Microbiota Assessment of Pediatric Simple and Complex Acute Appendicitis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Aiyoshi, T.; Masumoto, K.; Tanaka, N.; Sasaki, T.; Chiba, F.; Ono, K.; Jimbo, T.; Urita, Y.; Shinkai, T.; Takayasu, H.; et al. Optimal First-Line Antibiotic Treatment for Pediatric Complicated Appendicitis Based on Peritoneal Fluid Culture. Pediatr. Gastroenterol. Hepatol. Nutr. 2021, 24, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, J.; Silver, E.J.; Blumfield, E.; Jan, D.M.; Herold, B.C.; Goldman, D.L. Clinical, Laboratory and Radiographic Features Associated With Prolonged Hospitalization in Children With Complicated Appendicitis. Front. Pediatr. 2022, 10, 828748. [Google Scholar] [CrossRef] [PubMed]
- Schulin, S.; Schlichting, N.; Blod, C.; Opitz, S.; Suttkus, A.; Stingu, C.S.; Barry, K.; Lacher, M.; Bühligen, U.; Mayer, S. The intra- and extraluminal appendiceal microbiome in pediatric patients. Medicine 2017, 96, e9518. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. Clinical Breakpoints and Dosing of Antibiotics. Available online: http://www.eucast.org/clinical_breakpoints/ (accessed on 10 December 2020).
- Abdussemee, A.; Oludolapo, A.; Adeyinka, A.; Olusegun, F. Bacterial Pattern in Acute Appendicitis. Ann. Afr. Surg. 2018, 15, 8–13. [Google Scholar]
- Parthiban, N.; Harish, M. A study on microbiology culture of acute appendicectomy specimen and its correlation with wound infection. Int. Surg. J. 2017, 4, 2212–2215. [Google Scholar] [CrossRef] [Green Version]
- Song, D.W.; Park, B.K.; Suh, S.W.; Seung, E.L.; Jong, W.K.; Joong-Min, P.; Hye, R.K.; Mi-Kyung, L.; Yoo, S.C.; Beom, G.K.; et al. Bacterial culture and antibiotic susceptibility in patients with acute appendicitis. Int. J. Colorectal. Dis. 2018, 33, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Rekomendācijas Antibakteriālo Līdzekļu Lietošanai Ķirurģiskajā Praksē. KS/MET-011-00. Bērnu Klīniskā Universitātes Slimnīca. 2019. Available online: https://www.spkc.gov.lv/lv/media/4147/download (accessed on 29 June 2022).
- Drugbank Online. Ceftazidime. Available online: https://go.drugbank.com/drugs/DB00438 (accessed on 6 June 2022).
- Adámková, V.; Mareković, I.; Szabó, J.; Pojnar, L.; Billová, S.; Horvat Herceg, S.; Kuraieva, A.; Możejko-Pastewka, B. Antimicrobial activity of ceftazidime-avibactam and comparators against Pseudomonas aeruginosa and Enterobacterales collected in Croatia, Czech Republic, Hungary, Poland, Latvia and Lithuania: ATLAS Surveillance Program, 2019. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, J.; Wang, R.; Cai, Y. Resistance to ceftazidime-avibactam and underlying mechanisms. J. Glob. Antimicrob. Resist. 2020, 22, 18–27. [Google Scholar] [CrossRef]
- University of California San Francisco. Pediatric Appendicitis Clinical Algorithm. Available online: https://idmp.ucsf.edu/content/pediatric-appendicitis-clinical-algorithm (accessed on 7 July 2021).
