What Is Different in Acute Hematologic Malignancy-Associated ARDS? An Overview of the Literature
Abstract
:1. Introduction
2. Data Collection
3. ARDS in Acute Hematologic Malignancy-Specific Causes
3.1. Pneumonia-Associated ARDS
3.2. Leukostasis, Leukemic Infiltration of the Lung, Pulmonary Lysis Syndrome
3.3. Drug-Induced ARDS
3.4. Radiotherapy-Induced ARDS
3.5. Hematopoietic Stem Cell Transplantation-Related ARDS
3.6. TRALI in Patients with Acute Hematologic Malignancy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Smith, A.; Crouch, S.; Oliver, S.; Roman, E. Estimating the Prevalence of Hematological Malignancies and Precursor Conditions Using Data from Haematological Malignancy Research Network (HMRN). Cancer Causes Control 2016, 27, 1019–1026. [Google Scholar] [CrossRef]
- Vadde, R.; Pastores, S.M. Management of Acute Respiratory Failure in Patients with Hematological Malignancy. J. Intensive Care Med. 2016, 31, 627–641. [Google Scholar] [CrossRef] [PubMed]
- Keykhaei, M.; Masinaei, M.; Mohammadi, E.; Azadnajafabad, S.; Rezaei, N.; Saeedi Moghaddam, S.; Rezaei, N.; Nasserinejad, M.; Abbasi-Kangevari, M.; Malekpour, M.-R.; et al. A Global, Regional, and National Survey on Burden and Quality of Care Index (QCI) of Hematologic Malignancies; Global Burden of Disease Systematic Analysis 1990–2017. Exp. Hematol. Oncol. 2021, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Shukry, S.; Hariri, F.; Al-Nehmi, A.W. Target Therapy in Hematological Malignancies. In Advances in Hematologic Malignancies; Hamid, G.A., Ed.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Wiernik, P.H. Treatment of Hematologic Neoplasms with New Immunomodulatory Drugs (IMiDs). Curr. Treat. Options Oncol. 2009, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.D.; Ng, A.K. Hematologic Malignancies. Hematol. Oncol. Clin. N. Am. 2020, 34, 127–142. [Google Scholar] [CrossRef]
- Fanelli, V.; Vlachou, A.; Ghannadian, S.; Simonetti, U.; Slutsky, A.S.; Zhang, H. Acute Respiratory Distress Syndrome: New Definition, Current and Future Therapeutic Options. J. Thorac. Dis. 2013, 5, 326–334. [Google Scholar] [CrossRef]
- Meyer, N.J.; Gattinoni, L.; Calfee, C.S. Acute Respiratory Distress Syndrome. Lancet 2021, 398, 622–637. [Google Scholar] [CrossRef]
- Marini, J.J.; Crooke, P.S.; Tawfik, P.; Chatburn, R.L.; Dries, D.J.; Gattinoni, L. Intracycle Power and Ventilation Mode as Potential Contributors to Ventilator-Induced Lung Injury. Intensive Care Med. Exp. 2021, 9, 55. [Google Scholar] [CrossRef]
- Gattinoni, L.; Tonetti, T.; Cressoni, M.; Cadringher, P.; Herrmann, P.; Moerer, O.; Protti, A.; Gotti, M.; Chiurazzi, C.; Carlesso, E.; et al. Ventilator-Related Causes of Lung Injury: The Mechanical Power. Intensive Care Med. 2016, 42, 1567–1575. [Google Scholar] [CrossRef]
- Ball, L.; Serpa Neto, A.; Trifiletti, V.; Mandelli, M.; Firpo, I.; Robba, C.; Gama de Abreu, M.; Schultz, M.J.; Patroniti, N.; Rocco, P.R.M.; et al. Effects of Higher PEEP and Recruitment Manoeuvres on Mortality in Patients with ARDS: A Systematic Review, Meta-Analysis, Meta-Regression and Trial Sequential Analysis of Randomized Controlled Trials. Intensive Care Med. Exp. 2020, 8, 39. [Google Scholar] [CrossRef]
- Guo, L.; Xie, J.; Huang, Y.; Pan, C.; Yang, Y.; Qiu, H.; Liu, L. Higher PEEP Improves Outcomes in ARDS Patients with Clinically Objective Positive Oxygenation Response to PEEP: A Systematic Review and Meta-Analysis. BMC Anesthesiol. 2018, 18, 172. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Kang, H.; Qian, Z.; Wang, Y.; Tong, Z. Effect of Different Levels of PEEP on Mortality in ICU Patients without Acute Respiratory Distress Syndrome: Systematic Review and Meta-Analysis with Trial Sequential Analysis. J. Crit. Care 2021, 65, 246–258. [Google Scholar] [CrossRef]
