ± 1.7 | 2.0 ± 1.7 | 2.0 ± 1.4 | 0.735 |
Radiographic Parameters | T0 Baseline | T1 Brace (Short Term) | T6 Brace with Exercise (Long Term) | d (1–2) | d (1–3) | p |
---|---|---|---|---|---|---|
Cobb angle (main curvature, degrees) | 40.3 ± 5.0 | 28.3 ± 7.1 | 35.1 ± 8.8 | 1.30 | 0.62 | <0.001 *,# |
Thoracic Kyphosis Angle (degrees) | 34.2 ± 13.9 | 27.9 ± 10.8 | 29.7 ± 13.5 | 0.50 | 0.98 | 0.042 *,# |
Lumbar lordosis angle (degrees) | 32.1 ± 13.5 | 22.6 ± 7.0 | 24.9 ± 14.6 | 0.88 | 0.51 | 0.025 *,# |
Plantar Pressure during Gait | Regions of the Feet | T0 Baseline | T1 Brace (Short Term) | T6 Brace with Exercise (Long Term) | d (1–2) | d (1–3) | p |
---|---|---|---|---|---|---|---|
Contact Area (cm2) | Forefoot | 11.6 ± 5.0 | 9.7 ± 3.2 | 8.1 ± 1.4 | 0.10 | 0.10 | 0.003 *,# |
Midfoot | 9.5 ± 6.7 | 11.2 ± 5.4 | 8.8 ± 5.6 | 0.23 | 0.20 | 0.393 | |
Medial Rearfoot | 16.5 ± 3.6 | 15.4 ± 3.2 | 15.5 ± 3.1 | 0.10 | 0.10 | 0.316 | |
Lateral Rearfoot | 16.8 ± 3.4 | 15.6 ± 3.2 | 15.7 ± 3.3 | 0.29 | 0.30 | 0.296 | |
Peak Pressure (KPa) | Forefoot | 245.6 ± 41.7 | 237.8 ± 45.2 | 237.3 ± 46.5 | 0.17 | 0.18 | 0.001 *,# |
Midfoot | 82.8 ± 5.3 | 74.8 ± 6.5 | 77.3 ± 4.5 | 1.30 | 1.18 | 0.025 *,# | |
Medial Rearfoot | 280.5 ± 58.5 | 265.6 ± 65.8 | 271.6 ± 48.1 | 0.23 | 0.16 | 0.001 *,# | |
Lateral Rearfoot | 268.5 ± 53.3 | 255.8 ± 65.8 | 256.8 ± 45.0 | 0.21 | 0.23 | 0.001 *,# | |
Maximum force (N/kg) | Forefoot | 10.8 ± 3.0 | 9.2 ± 2.4 | 9.8 ± 2.8 | 0.58 | 0.34 | 0.045 *,# |
Midfoot | 4.8 ± 2.8 | 4.7 ± 2.6 | 4.6 ± 2.9 | 0.11 | 0.10 | 0.470 | |
Medial Rearfoot | 23.6 ± 9.7 | 20.8 ± 6.3 | 20.9 ± 7.1 | 0.34 | 0.31 | 0.045 *,# | |
Lateral Rearfoot | 21.1 ± 7.9 | 19.3 ± 5.8 | 18.8 ± 7.5 | 0.26 | 0.30 | 0.038 *,# |
Static Posture | Regions of the Feet | T0 Baseline | T1 Immediate Brace (Short Term) | T6 Brace and Exercise (Long Term) | d (1–2) | d (1–3) | p |
---|---|---|---|---|---|---|---|
Contact Area (cm2) | Forefoot | 7.4 ± 2.7 | 6.6 ± 2.6 | 6.2 ± 2.6 | 0.30 | 0.45 | 0.143 |
Midfoot | 7.0 ± 2.5 | 7.1 ± 2.6 | 6.4 ± 2.7 | 0.14 | 0.23 | 0.116 | |
Medial Rearfoot | 15.4 ± 2.8 | 16.9 ± 3.6 | 16.7 ± 2.7 | 0.46 | 0.47 | 0.035 * | |
Lateral Rearfoot | 15.7 ± 2.4 | 16.6 ± 3.2 | 16.1 ± 2.6 | 0.31 | 0.16 | 0.047 * | |
Peak Pressure (KPa) | Forefoot | 77.8 ± 47.5 | 66.3 ± 43.0 | 55.5 ± 40.2 | 0.25 | 0.50 | 0.134 |
Midfoot | 37.9 ± 19.1 | 35.6 ± 17.6 | 30.4 ± 12.3 | 0.12 | 0.46 | 0.133 | |
Medial Rearfoot | 174.4 ± 84.9 | 205.8 ± 79.6 | 168.3 ± 78.9 | 0.38 | 0.17 | 0.011 * | |
Lateral Rearfoot | 159.2 ± 76.3 | 185.7 ± 74.7 | 148.0 ± 74.1 | 0.35 | 0.11 | 0.016 * | |
