The Dynamics of the Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios Predict Progression to Septic Shock and Death in Patients with Prolonged Intensive Care Unit Stay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Structure and Study Population
2.2. Baseline Evaluation, Laboratory Workup, and Therapeutic Management
- The neutrophil-to-lymphocyte ratio (NLR): neutrophil count/lymphocyte count
- The derived neutrophil-to-lymphocyte ratio (dNLR): neutrophil count/(white blood cell count—lymphocyte count)
- The platelet-to-lymphocyte ratio (PLR): platelet count/lymphocyte count
- The lymphocyte-to-C-reactive protein ratio (LCR): lymphocyte/C-reactive protein (mg/dL)
- The day of the recording, namely days 0, 7, and 14 were separately considered an index time (T0) for further predictions, considering only outcomes occurring strictly after the specific recording. Therefore, events occurring prior to the measurement led to the exclusion of the patient from subsequent predictive analysis (i.e., patients with septic shock occurring prior to day 14 were not included in analyzing the discriminative prowess of day 14 NLR).
2.3. Statistical Analysis
2.4. Study Ethics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mielke, N.; Johnson, S.; Bahl, A. Boosters Reduce In-Hospital Mortality in Patients with COVID-19: An Observational Cohort Analysis. Lancet Reg. Health-Am. 2022, 8, 100227. [Google Scholar] [CrossRef] [PubMed]
- Bechman, K.; Yates, M.; Mann, K.; Nagra, D.; Smith, L.J.; Rutherford, A.I.; Patel, A.; Periselneris, J.; Walder, D.; Dobson, R.J.B.; et al. Inpatient COVID-19 Mortality Has Reduced over Time: Results from an Observational Cohort. PLoS ONE 2022, 17, e0261142. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Z.; Kuan, C.C. Vaccination to Reduce Severe COVID-19 and Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 1770–1776. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Hu, Y.; Yang, H.; Chen, W.; Zeng, Y.; Ying, Z.; Hu, Y.; Sun, Y.; Qu, Y.; Gottfreðsson, M.; et al. COVID-19 and Risk of Subsequent Life-Threatening Secondary Infections: A Matched Cohort Study in UK Biobank. BMC Med. 2021, 19, 1–10. [Google Scholar] [CrossRef]
- Elabbadi, A.; Turpin, M.; Gerotziafas, G.T.; Teulier, M.; Voiriot, G.; Fartoukh, M. Bacterial Coinfection in Critically Ill COVID-19 Patients with Severe Pneumonia. Infection 2021, 49, 559–562. [Google Scholar] [CrossRef]
- Hoque, M.N.; Akter, S.; Dilruba, I.; Islam, M.R. Microbial Co-Infections in COVID-19: Associated Microbiota and Underlying Mechanisms of Pathogenesis. Microb. Pathog. 2021, 156, 104941. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Scaravilli, V.; Mangioni, D.; Scudeller, L.; Alagna, L.; Bartoletti, M.; Bellani, G.; Biagioni, E.; Bonfanti, P.; Bottino, N.; et al. Hospital-Acquired Infections in Critically Ill Patients with COVID-19. Chest 2021, 160, 454–465. [Google Scholar] [CrossRef] [PubMed]
- White, L.; Dhillon, R.; Cordey, A.; Hughes, H.; Faggian, F.; Soni, S.; Pandey, M.; Whitaker, H.; May, A.; Morgan, M.; et al. A National Strategy to Diagnose COVID-19 Associated Invasive Fungal Disease in the ICU. Clin. Infect. Dis. 2021, 73, e1634–e1644. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.P.R.; Daneman, N. Bacterial Co-Infection and Secondary Infection in Patients with COVID-19: A Living Rapid Review and Meta-Analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef] [PubMed]
- Ripa, M.; Mastrangelo, A. The Elephant in the Room. Secondary Infections and Antimicrobial Use in Patients with COVID-19. Chest 2021, 160, 387–388. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Mao, Z.; Xiao, M.; Wang, L.; Qi, S.; Zhou, F. Predictive Values of Neutrophil-to-Lymphocyte Ratio on Disease Severity and Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. Crit. Care 2020, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.S.; Rout, A. Use of Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios in COVID-19. J. Clin. Med. Res. 2020, 12, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Shobeiri, P.; Kulasinghe, A.; Rezaei, N. Novel Systemic Inflammation Markers to Predict COVID-19 Prognosis. Front. Immunol. 2021, 12, 741061. [Google Scholar] [CrossRef] [PubMed]