- Mancebo, J.; Fernández, R.; Blanch, L.; Rialp, G.; Gordo, F.; Ferrer, M.; Rodríguez, F.; Garro, P.; Ricart, P.; Vallverdú, I.; et al. A Multicenter Trial of Prolonged Prone Ventilation in Severe Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2006, 173, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Sud, S.; Friedrich, J.O.; Taccone, P.; Polli, F.; Adhikari, N.K.J.; Latini, R.; Pesenti, A.; Guérin, C.; Mancebo, J.; Curley, M.A.Q.; et al. Prone Ventilation Reduces Mortality in Patients with Acute Respiratory Failure and Severe Hypoxemia: Systematic Review and Meta-Analysis. Intensive Care Med. 2010, 36, 585–599. [Google Scholar] [CrossRef] [PubMed]
- Papazian, L.; Forel, J.-M.; Gacouin, A.; Penot-Ragon, C.; Perrin, G.; Loundou, A.; Jaber, S.; Arnal, J.-M.; Perez, D.; Seghboyan, J.-M.; et al. Neuromuscular Blockers in Early Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2010, 363, 1107–1116. [Google Scholar] [CrossRef]
- Duggal, A.; Ganapathy, A.; Ratnapalan, M.; Adhikari, N. Pharmacological Treatments for Acute Respiratory Distress Syndrome: Systematic Review. Minerva Anestesiol. 2015, 81, 567–588. [Google Scholar]
- Parekh, M.; Abrams, D.; Brodie, D. Extracorporeal Techniques in Acute Respiratory Distress Syndrome. Ann. Transl. Med. 2017, 5, 296. [Google Scholar] [CrossRef]
- Puri, N.; Dellinger, R.P. Inhaled Nitric Oxide and Inhaled Prostacyclin in Acute Respiratory Distress Syndrome: What Is the Evidence? Crit. Care Clin. 2011, 27, 561–587. [Google Scholar] [CrossRef]
- Fanelli, V.; Costamagna, A.; Ranieri, V.M. Chapter 124—Extracorporeal Carbon Dioxide Removal. In Critical Care Nephrology (Third Edition); Ronco, C., Bellomo, R., Kellum, J.A., Ricci, Z., Eds.; Elsevier: Philadelphia, PA, USA, 2019; pp. 755–759.e1. ISBN 978-0-323-44942-7. [Google Scholar]
- Aokage, T.; Palmér, K.; Ichiba, S.; Takeda, S. Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome. J. Intensive Care 2015, 3, 17. [Google Scholar] [CrossRef]
- Spragg, R.G.; Lewis, J.F.; Walmrath, H.-D.; Johannigman, J.; Bellingan, G.; Laterre, P.-F.; Witte, M.C.; Richards, G.A.; Rippin, G.; Rathgeb, F.; et al. Effect of Recombinant Surfactant Protein C-Based Surfactant on the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2004, 351, 884–892. [Google Scholar] [CrossRef]
- Spragg, R.G.; Taut, F.J.H.; Lewis, J.F.; Schenk, P.; Ruppert, C.; Dean, N.; Krell, K.; Karabinis, A.; Günther, A. Recombinant Surfactant Protein C-Based Surfactant for Patients with Severe Direct Lung Injury. Am. J. Respir. Crit. Care Med. 2011, 183, 1055–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinberg, K.P.; Hudson, L.D.; Goodman, R.B.; Hough, C.L.; Lanken, P.N.; Hyzy, R.; Thompson, B.T.; Ancukiewicz, M. Efficacy and Safety of Corticosteroids for Persistent Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2006, 354, 1671–1684. [Google Scholar] [CrossRef] [PubMed]
- Matthay, M.A.; Arabi, Y.M.; Siegel, E.R.; Ware, L.B.; Bos, L.D.J.; Sinha, P.; Beitler, J.R.; Wick, K.D.; Curley, M.A.Q.; Constantin, J.-M.; et al. Phenotypes and Personalized Medicine in the Acute Respiratory Distress Syndrome. Intensive Care Med. 2020, 46, 2136–2152. [Google Scholar] [CrossRef]
- Sinha, P.; Calfee, C.S. Phenotypes in Acute Respiratory Distress Syndrome: Moving towards Precision Medicine. Curr. Opin. Crit. Care 2019, 25, 12–20. [Google Scholar] [CrossRef]
- Wick, K.D.; McAuley, D.F.; Levitt, J.E.; Beitler, J.R.; Annane, D.; Riviello, E.D.; Calfee, C.S.; Matthay, M.A. Promises and Challenges of Personalized Medicine to Guide ARDS Therapy. Crit. Care 2021, 25, 404. [Google Scholar] [CrossRef]
- Binnie, A.; Tsang, J.L.Y.; dos Santos, C.C. Biomarkers in Acute Respiratory Distress Syndrome. Curr. Opin. Crit. Care 2014, 20, 47–55. [Google Scholar] [CrossRef]
- Famous, K.R.; Delucchi, K.; Ware, L.B.; Kangelaris, K.N.; Liu, K.D.; Thompson, B.T.; Calfee, C.S. Acute Respiratory Distress Syndrome Subphenotypes Respond Differently to Randomized Fluid Management Strategy. Am. J. Respir. Crit. Care Med. 2017, 195, 331–338. [Google Scholar] [CrossRef]
