Therapeutic Efficacy of Weissella cibaria CMU and CMS1 on Allergic Inflammation Exacerbated by Diesel Exhaust Particulate Matter in a Murine Asthma Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals for Enzyme-Linked Immunosorbent Assay
2.2. Preparation of DEPM Suspensions
2.3. Preparation of W. cibaria
2.4. DEPM-Exacerbated Murine Asthma Model and Probiotic Treatment
2.5. Bronchoalveolar Lavage Fluid Collection
2.6. Enzyme-Linked Immunosorbent Assay (ELISA)
2.7. Histological Examination of Lung Tissue
2.8. Statistical Analysis
3. Results
3.1. Effects of W. cibaria CMU and CMS1 on the Weight of Spleen, Liver, and Lungs in a DEPM-Exacerbated Murine Asthma Model
3.2. Improvement Effects of W. cibaria CMU and CMS1 on DEPM-Induced Exacerbated Inflammatory Cytokines and Chemokines in BALF
3.3. Effects of W. cibaria CMU and CMS1 on Histopathological Changes Exacerbated by DEPM
3.4. Alleviating Effects of W. cibaria CMU and CMS1 on Bronchiolar and Inflammatory Changes Exacerbated by DEPM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, S.W.; Lee, G.H.; Jang, M.J.; Hong, G.E.; Kim, J.Y.; Park, G.D.; Jin, H.; Kim, H.S.; Choi, C.Y.; Choi, J.H.; et al. Lactic acid bacteria ameliorate diesel exhaust particulate matter-exacerbated allergic inflammation in a murine model of asthma. Life 2020, 10, 260. [Google Scholar] [CrossRef] [PubMed]
- Jeon, M.G.; Kim, T.R.; Lee, J.Y.; Kim, H.S.; Ji, Y.; Holzapfel, W.H.; Bae, D.; Choi, C.Y.; Hwang, Y.P. Hepatoprotective Effects of Streptococcus thermophilus LM1012 in Mice Exposed to Air Pollutants. J. Med. Food 2020, 23, 852–861. [Google Scholar] [CrossRef]
- Maltby, S.; Tay, H.L.; Yang, M.; Foster, P.S. Mouse models of severe asthma: Understanding the mechanisms of steroid resistance, tissue remodelling and disease exacerbation. Respirology 2017, 22, 874–885. [Google Scholar] [CrossRef] [PubMed]
- Steiner, S.; Bisig, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Diesel exhaust: Current knowledge of adverse effects and underlying cellular mechanisms. Arch. Toxicol. 2016, 90, 1541–1553. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, X.; Barreiro, E.; Bustamante, V.; Lopez-Campos, J.L.; González-Barcala, F.J.; Cruz, M.J. Diesel exhausts particles: Their role in increasing the incidence of asthma. Reviewing the evidence of a causal link. Sci. Total Environ. 2019, 652, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef]
- Heffler, E.; Madeira, L.N.G.; Ferrando, M.; Puggioni, F.; Racca, F.; Malvezzi, L.; Passalacqua, G.; Canonica, G.W. Inhaled corticosteroids safety and adverse effects in patients with asthma. J. Allergy Clin. Immunol. Pract. 2018, 6, 776–781. [Google Scholar] [CrossRef]
- Lopez-Santamarina, A.; Gonzalez, E.G.; Lamas, A.; Mondragon, A.D.C.; Regal, P.; Miranda, J.M. Probiotics as a possible strategy for the prevention and treatment of allergies. A narrative review. Foods 2021, 10, 701. [Google Scholar] [CrossRef]
- Yeu, J.E.; Lee, H.G.; Park, G.Y.; Lee, J.; Kang, M.S. Antimicrobial and antibiofilm activities of Weissella cibaria against pathogens of upper respiratory tract infections. Microorganisms 2021, 9, 1181. [Google Scholar] [CrossRef]
- Wu, Z.; Nasab, E.M.; Arora, P.; Athari, S.S. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway. J. Transl. Med. 2022, 20, 1–14. [Google Scholar] [CrossRef]