Maximum force (N/kg) | Forefoot | 2.8 ± 0.8 | 2.1 ± 0.9 | 3.3 ± 1.9 | 0.82 | 0.34 | 0.106 |
Midfoot | 2.0 ± 0.6 | 1.4 ± 0.6 | 1.5 ± 0.8 | 1.0 | 0.70 | 0.008 *,# | |
Medial Rearfoot | 11.6 ± 6.3 | 13.2 ± 5.8 | 10.4 ± 5.0 | 0.42 | 0.22 | 0.035 *,# | |
Lateral Rearfoot | 8.8 ± 3.3 | 9.8 ± 4.1 | 7.5 ± 3.9 | 0.53 | 0.20 | 0.001 *,# |
Body Balance Parameters | T0 Baseline | T1 Immediate Brace (Short Term) | T6 Brace and Exercise (Long Term) | d (1–2) | d (1–3) | p |
---|---|---|---|---|---|---|
Body sway to the center of gravity | 230.4 ± 48.8 | 334.0 ± 31.9 | 351.8 ± 29.5 | 2.5 | 3.0 | 0.018 # |
Right foot body sway | 114.1 ± 35.2 | 270.4 ± 39.7 | 316.6 ± 43.8 | 2.4 | 5.0 | 0.048 # |
Left foot body sway | 118.1 ± 48.0 | 137.3 ± 26.8 | 175.7 ± 32.5 | 0.50 | 1.4 | 0.037 # |
Anteroposterior sway | 0.73 ± 0.8 | 0.76 ± 0.2 | 1.58 ± 0.9 | 0.50 | 0.99 | 0.002 *,# |
Mediolateral sway | 2.50 ± 0.2 | 3.78 ± 0.4 | 4.0 ± 0.9 | 3.7 | 2.3 | 0.007 *,# |
Distance (cm) | 389.0 ± 30.4 | 461.1 ± 33.8 | 505.4 ± 31.9 | 2.2 | 3.7 | 0.038 *,# |
Speed (m/sec.) | 0.010 ± 0.1 | 0.020 ± 0.5 | 0.021 ± 0.5 | 0.02 | 0.03 | 0.215 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silveira, G.E.; Andrade, R.M.; Guilhermino, G.G.; Schmidt, A.V.; Neves, L.M.; Ribeiro, A.P. The Effects of Short- and Long-Term Spinal Brace Use with and without Exercise on Spine, Balance, and Gait in Adolescents with Idiopathic Scoliosis. Medicina 2022, 58, 1024. https://doi.org/10.3390/medicina58081024
da Silveira GE, Andrade RM, Guilhermino GG, Schmidt AV, Neves LM, Ribeiro AP. The Effects of Short- and Long-Term Spinal Brace Use with and without Exercise on Spine, Balance, and Gait in Adolescents with Idiopathic Scoliosis. Medicina. 2022; 58(8):1024. https://doi.org/10.3390/medicina58081024
Chicago/Turabian Styleda Silveira, Guilherme Erdmann, Rodrigo Mantelatto Andrade, Gean Gustavo Guilhermino, Ariane Verttú Schmidt, Lucas Melo Neves, and Ana Paula Ribeiro. 2022. "The Effects of Short- and Long-Term Spinal Brace Use with and without Exercise on Spine, Balance, and Gait in Adolescents with Idiopathic Scoliosis" Medicina 58, no. 8: 1024. https://doi.org/10.3390/medicina58081024
APA Styleda Silveira, G. E., Andrade, R. M., Guilhermino, G. G., Schmidt, A. V., Neves, L. M., & Ribeiro, A. P. (2022). The Effects of Short- and Long-Term Spinal Brace Use with and without Exercise on Spine, Balance, and Gait in Adolescents with Idiopathic Scoliosis. Medicina, 58(8), 1024. https://doi.org/10.3390/medicina58081024