- Heijnen, N.F.L.; Bergmans, D.C.J.J.; Schnabel, R.M.; Bos, L.D.J. Targeted Treatment of Acute Respiratory Distress Syndrome with Statins-a Commentary on Two Phenotype Stratified Re-Analysis of Randomized Controlled Trials. J. Thorac. Dis. 2019, 11, S296–S299. [Google Scholar] [CrossRef]
- Mokart, D.; van Craenenbroeck, T.; Lambert, J.; Textoris, J.; Brun, J.-P.; Sannini, A.; Chow-Chine, L.; Hamouda, S.; Fouché, L.; Ettori, F.; et al. Prognosis of Acute Respiratory Distress Syndrome in Neutropenic Cancer Patients. Eur. Respir. J. 2012, 40, 169–176. [Google Scholar] [CrossRef]
- Azoulay, E.; Lemiale, V.; Mokart, D.; Pène, F.; Kouatchet, A.; Perez, P.; Vincent, F.; Mayaux, J.; Benoit, D.; Bruneel, F.; et al. Acute Respiratory Distress Syndrome in Patients with Malignancies. Intensive Care Med. 2014, 40, 1106–1114. [Google Scholar] [CrossRef]
- Evans, S.E.; Ost, D.E. Pneumonia in the Neutropenic Cancer Patient. Curr. Opin. Pulm. Med. 2015, 21, 260–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Pasquale, M.F.; Sotgiu, G.; Gramegna, A.; Radovanovic, D.; Terraneo, S.; Reyes, L.F.; Rupp, J.; González del Castillo, J.; Blasi, F.; Aliberti, S.; et al. Prevalence and Etiology of Community-Acquired Pneumonia in Immunocompromised Patients. Clin. Infect. Dis. 2019, 68, 1482–1493. [Google Scholar] [CrossRef]
- Al Mana, H.; Yassine, H.M.; Younes, N.N.; Al-Mohannadi, A.; Al-Sadeq, D.W.; Alhababi, D.; Nasser, E.A.; Nasrallah, G.K. The Current Status of Cytomegalovirus (CMV) Prevalence in the MENA Region: A Systematic Review. Pathogens 2019, 8, 213. [Google Scholar] [CrossRef]
- Alonso-Álvarez, S.; Colado, E.; Moro-García, M.A.; Alonso-Arias, R. Cytomegalovirus in Haematological Tumours. Front. Immunol. 2021, 12, 703256. [Google Scholar] [CrossRef]
- Wah, T.M.; Moss, H.A.; Robertson, R.J.H.; Barnard, D.L. Pulmonary Complications Following Bone Marrow Transplantation. BJR 2003, 76, 373–379. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Cunha, D.; Leão-Cordeiro, J.A.B.; de Paula, H.d.C.; Ataides, F.S.; Saddi, V.A.; Vilanova-Costa, C.A.S.T.; Silva, A.M.T.C. Association between Polymorphisms in the Genes Encoding Toll-like Receptors and Dectin-1 and Susceptibility to Invasive Aspergillosis: A Systematic Review. Rev. Soc. Bras. Med. Trop. 2018, 51, 725–730. [Google Scholar] [CrossRef]
- Lupiañez, C.B.; Canet, L.M.; Carvalho, A.; Alcazar-Fuoli, L.; Springer, J.; Lackner, M.; Segura-Catena, J.; Comino, A.; Olmedo, C.; Ríos, R.; et al. Polymorphisms in Host Immunity-Modulating Genes and Risk of Invasive Aspergillosis: Results from the AspBIOmics Consortium. Infect. Immun. 2015, 84, 643–657. [Google Scholar] [CrossRef]
- Romani, L. Immunity to Fungal Infections. Nat. Rev. Immunol. 2011, 11, 275–288. [Google Scholar] [CrossRef]
- Grube, M.; Loeffler, J.; Mezger, M.; Krüger, B.; Echtenacher, B.; Hoffmann, P.; Edinger, M.; Einsele, H.; Andreesen, R.; Holler, E. TLR5 Stop Codon Polymorphism Is Associated with Invasive Aspergillosis after Allogeneic Stem Cell Transplantation. Med. Mycol. 2013, 51, 818–825. [Google Scholar] [CrossRef]
- Zaas, A.K.; Liao, G.; Chien, J.W.; Weinberg, C.; Shore, D.; Giles, S.S.; Marr, K.A.; Usuka, J.; Burch, L.H.; Perera, L.; et al. Plasminogen Alleles Influence Susceptibility to Invasive Aspergillosis. PLoS Genet. 2008, 4, e1000101. [Google Scholar] [CrossRef]
- Smith, N.L.D.; Hankinson, J.; Simpson, A.; Denning, D.W.; Bowyer, P. Reduced Expression of TLR3, TLR10 and TREM1 by Human Macrophages in Chronic Cavitary Pulmonary Aspergillosis, and Novel Associations of VEGFA, DENND1B and PLAT. Clin. Microbiol Infect. 2014, 20, O960–O968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Ami, R.; Lewis, R.E.; Leventakos, K.; Kontoyiannis, D.P. Aspergillus Fumigatus Inhibits Angiogenesis through the Production of Gliotoxin and Other Secondary Metabolites. Blood 2009, 114, 5393–5399. [Google Scholar] [CrossRef]