- de Lacerda, L.B.; Rios, W.M.; Masson, A.P.; Brandão, I.T.; Milani, T.M.; de Carvalho Borges, M.; Ramalho, L.N.Z.; Barbosa, M.C.R.; Miyoshi, A.; Silva, C.L. Oral administration of Hsp65-producing Lactococcus lactis attenuates allergic asthma in a murine model. J. Appl. Microbiol. 2021, 130, 2075–2086. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Lin, H.C.; Hsueh, K.C.; Wu, S.F.; Fang, S.H. Oral administration of Lactobacillus salivarius inhibits the allergic airway response in mice. Can. J. Microbiol. 2010, 56, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.; Ma, C.; Basra, M.A.; Wang, J.; Xu, J. Amelioration of ovalbumin induced allergic symptoms in Balb/c mice by potentially probiotic strains of lactobacilli. Benef. Microbes 2015, 6, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.T.; Lin, F.H.; Lee, Y.T.; Ku, M.S.; Lue, K.H. Effect of Lactobacillus rhamnosus GG immunopathologic changes in chronic mouse asthma model. J. Microbiol. Immunol. Infect. 2019, 52, 911–919. [Google Scholar] [CrossRef]
- Zukiewicz-Sobczak, W.; Wróblewska, P.; Adamczuk, P.; Silny, W. Probiotic lactic acid bacteria and their potential in the prevention and treatment of allergic diseases. Cent. Eur. J. Immunol. 2014, 39, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hui, Y.; Zhao, L.; Hao, Y.; Guo, H.; Ren, F. Oral administration of Lactobacillus paracasei L9 attenuates pm2.5-induced enhancement of airway hyperresponsiveness and allergic airway response in murine model of asthma. PLoS ONE 2017, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.L.; Miranda, M.; Fialho, A.K.; Castro-Faria-Neto, H.; Anatriello, E.; Keller, A.C.; Aimbire, F. Oral feeding with probiotic Lactobacillus rhamnosus attenuates cigarette smoke-induced COPD in C57Bl/6 mice: Relevance to inflammatory markers in human bronchial epithelial cells. PLoS ONE 2020, 15, e0225560. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.S.; Yeu, J.E.; Hong, S.P. Safety evaluation of oral care probiotics Weissella cibaria CMU and CMS1 by phenotypic and genotypic analysis. Int. J. Mol. Sci. 2019, 20, 2693. [Google Scholar] [CrossRef]
- Kim, M.J.; You, Y.O.; Kang, J.Y.; Kim, H.J.; Kang, M.S. Weissella cibaria CMU exerts an anti-inflammatory effect by inhibiting Aggregatibacter actinomycetemcomitans-induced NF-κB activation in macrophages. Mol. Med. Rep. 2020, 22, 4143–4150. [Google Scholar] [CrossRef]
- Gauvreau, G.M.; Ellis, A.K.; Denburg, J.A. Haemopoietic processes in allergic disease: Eosinophil/basophil development. Clin. Exp. Allergy 2009, 39, 1297–1306. [Google Scholar] [CrossRef]
- Ahn, S.B.; Park, H.E.; Lee, S.M.; Kim, S.Y.; Shon, M.Y.; Lee, W.K. Characteristics and immuno-modulatory effects of Weissella cibaria JW15 isolated from Kimchi, Korea traditional fermented food, for probiotic use. J. Biomed. Res. 2013, 14, 206–211. [Google Scholar] [CrossRef]
- Park, H.E.; Lee, W.K. Immune enhancing effects of Weissella cibaria JW15 on BALB/c mice immunosuppressed by cyclophosphamide. J. Funct. Foods 2018, 49, 518–525. [Google Scholar] [CrossRef]
- Huang, L.; Cui, K.; Mao, W.; Du, Y.; Yao, N.; Li, Z.; Zhao, H.; Ma, W. Weissella cibaria attenuated LPS-induced dysfunction of intestinal epithelial barrier in a Caco-2 cell monolayer model. Front. Microbiol. 2020, 11, 2039. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.S.; Kim, B.G.; Chung, J.; Lee, H.C.; Oh, J.S. Inhibitory effect of Weissella cibaria isolates on the production of volatile sulphur compounds. J. Clin. Periodontol. 2006, 33, 226–232. [Google Scholar] [CrossRef]
- Lee, D.S.; Lee, S.A.; Kim, M.; Nam, S.H.; Kang, M.S. Reduction of halitosis by a tablet containing Weissella cibaria CMU: A randomized, double-blind, placebo-controlled study. J. Med. Food 2020, 23, 649–657. [Google Scholar] [CrossRef]
- Dolan, L.C.; Arceneaux, B.G.; Do, K.H.; Lee, W.K.; Park, G.Y.; Kang, M.S.; Choi, K.C. Toxicological and safety evaluations of Weissella cibaria strain CMU in animal toxicity and genotoxicity. Toxicol. Res. 2022, 38, 293–310. [Google Scholar] [CrossRef]