- Pilmis, B.; Jiang, O.; Mizrahi, A.; Nguyen Van, J.; Lourtet-Hascoët, J.; Voisin, O.; Le Lorc’h, E.; Hubert, S.; Ménage, E.; Azria, P.; et al. No significant difference between ceftriaxone and cefotaxime in the emergence of antibiotic resistance in the gut microbiota of hospitalized patients: A pilot study. Int. J. Infect. Dis. 2021, 104, 617–623. [Google Scholar] [CrossRef]
- Drusano, G.L.; Neely, M.N.; Yamada, W.M.; Duncanson, B.; Brown, D.; Maynard, M.; Vicchiarelli, M.; Louie, A. The combination of fosfomycin plus meropenem is synergistic for Pseudomonas aeruginosa PAO1 in a hollow-fiber infection model. Antimicrob. Agents Chemother. 2018, 62, e01682-18. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Bakker, R.T.; van Hest, R.M.; Hodiamont, C.J.; Brul, S.; Schultsz, C.; ter Kuile, B.H. Optimization of therapy against Pseudomonas aeruginosa with ceftazidime and meropenem using chemostats as model for infections. FEMS Microbiol. Lett. 2017, 364, fnx142. [Google Scholar] [CrossRef] [PubMed]
- Gracia, J.; Gruenberg, K.; Nguyen, L.; MacDougall, C. Multidrug-Resistant Pseudomonas aeruginosa Infections: Hard to Treat, But Hope on the Horizon? Contag. Live—Infect. Dis. Today 2018, 3, 9–11. Available online: https://cdn.sanity.io/files/0vv8moc6/contagion/425a39bc4de8063101549f601e679fca9486728a.pdf/Contagion_0218_3.pdf (accessed on 29 June 2022).
- National Center for Biotechnology Information. PubChem Database. Avibactam, CID=9835049. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Avibactam (accessed on 10 December 2019).
- Qin, X.; Tran, B.G.; Kim, M.J.; Wang, L.; Nguyen, D.A.; Chen, Q.; Song, J.; Laud, P.J.; Stone, G.G.; Chow, J.W. A randomised, double-blind, phase 3 study comparing the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem for complicated intra-abdominal infections in hospitalised adults in Asia. Int. J. Antimicrob. Agents 2017, 49, 579–588. [Google Scholar] [CrossRef]
- Xipell, M.; Bodro, M.; Marco, F.; Losno, R.A.; Cardozo, C.; Soriano, A. Clinical experience with ceftazidime/avibactam in patients with severe infections, including meningitis and lung abscesses, caused by extensively drug-resistant Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2017, 49, 266–268. [Google Scholar] [CrossRef]
- Fournier, D.; Carrière, R.; Bour, M.; Grisot, E.; Triponney, P.; Muller, C.; Lemoine, J.; Jeannot, K.; Plésiat, P.; the GERPA Study Group. Mechanisms of resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa: Resultsof the GERPA multicenter study. Antimicrob. Agents Chemother. 2021, 65, e01117-20. [Google Scholar] [CrossRef] [PubMed]
- Medscape. Piperacillin/Tazobactam (Rx). Available online: https://reference.medscape.com/drug/zosyn-piperacillin-tazobactam-342485#10 (accessed on 7 July 2021).
- Kwok, C.P.D.; Tsui, S.Y.B.; Chan, K.W.E. Updates on bacterial resistance and empirical antibiotics treatment of complicated acute appendicitis in children. J. Pediatr. Surg. 2021, 56, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, R.; Eaton, S.; Stanton, M.P.; Pierro, A.; Hall, N.J. Efficacy and Safety of Nonoperative Treatment for Acute Appendicitis: A Meta-analysis. Pediatrics 2017, 139, e20163003. [Google Scholar] [CrossRef] [Green Version]
- National Center for Biotechnology Information. PubChem Database. Amikacin, CID=37768. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Amikacin (accessed on 12 December 2019).