- Jiang, P.; Yue, Y.-X.; Hong, Y.; Xie, Y.; Gao, X.; Gu, C.-K.; Hao, H.-J.; Qin, Y.; Ding, X.-J.; Song, M.; et al. IL-4Rα Polymorphism Is Associated With Myasthenia Gravis in Chinese Han Population. Front. Neurol. 2018, 9, 529. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Kim, T.H.; Kang, S.W.; Kim, Y.H.; Kim, S.K.; Chung, J.-H.; Kim, Y.G.; Moon, J.Y.; Lee, S.H.; Ihm, C.G.; et al. Association Interleukin-4 and Interleukin-4 Receptor Gene Polymorphism and Acute Rejection and Graft Dysfunction After Kidney Transplantation. Transplant Proc. 2016, 48, 813–819. [Google Scholar] [CrossRef]
- Cunha, C.; Rodrigues, F.; Zelante, T.; Aversa, F.; Romani, L.; Carvalho, A. Genetic Susceptibility to Aspergillosis in Allogeneic Stem-Cell Transplantation. Med. Mycol. 2011, 49 (Suppl. 1), S137–S143. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Malacco, N.L.S.; Rachid, M.A.; da Silva Gurgel, I.L.; Moura, T.R.; Sucupira, P.H.F.; de Sousa, L.P.; de Souza, D.d.G.; de Castro Russo, M.; Teixeira, M.M.; Soriani, F.M. Eosinophil-Associated Innate IL-17 Response Promotes Aspergillus Fumigatus Lung Pathology. Front. Cell Infect. Microbiol. 2018, 8, 453. [Google Scholar] [CrossRef]
- de Boer, M.G.J.; Jolink, H.; Halkes, C.J.M.; van der Heiden, P.L.J.; Kremer, D.; Falkenburg, J.H.F.; van de Vosse, E.; van Dissel, J.T. Influence of Polymorphisms in Innate Immunity Genes on Susceptibility to Invasive Aspergillosis after Stem Cell Transplantation. PLoS ONE 2011, 6, e18403. [Google Scholar] [CrossRef]
- Chang, D.; Chang, X.; He, Y.; Tan, K.J.K. The Determinants of COVID-19 Morbidity and Mortality across Countries. Sci. Rep. 2022, 12, 5888. [Google Scholar] [CrossRef]
- He, W.; Chen, L.; Chen, L.; Yuan, G.; Fang, Y.; Chen, W.; Wu, D.; Liang, B.; Lu, X.; Ma, Y.; et al. COVID-19 in Persons with Haematological Cancers. Leukemia 2020, 34, 1637–1645. [Google Scholar] [CrossRef]
- Hu, B.; Huang, S.; Yin, L. The Cytokine Storm and COVID-19. J. Med. Virol. 2021, 93, 250–256. [Google Scholar] [CrossRef]
- Suárez-García, I.; Perales-Fraile, I.; González-García, A.; Muñoz-Blanco, A.; Manzano, L.; Fabregate, M.; Díez-Manglano, J.; Aizpuru, E.F.; Fernández, F.A.; García, A.G.; et al. In-Hospital Mortality among Immunosuppressed Patients with COVID-19: Analysis from a National Cohort in Spain. PLoS ONE 2021, 16, e0255524. [Google Scholar] [CrossRef] [PubMed]
- Modemann, F.; Niederwieser, C.; Weisel, K.; Bokemeyer, C.; Fiedler, W.; Ghandili, S. COVID-19 and Seasonal Influenza: A Comparative Analysis in Patients with Hematological Malignancies. Leuk. Lymphoma 2022, 63, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Blennow, O.; Ljungman, P. The Challenge of Antibiotic Resistance in Haematology Patients. Br. J. Haematol. 2016, 172, 497–511. [Google Scholar] [CrossRef]
- Aguilar-Guisado, M.; Espigado, I.; Martín-Peña, A.; Gudiol, C.; Royo-Cebrecos, C.; Falantes, J.; Vázquez-López, L.; Montero, M.I.; Rosso-Fernández, C.; de la Luz Martino, M.; et al. Optimisation of Empirical Antimicrobial Therapy in Patients with Haematological Malignancies and Febrile Neutropenia (How Long Study): An Open-Label, Randomised, Controlled Phase 4 Trial. Lancet Haematol. 2017, 4, e573–e583. [Google Scholar] [CrossRef]
- Ganapathi, L.; Arnold, A.; Jones, S.; Patterson, A.; Graham, D.; Harper, M.; Levy, O. Use of Cidofovir in Pediatric Patients with Adenovirus Infection. F1000 Research 2016, 5, 758. [Google Scholar] [CrossRef]
- Cordonnier, C.; Pautas, C.; Maury, S.; Vekhoff, A.; Farhat, H.; Suarez, F.; Dhédin, N.; Isnard, F.; Ades, L.; Kuhnowski, F.; et al. Empirical versus Preemptive Antifungal Therapy for High-Risk, Febrile, Neutropenic Patients: A Randomized, Controlled Trial. Clin. Infect. Dis. 2009, 48, 1042–1051. [Google Scholar] [CrossRef]