- Kang, M.S.; Lim, H.S.; Kim, S.M.; Lee, H.C.; Oh, J.S. Effect of Weissella cibaria on Fusobacterium nucleatum-induced interleukin-6 and interleukin-8 production in KB cells. J. Bacteriol. Virol. 2011, 41, 9–18. [Google Scholar] [CrossRef]
- Steinke, J.W.; Borish, L. Th2 cytokines and asthma. Interleukin-4: Its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir. Res. 2001, 2, 66–70. [Google Scholar] [CrossRef]
- Smith-Norowitz, T.A.; Chotikanatis, K.; Weaver, D.; Ditkowsky, J.; Norowitz, Y.M.; Hammerschlag, M.R.; Joks, R.; Kohlhoff, S. Chlamydia pneumoniae-induced tumour necrosis factor alpha responses are lower in children with asthma compared with non-asthma. BMJ Open Respir. Res. 2018, 5, e000239. [Google Scholar] [CrossRef]
- Agusti, A.; Macnee, W.; Donaldson, K.; Cosio, M. Hypothesis: Does COPD have an autoimmune component? Thorax 2003, 58, 832–834. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.G.; Rhee, C.K. The clinical efficacy of AG NPP709 (Synatura®) in patients with chronic bronchitis type stable chronic obstructive pulmonary disease. J. Thorac. Dis. 2020, 12, 2435–2442. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Peng, B.; Zhou, J.; Wang, P.; Mo, Y.; Xu, G.; Tao, Y.; Song, H.; Tang, W.; Jin, M. Difference of serum cytokine profile in allergic asthma patients according to disease severity. J. Asthma Allergy 2022, 15, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Gonzalo, J.A.; Pan, Y.; Lloyd, C.M.; Jia, G.Q.; Yu, G.; Dussault, B.; Powers, C.A.; Proudfoot, A.E.; Coyle, A.J.; Gearing, D.; et al. Mouse monocyte-derived chemokine is involved in airway hyperreactivity and lung inflammation. J. Immunol. 1999, 163, 403–411. [Google Scholar] [PubMed]
Bronchiolar Changes | Inflammatory Changes | ||
---|---|---|---|
Grade | Criteria | Grade | Criteria |
0 | Normal | 0 | Normal |
1 | Mild changes in bronchiolar epithelium, including mucosal hyperplasia, epithelial detachment, and bronchiolar smooth muscle hypertrophy | 1 | Mild infiltration of inflammatory cells, including interstitial lymphocytes, alveolar macrophages, and occasional eosinophils |
2 | Moderate bronchiolar changes | 2 | Moderate infiltrations of inflammatory cells |
3 | Severe bronchiolar changes | 3 | Severe infiltrations of inflammatory cells |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, K.-H.; Seo, K.; Kim, S.; Kim, S.; Park, G.-Y.; Kang, M.-S.; Lee, W.-K. Therapeutic Efficacy of Weissella cibaria CMU and CMS1 on Allergic Inflammation Exacerbated by Diesel Exhaust Particulate Matter in a Murine Asthma Model. Medicina 2022, 58, 1310. https://doi.org/10.3390/medicina58091310
Do K-H, Seo K, Kim S, Kim S, Park G-Y, Kang M-S, Lee W-K. Therapeutic Efficacy of Weissella cibaria CMU and CMS1 on Allergic Inflammation Exacerbated by Diesel Exhaust Particulate Matter in a Murine Asthma Model. Medicina. 2022; 58(9):1310. https://doi.org/10.3390/medicina58091310
Chicago/Turabian StyleDo, Kyung-Hyo, Kwangwon Seo, Sanggu Kim, Soochong Kim, Geun-Yeong Park, Mi-Sun Kang, and Wan-Kyu Lee. 2022. "Therapeutic Efficacy of Weissella cibaria CMU and CMS1 on Allergic Inflammation Exacerbated by Diesel Exhaust Particulate Matter in a Murine Asthma Model" Medicina 58, no. 9: 1310. https://doi.org/10.3390/medicina58091310
APA StyleDo, K.-H., Seo, K., Kim, S., Kim, S., Park, G.-Y., Kang, M.-S., & Lee, W.-K. (2022). Therapeutic Efficacy of Weissella cibaria CMU and CMS1 on Allergic Inflammation Exacerbated by Diesel Exhaust Particulate Matter in a Murine Asthma Model. Medicina, 58(9), 1310. https://doi.org/10.3390/medicina58091310