- Loho, T.; Sukartini, N.; Astrawinata, D.A.W.; Immanuel, S.; Aulia, D.; Priatni, I. In Vitro Antibacterial Interaction of Doripenem and Amikacin against Multidrug-Resistant Acinetobacter Baumannii, Pseudomonas Aeruginosa, and Klebsiella Pneumoniae Isolates. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 1047670. [Google Scholar] [CrossRef] [Green Version]
- Essenmacher, A.C.; Nash, E.; Walker, S.K.; Pitcher, G.J.; Buresh, C.T.; Sato, T.S. Stump Appendicitis. Clin. Pract. Cases Emerg. Med. 2018, 2, 211–214. [Google Scholar] [CrossRef]
- Snyder, M.J.; Guthrie, M.; Cagle, S. Acute Appendicitis: Efficient Diagnosis and Management. Am. Fam. Physician 2018, 98, 25–33. [Google Scholar]
- Bazzaz, A.; Lor, D.; Mahdi, N. Impact of Some Antibiotics on Bacteria Isolated from Appendices in Kirkuk Province, Iraq. Adv. Biosci. Biotechnol. 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rickard, J. Antibiotic Use and Antimicrobial Resistance of Surgical Patients with Peritonitis at a Tertiary Referral Hospital in Rwanda. Surg. Infect. 2018, 19, 382–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turel, O.; Mirapoglu, S.Y.; Yuksel, M.; Ceylan, A.; Gultepe, B.S. Perforated appendicitis in children: Antimicrobial susceptibility and antimicrobial stewardship. J. Glob. Antimicrob. Resist. 2018, 16, 159–161. [Google Scholar] [CrossRef]
- Mazuski, J.E.; Tessier, J.M.; May, A.K.; Sawyer, R.G.; Nadler, E.P.; Rosengart, M.R.; Chang, P.K.; O’Neill, P.J.; Mollen, K.P.; Huston, J.M.; et al. The Surgical Infection Society Revised Guidelines on the Management of Intra-Abdominal Infection. Surg. Infect. 2017, 18, 1–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, N.; Jansone, I.; Obidenova, T.; Simanis, R.; Meisters, J.; Straupmane, D.; Reinis, A. Antimicrobial Resistance in Nosocomial Isolates of Gram-Negative Bacteria: Public Health Implications in the Latvian Context. Antibiotics 2021, 10, 791. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. Expected Resistant and Susceptible Phenotypes. Available online: https://www.eucast.org/expert_rules_and_expected_phenotypes/expected_phenotypes/ (accessed on 23 May 2022).
- Terentjeva, M.; Streikiša, M.; Avsejenko, J.; Trofimova, J.; Kovaļenko, K.; Elferts, D.; Bērziņš, A. Prevalence and Antimicrobial Resistance of Escherichia coli, Enterococcus spp. and the Major Foodborne Pathogens in Calves in Latvia. Foodborne Pathog. Dis. 2019, 16, 35–41. [Google Scholar] [CrossRef]
AcA | AsA | Total | p-Value | |
---|---|---|---|---|
Children, n (%) | 49 (52.7) | 44 (47.3) | 93 | 0.269 |
Age, median (IQR) | 12 (9–14) | 13 (10–15) | - | 0.194 |
Laboratory values, median (IQR) | ||||
WBC count (×109/L), | 17.01 (13.75–20.25) | 14.79 (13.20–16.76) | - | 0.019 |
CRP (g/L), | 25.93 (4.50–89.68) | 15.82 (2.86–39.29) | - | 0.201 |
Neu | 84.50 (80.93–87.00) | 80.80 (73.90–84.80) | 0.012 | |
Alvarado Score, points, median (IQR) | 8 (7–9) | 7 (6–9) | - | 0.098 |
Type of surgery, n (%) | ||||
Laparotomy | 7 (63.6) | 4 (36.4) | 11 | |
Laparoscopy | 42 (51.2) | 40 (48.8) | 82 | 0.439 |
Drainage tube, n (%) | 30 (76.9) | 9 (23.1) | 39 | <0.001 |