- She, W.H.; Chok, K.S.H.; Li, I.W.S.; Ma, K.W.; Sin, S.L.; Dai, W.C.; Fung, J.Y.Y.; Lo, C.M. Pneumocystis Jirovecii-Related Spontaneous Pneumothorax, Pneumomediastinum and Subcutaneous Emphysema in a Liver Transplant Recipient: A Case Report. BMC Infect. Dis. 2019, 19, 66. [Google Scholar] [CrossRef] [PubMed]
- Roux, A.; Gonzalez, F.; Roux, M.; Mehrad, M.; Menotti, J.; Zahar, J.-R.; Tadros, V.-X.; Azoulay, E.; Brillet, P.-Y.; Vincent, F. Update on Pulmonary Pneumocystis Jirovecii Infection in Non-HIV Patients. Med. Mal. Infect. 2014, 44, 185–198. [Google Scholar] [CrossRef]
- Vincent, F. Leukostasis, Infiltration and Pulmonary Lysis Syndrome Are the Three Patterns of Leukemic Pulmonary Infiltrates. In Pulmonary Involvement in Patients with Hematological Malignancies; Azoulay, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 509–520. ISBN 978-3-642-15742-4. [Google Scholar]
- Azoulay, É.; Canet, E.; Raffoux, E.; Lengliné, E.; Lemiale, V.; Vincent, F.; de Labarthe, A.; Seguin, A.; Boissel, N.; Dombret, H.; et al. Dexamethasone in Patients with Acute Lung Injury from Acute Monocytic Leukaemia. Eur. Respir. J. 2012, 39, 648–653. [Google Scholar] [CrossRef]
- Choi, M.H.; Jung, J.I.; Chung, W.D.; Kim, Y.-J.; Lee, S.-E.; Han, D.H.; Ahn, M.I.; Park, S.H. Acute Pulmonary Complications in Patients with Hematologic Malignancies. Radiographics 2014, 34, 1755–1768. [Google Scholar] [CrossRef]
- Stefanski, M.; Jamis-Dow, C.; Bayerl, M.; Desai, R.J.; Claxton, D.F.; Van de Louw, A. Chest Radiographic and CT Findings in Hyperleukocytic Acute Myeloid Leukemia: A Retrospective Cohort Study of 73 Patients. Medicine 2016, 95, e5285. [Google Scholar] [CrossRef]
- Bewersdorf, J.P.; Zeidan, A.M. Hyperleukocytosis and Leukostasis in Acute Myeloid Leukemia: Can a Better Understanding of the Underlying Molecular Pathophysiology Lead to Novel Treatments? Cells 2020, 9, 2310. [Google Scholar] [CrossRef] [PubMed]
- Fayed, M.; Evans, T.; Abdulhaq, H. Leukemic Infiltration in the Settings of Acute Respiratory Failure. Oxf. Med. Case Rep. 2019, 2019, 482–485. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-K.; Huang, Y.-C.; Huang, S.-F.; Huang, C.-C.; Tsai, Y.-H. Acute Respiratory Distress Syndrome Caused by Leukemic Infiltration of the Lung. J. Formos Med. Assoc. 2008, 107, 419–423. [Google Scholar] [CrossRef]
- Hölig, K.; Moog, R. Leukocyte Depletion by Therapeutic Leukocytapheresis in Patients with Leukemia. Transfus. Med. Hemother. 2012, 39, 241–245. [Google Scholar] [CrossRef]
- McDonnell, M.H.; Smith, E.T.; Lipford, E.H.; Gerber, J.M.; Grunwald, M.R. Microgranular Acute Promyelocytic Leukemia Presenting with Leukopenia and an Unusual Immunophenotype. Hematol./Oncol. Stem Cell Ther. 2017, 10, 35–38. [Google Scholar] [CrossRef]
- Choi, M.H.; Choe, Y.H.; Park, Y.; Nah, H.; Kim, S.; Jeong, S.H.; Kim, H.O. The Effect of Therapeutic Leukapheresis on Early Complications and Outcomes in Patients with Acute Leukemia and Hyperleukocytosis: A Propensity Score-Matched Study. Transfusion 2018, 58, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Kuo, K.H.M.; Callum, J.L.; Panzarella, T.; Jacks, L.M.; Brandwein, J.; Crump, M.; Curtis, J.E.; Gupta, V.; Lipton, J.H.; Minden, M.D.; et al. A Retrospective Observational Study of Leucoreductive Strategies to Manage Patients with Acute Myeloid Leukaemia Presenting with Hyperleucocytosis. Br. J. Haematol. 2015, 168, 384–394. [Google Scholar] [CrossRef]
- Shallis, R.M.; Stahl, M.; Bewersdorf, J.P.; Hendrickson, J.E.; Zeidan, A.M. Leukocytapheresis for Patients with Acute Myeloid Leukemia Presenting with Hyperleukocytosis and Leukostasis: A Contemporary Appraisal of Outcomes and Benefits. Null 2020, 13, 489–499. [Google Scholar] [CrossRef]
- Rinaldi, I.; Sari, R.M.; Tedhy, V.U.; Winston, K. Leukapheresis Does Not Improve Early Survival Outcome of Acute Myeloid Leukemia with Leukostasis Patients—A Dual-Center Retrospective Cohort Study. J. Blood Med. 2021, 12, 623–633. [Google Scholar] [CrossRef]
- Kato, A.; Ono, Y.; Nagahata, Y.; Yamauchi, N.; Tabata, S.; Yonetani, N.; Matsushita, A.; Ishikawa, T. The Need for Continuing Chemotherapy for Leukemic Cell Lysis Pneumopathy in Patients with Acute Myelomonocytic/Monocytic Leukemia. Intern. Med. 2013, 52, 1217–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korkmaz, S. The Management of Hyperleukocytosis in 2017: Do We Still Need Leukapheresis? Transfus. Apher. Sci. 2018, 57, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Mamez, A.-C.; Raffoux, E.; Chevret, S.; Lemiale, V.; Boissel, N.; Canet, E.; Schlemmer, B.; Dombret, H.; Azoulay, E.; Lengliné, E. Pre-Treatment with Oral Hydroxyurea Prior to Intensive Chemotherapy Improves Early Survival of Patients with High Hyperleukocytosis in Acute Myeloid Leukemia. Null 2016, 57, 2281–2288. [Google Scholar] [CrossRef] [PubMed]
- Latagliata, R.; Spadea, A.; Cedrone, M.; Di Giandomenico, J.; De Muro, M.; Villivà, N.; Breccia, M.; Anaclerico, B.; Porrini, R.; Spirito, F.; et al. Symptomatic Mucocutaneous Toxicity of Hydroxyurea in Philadelphia Chromosome-Negative Myeloproliferative Neoplasms: The Mister Hyde Face of a Safe Drug. Cancer 2012, 118, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Bertoli, S.; Picard, M.; Bérard, E.; Griessinger, E.; Larrue, C.; Mouchel, P.L.; Vergez, F.; Tavitian, S.; Yon, E.; Ruiz, J.; et al. Dexamethasone in Hyperleukocytic Acute Myeloid Leukemia. Haematol 2018, 103, 988–998. [Google Scholar] [CrossRef]
- Barnes, P.J. Corticosteroid Effects on Cell Signalling. Eur. Respir. J. 2006, 27, 413. [Google Scholar] [CrossRef]
- Brattsand, R.; Linden, M. Cytokine Modulation by Glucocorticoids: Mechanisms and Actions in Cellular Studies. Aliment. Pharm. 1996, 10 (Suppl. 2), 81–90, discussion 91–92. [Google Scholar] [CrossRef]
- Vénéreau, E.; Ceriotti, C.; Bianchi, M.E. DAMPs from Cell Death to New Life. Front. Immunol. 2015, 6, 422. [Google Scholar] [CrossRef] [PubMed]
- Kunitomo, Y.; Lee, S.; Avery, C.C.; Valda Toro, P.L.; Cohen, A.J.; Ehtashimi-Afshar, S.; Kahn, P.A.; Siddon, A.; Boddu, P.; Datta, R.; et al. Indolent Presentations of Leukemic Lung Disease in Acute Myeloid Leukemia. medRxiv 2020. [Google Scholar] [CrossRef]
- Azoulay, E.; Fieux, F.; Moreau, D.; Thiery, G.; Rousselot, P.; Parrot, A.; Le Gall, J.-R.; Dombret, H.; Schlemmer, B. Acute Monocytic Leukemia Presenting as Acute Respiratory Failure. Am. J. Respir. Crit. Care Med. 2003, 167, 1329–1333. [Google Scholar] [CrossRef]
- Tvsvgk, T.; Handa, A.; Kumar, K.; Mutreja, D.; Subramanian, S. Chemotherapy-Associated Pulmonary Toxicity-Case Series from a Single Center. South Asian J. Cancer 2021, 10, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Dhokarh, R.; Li, G.; Schmickl, C.N.; Kashyap, R.; Assudani, J.; Limper, A.H.; Gajic, O. Drug-Associated Acute Lung Injury: A Population-Based Cohort Study. Chest 2012, 142, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Matsuno, O. Drug-Induced Interstitial Lung Disease: Mechanisms and Best Diagnostic Approaches. Respir. Res. 2012, 13, 39. [Google Scholar] [CrossRef]
- Vahid, B.; Marik, P.E. Pulmonary Complications of Novel Antineoplastic Agents for Solid Tumors. Chest 2008, 133, 528–538. [Google Scholar] [CrossRef]
- Lee-Chiong, T.J.; Matthay, R.A. Drug-Induced Pulmonary Edema and Acute Respiratory Distress Syndrome. Clin. Chest Med. 2004, 25, 95–104. [Google Scholar] [CrossRef]
- Tanvetyanon, T.; Garrity, E.R.; Albain, K.S. Acute Lung Injury Associated with Vinorelbine. J. Clin. Oncol. 2006, 24, 1952–1953. [Google Scholar] [CrossRef]
- Lo-Coco, F.; Cicconi, L.; Voso, M.T. Progress and Criticalities in the Management of Acute Promyelocytic Leukemia. Oncotarget 2017, 8, 99221–99222. [Google Scholar] [CrossRef]