Length of hospital stay, days, median (IQR) | 6 (4–9) | 5 (4–6) | - | 0.002 |
Bacteria | AcA 49 Patients | AsA 44 Patients | Total 93 Patients | ||||
---|---|---|---|---|---|---|---|
No. of Patients with Respective Bacteria | % of Patients with Respective Bacteria | No. of Patients with Respective Bacteria | % of Patients with Respective Bacteria | No. of Patients with Respective Bacteria | % of Patients with Respective Bacteria | p-Value | |
E. coli | 43 | 82.7 | 36 | 80.0 | 79 | 81.4 | 0.424 # |
P. aeruginosa | 15 | 28.8 | 5 | 11.4 | 20 | 21.6 | 0.024 # |
S. paucimobilis | 8 | 15.4 | 1 | 2.2 | 9 | 9.3 | 0.033 * |
K. pneumoniae | 3 | 5.8 | 4 | 8.9 | 7 | 7.2 | 0.704 * |
B. fragilis | 2 | 3.8 | 3 | 6.7 | 5 | 5.2 | 0.655 * |
C. braakii | 0 | 0 | 3 | 6.7 | 3 | 3.1 | 0.102 * |
E. coli n, % | P. aeruginosa n, % | Klebsiella n, % | Citrobacter n, % | |||||
---|---|---|---|---|---|---|---|---|
R | S | R | S | R | S | R | S | |
CAZ | 5 | 54 | 5 | 14 | 1 | 8 | 5 | |
8.5 | 91.5 | 26.3 | 73.7 | 11.1 | 88.9 | 100.0 | ||
AMP | 32 | 27 | 15 | 4 | 7 | 2 | 5 | |
54.2 | 45.8 | 78.9 | 21.1 | 77.8 | 22.2 | 100.0 | ||
CTX | 6 | 53 | 12 | 7 | 9 | 5 | ||
10.2 | 89.8 | 63.2 | 36.8 | 100.0 | 100.0 | |||
MRP | 59 | 19 | 1 | 8 | 5 | |||
100.0 | 100.0 | 11.1 | 88.9 | 100.0 | ||||
IMI | 6 | 53 | 7 | 12 | 1 | 8 | 5 | |
10.2 | 89.8 | 36.8 | 63.2 | 11.1 | 88.9 | 100.0 | ||
AK | 59 | 19 | 9 | 5 | ||||
100.0 | 100.0 | 100.0 | 100.0 | |||||
CN | 1 | 58 | 19 | 9 | 5 | |||
1.7 | 98.3 | 100.0 | 100.0 | 100.0 | ||||
CIP | 8 | 51 | 2 | 17 | 1 | 8 | 5 | |
13.6 | 86.4 | 10.5 | 89.5 | 11.1 | 88.9 | 100.0 | ||
C | 6 | 53 | 10 | 9 | 9 | 5 | ||
10.2 | 89.8 | 52.6 | 47.4 | 100.0 | 100.0 | |||
ETP | 2 | 57 | 12 | 7 | 1 | 8 | 5 | |
3.4 | 96.6 | 63.2 | 36.8 | 11.1 | 88.9 | 100.0 | ||
AUG | 18 | 41 | 16 | 3 | 2 | 7 | 5 | |
30.5 | 69.5 | 84.2 | 15.8 | 22.2 | 77.8 | 100.0 | ||
TZP | 1 | 58 | 2 | 17 | 1 | 8 | 5 | |
1.7 | 98.3 | 10.5 | 89.5 | 11.1 | 88.9 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakar, M.; Reinis, A.; Kroica, J.; Engelis, A.; Broks, R.; Asare, L.; Vermeulen, M.; Senica, S.O.; Saxena, A.; Petersons, A. Microbiota Assessment of Pediatric Simple and Complex Acute Appendicitis. Medicina 2022, 58, 1144. https://doi.org/10.3390/medicina58091144
Kakar M, Reinis A, Kroica J, Engelis A, Broks R, Asare L, Vermeulen M, Senica SO, Saxena A, Petersons A. Microbiota Assessment of Pediatric Simple and Complex Acute Appendicitis. Medicina. 2022; 58(9):1144. https://doi.org/10.3390/medicina58091144
Chicago/Turabian StyleKakar, Mohit, Aigars Reinis, Juta Kroica, Arnis Engelis, Renars Broks, Lasma Asare, Marelize Vermeulen, Simone Oliver Senica, Amulya Saxena, and Aigars Petersons. 2022. "Microbiota Assessment of Pediatric Simple and Complex Acute Appendicitis" Medicina 58, no. 9: 1144. https://doi.org/10.3390/medicina58091144
APA StyleKakar, M., Reinis, A., Kroica, J., Engelis, A., Broks, R., Asare, L., Vermeulen, M., Senica, S. O., Saxena, A., & Petersons, A. (2022). Microbiota Assessment of Pediatric Simple and Complex Acute Appendicitis. Medicina, 58(9), 1144. https://doi.org/10.3390/medicina58091144