- Lång, E.; Grudic, A.; Pankiv, S.; Bruserud, Ø.; Simonsen, A.; Bjerkvig, R.; Bjørås, M.; Bøe, S.O. The Arsenic-Based Cure of Acute Promyelocytic Leukemia Promotes Cytoplasmic Sequestration of PML and PML/RARA through Inhibition of PML Body Recycling. Blood 2012, 120, 847–857. [Google Scholar] [CrossRef]
- Cardinale, L.; Asteggiano, F.; Moretti, F.; Torre, F.; Ulisciani, S.; Fava, C.; Rege-Cambrin, G. Pathophysiology, Clinical Features and Radiological Findings of Differentiation Syndrome/All-Trans-Retinoic Acid Syndrome. World J. Radiol. 2014, 6, 583–588. [Google Scholar] [CrossRef]
- Patatanian, E.; Thompson, D.F. Retinoic Acid Syndrome: A Review. J. Clin. Pharm. Ther. 2008, 33, 331–338. [Google Scholar] [CrossRef]
- Larson, R.S.; Tallman, M.S. Retinoic Acid Syndrome: Manifestations, Pathogenesis, and Treatment. Best Pract. Res. Clin. Haematol. 2003, 16, 453–461. [Google Scholar] [CrossRef]
- Lee, C.K. Evolving Role of Radiation Therapy for Hematologic Malignancies. Hematol. Oncol. Clin. N. Am. 2006, 20, 471–503. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Hernández, M.; Maldonado, F.; Lozano-Ruiz, F.; Muñoz-Montaño, W.; Nuñez-Baez, M.; Arrieta, O. Radiation-Induced Lung Injury: Current Evidence. BMC Pulm. Med. 2021, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Burris, H.A., 3rd; Hurtig, J. Radiation Recall with Anticancer Agents. Oncologist 2010, 15, 1227–1237. [Google Scholar] [CrossRef]
- Ding, X.; Ji, W.; Li, J.; Zhang, X.; Wang, L. Radiation Recall Pneumonitis Induced by Chemotherapy after Thoracic Radiotherapy for Lung Cancer. Radiat. Oncol. 2011, 6, 24. [Google Scholar] [CrossRef]
- Riviere, P.; Sumner, W.; Cornell, M.; Sandhu, A.; Murphy, J.D.; Hattangadi-Gluth, J.; Bruggeman, A.; Kim, S.S.; Randall, J.M.; Sharabi, A.B. Radiation Recall Pneumonitis After Treatment With Checkpoint Blockade Immunotherapy: A Case Series and Review of Literature. Front. Oncol. 2021, 11, 662954. [Google Scholar] [CrossRef] [PubMed]
- Kouvaris, J.R.; Kouloulias, V.E.; Vlahos, L.J. Amifostine: The First Selective-Target and Broad-Spectrum Radioprotector. Oncologist 2007, 12, 738–747. [Google Scholar] [CrossRef]
- Horowitz, M.; Schreiber, H.; Elder, A.; Heidenreich, O.; Vormoor, J.; Toffalori, C.; Vago, L.; Kröger, N. Epidemiology and Biology of Relapse after Stem Cell Transplantation. Bone Marrow Transplant. 2018, 53, 1379–1389. [Google Scholar] [CrossRef]
- Muraro, P.A.; Martin, R.; Mancardi, G.L.; Nicholas, R.; Sormani, M.P.; Saccardi, R. Autologous Haematopoietic Stem Cell Transplantation for Treatment of Multiple Sclerosis. Nat. Rev. Neurol. 2017, 13, 391–405. [Google Scholar] [CrossRef]
- Pettengell, R. Autologous Stem Cell Transplantation in Follicular Non-Hodgkin’s Lymphoma. Bone Marrow Transplant. 2002, 29 (Suppl. 1), S1–S4. [Google Scholar] [CrossRef]
- Takami, A. Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia. Int. J. Hematol. 2018, 107, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Bleakley, M.; Riddell, S.R. Molecules and Mechanisms of the Graft-versus-Leukaemia Effect. Nat. Rev. Cancer 2004, 4, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Levine, J.E.; Ferrara, J.L.M. Pathogenesis and Management of Graft-versus-Host Disease. Immunol. Allergy Clin. N. Am. 2010, 30, 75–101. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, H.M.; Sommers, S.R.; Arfons, L.M.; Fu, P.; Ataergin, S.A.; Kaye, N.M.; Liu, F.; Kindwall-Keller, T.L.; Cooper, B.W.; Laughlin, M.J.; et al. Spontaneous Autologous Graft-versus-Host Disease in Plasma Cell Myeloma Autograft Recipients: Flow Cytometric Analysis of Hematopoietic Progenitor Cell Grafts. Biol. Blood Marrow Transplant. 2011, 17, 970–978. [Google Scholar] [CrossRef]
- Hammami, M.B.; Talkin, R.; Al-Taee, A.M.; Schoen, M.W.; Goyal, S.D.; Lai, J.-P. Autologous Graft-Versus-Host Disease of the Gastrointestinal Tract in Patients With Multiple Myeloma and Hematopoietic Stem Cell Transplantation. Gastroenterol. Res. 2018, 11, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.; Durairajan, N.; Soubani, A.O. Noninfectious Pulmonary Complications of Haematopoietic Stem Cell Transplantation. Eur. Respir. Rev. 2020, 29, 190119. [Google Scholar] [CrossRef]
- Park, J.A. Treatment of Diffuse Alveolar Hemorrhage: Controlling Inflammation and Obtaining Rapid and Effective Hemostasis. Int. J. Mol. Sci. 2021, 22, 793. [Google Scholar] [CrossRef]
- Spitzer, T.R. Engraftment Syndrome: Double-Edged Sword of Hematopoietic Cell Transplants. Bone Marrow Transplant. 2015, 50, 469–475. [Google Scholar] [CrossRef]
- Uncu Ulu, B.; Yiğenoğlu, T.N.; Şahin, D.; Başcı, S.; İskender, D.; Adaş, Y.; Atasever Akkaş, E.; Hacıbekiroğlu, T.; Kızıl Çakar, M.; Dal, M.S.; et al. Does Total Body Irradiation Have a Favorable Impact on Thrombocyte Engraftment as per Neutrophil Engraftment in Allogeneic Stem Cell Transplantation? Cureus 2021, 13, e19462. [Google Scholar] [CrossRef]
- Sheth, V.; Jain, R.; Gore, A.; Ghanekar, A.; Saikia, T. Engraftment Syndrome: Clinical Features and Predictive Factors in Autologous Stem Cell Transplant. Indian J. Hematol. Blood Transfus. 2018, 34, 448–453. [Google Scholar] [CrossRef]
- Wieruszewski, P.M.; May, H.P.; Peters, S.G.; Gajic, O.; Hogan, W.J.; Dierkhising, R.A.; Alkhateeb, H.B.; Yadav, H. Characteristics and Outcome of Periengraftment Respiratory Distress Syndrome after Autologous Hematopoietic Cell Transplant. Ann. ATS 2021, 18, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Jha, A. Spectrum of Hematological Malignancies and Peripheral Cytopenias. J. Nepal. Health Res. Counc. 2013, 11, 273–278. [Google Scholar] [PubMed]
- Franchini, M.; Marano, G.; Mengoli, C.; Pupella, S.; Vaglio, S.; Muñoz, M.; Liumbruno, G.M. Red Blood Cell Transfusion Policy: A Critical Literature Review. Blood Transfus. 2017, 15, 307–317. [Google Scholar] [CrossRef]
- Estcourt, L.J.; Birchall, J.; Allard, S.; Bassey, S.J.; Hersey, P.; Kerr, J.P.; Mumford, A.D.; Stanworth, S.J.; Tinegate, H.; the British Committee for Standards in Haematology. Guidelines for the Use of Platelet Transfusions. Br. J. Haematol. 2017, 176, 365–394. [Google Scholar] [CrossRef] [PubMed]
- Roubinian, N. TACO and TRALI: Biology, Risk Factors, and Prevention Strategies. Hematol. Am. Soc. Hematol. Educ. Program. 2018, 2018, 585–594. [Google Scholar] [CrossRef]
- Vossoughi, S.; Gorlin, J.; Kessler, D.A.; Hillyer, C.D.; Van Buren, N.L.; Jimenez, A.; Shaz, B.H. Ten Years of TRALI Mitigation: Measuring Our Progress. Transfusion 2019, 59, 2567–2574. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotorogea-Simion, M.; Pavel, B.; Isac, S.; Telecan, T.; Matache, I.-M.; Bobirca, A.; Bobirca, F.-T.; Rababoc, R.; Droc, G. What Is Different in Acute Hematologic Malignancy-Associated ARDS? An Overview of the Literature. Medicina 2022, 58, 1215. https://doi.org/10.3390/medicina58091215
Cotorogea-Simion M, Pavel B, Isac S, Telecan T, Matache I-M, Bobirca A, Bobirca F-T, Rababoc R, Droc G. What Is Different in Acute Hematologic Malignancy-Associated ARDS? An Overview of the Literature. Medicina. 2022; 58(9):1215. https://doi.org/10.3390/medicina58091215
Chicago/Turabian StyleCotorogea-Simion, Mihail, Bogdan Pavel, Sebastian Isac, Teodora Telecan, Irina-Mihaela Matache, Anca Bobirca, Florin-Teodor Bobirca, Razvan Rababoc, and Gabriela Droc. 2022. "What Is Different in Acute Hematologic Malignancy-Associated ARDS? An Overview of the Literature" Medicina 58, no. 9: 1215. https://doi.org/10.3390/medicina58091215
APA StyleCotorogea-Simion, M., Pavel, B., Isac, S., Telecan, T., Matache, I.-M., Bobirca, A., Bobirca, F.-T., Rababoc, R., & Droc, G. (2022). What Is Different in Acute Hematologic Malignancy-Associated ARDS? An Overview of the Literature. Medicina, 58(9), 1215. https://doi.org/10.3390/medicina58091215