- Bodolea, C.; Nemes, A.; Avram, L.; Craciun, R.; Coman, M.; Ene-Cocis, M.; Ciobanu, C.; Crisan, D. Nutritional Risk Assessment Scores Effectively Predict Mortality in Critically Ill Patients with Severe COVID-19. Nutrients 2022, 14, 2105. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, R.C. A New Method of Classifying Prognostic in Longitudinal Studies: Development and Validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Fang, Y.; Li, W.; Pan, C.; Qin, P.; Zhong, Y.; Liu, X.; Huang, M.; Liao, Y.; Li, S. CT Image Visual Quantitative Evaluation and Clinical Classification of Coronavirus Disease (COVID-19). Eur. Radiol. 2020, 30, 4407–4416. [Google Scholar] [CrossRef] [Green Version]
- Singer, M.; Deutschman, C.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA-J. Am. Med. Assoc. 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Zahorec, R. Ratio of neutrophil to lymphocyte counts--rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl. Lek. Listy 2001, 102, 5–14. [Google Scholar] [PubMed]
- Zahorec, R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl. Lek. Listy 2021, 122, 474–488. [Google Scholar] [CrossRef]
- Terpos, E.; Ntanasis-Stathopoulos, I.; Elalamy, I.; Kastritis, E.; Sergentanis, T.N.; Politou, M.; Psaltopoulou, T.; Gerotziafas, G.; Dimopoulos, M.A. Hematological Findings and Complications of COVID-19. Am. J. Hematol. 2020, 95, 834–847. [Google Scholar] [CrossRef]
- Scialo, F.; Daniele, A.; Amato, F.; Pastore, L.; Matera, M.G.; Cazzola, M.; Castaldo, G.; Bianco, A. ACE2: The Major Cell Entry Receptor for SARS-CoV-2. Lung 2020, 198, 867–877. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sharma, A.; Arora, S.K. High Producer Haplotype (CAG) of -863C/A, -308G/A and -238G/A Polymorphisms in the Promoter Region of TNF-α Gene Associate with Enhanced Apoptosis of Lymphocytes in HIV-1 Subtype C Infected Individuals from North India. PLoS ONE 2014, 9, e98020. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.-C.; Liang, W.-G.; Chen, F.-W.; Hsu, J.-H.; Yang, J.-J.; Chang, M.-S. IL-19 Induces Production of IL-6 and TNF-α and Results in Cell Apoptosis Through TNF-α. J. Immunol. 2002, 169, 4288–4297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Xie, X.; Tu, Z.; Fu, J.; Xu, D.; Zhou, Y. The Signal Pathways and Treatment of Cytokine Storm in COVID-19. Signal Transduct. Target. Ther. 2021, 6, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.F.W.; Zhang, A.J.; Yuan, S.; Poon, V.K.M.; Chan, C.C.S.; Lee, A.C.Y.; Chan, W.M.; Fan, Z.; Tsoi, H.W.; Wen, L.; et al. Simulation of the Clinical and Pathological Manifestations of Coronavirus Disease 2019 (COVID-19) in Golden Syrian Hamster Model: Implications for Disease Pathogenesis and Transmissibility. Clin. Infect. Dis. 2020, 71, 2428–2446. [Google Scholar] [CrossRef]
- You, B.; Ravaud, A.; Canivet, A.; Ganem, G.; Giraud, P.; Guimbaud, R.; Kaluzinski, L.; Krakowski, I.; Mayeur, D.; Grellety, T.; et al. The Official French Guidelines to Protect Patients with Cancer against SARS-CoV-2 Infection. Lancet Oncol. 2020, 21, 619–621. [Google Scholar] [CrossRef] [Green Version]
- Mureșan, A.V.; Hălmaciu, I.; Arbănași, E.M.; Kaller, R.; Arbănași, E.M.; Budișcă, O.A.; Melinte, R.M.; Vunvulea, V.; Filep, R.C.; Mărginean, L.; et al. Prognostic Nutritional Index, Controlling Nutritional Status (CONUT) Score, and Inflammatory Biomarkers as Predictors of Deep Vein Thrombosis, Acute Pulmonary Embolism, and Mortality in COVID-19 Patients. Diagnostics 2022, 12, 2757. [Google Scholar] [CrossRef]
- Arbănași, E.M.; Halmaciu, I.; Kaller, R.; Mureșan, A.V.; Arbănași, E.M.; Suciu, B.A.; Coșarcă, C.M.; Cojocaru, I.I.; Melinte, R.M.; Russu, E. Systemic Inflammatory Biomarkers and Chest CT Findings as Predictors of Acute Limb Ischemia Risk, Intensive Care Unit Admission, and Mortality in COVID-19 Patients. Diagnostics 2022, 12, 2379. [Google Scholar] [CrossRef]
- Halmaciu, I.; Arbănași, E.M.; Kaller, R.; Mureșan, A.V.; Arbănași, E.M.; Bacalbasa, N.; Suciu, B.A.; Cojocaru, I.I.; Runcan, A.I.; Grosu, F.; et al. Chest CT Severity Score and Systemic Inflammatory Biomarkers as Predictors of the Need for Invasive Mechanical Ventilation and of COVID-19 Patients’ Mortality. Diagnostics 2022, 12, 2089. [Google Scholar] [CrossRef]
- Jimeno, S.; Ventura, P.S.; Castellano, J.M.; García-Adasme, S.I.; Miranda, M.; Touza, P.; Lllana, I.; López-Escobar, A. Prognostic Implications of Neutrophil-Lymphocyte Ratio in COVID-19. Eur. J. Clin. Investig. 2021, 51, 1–9. [Google Scholar] [CrossRef]
- Ullah, W.; Basyal, B.; Tariq, S.; Almas, T.; Saeed, R.; Roomi, S.; Haq, S.; Madara, J.; Boigon, M.; Haas, D.C.; et al. Lymphocyte-to-C-Reactive Protein Ratio: A Novel Predictor of Adverse Outcomes in COVID-19. J. Clin. Med. Res. 2020, 12, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Khourssaji, M.; Chapelle, V.; Evenepoel, A.; Belkhir, L.; Yombi, J.C.; van Dievoet, M.A.; Saussoy, P.; Coche, E.; Fillée, C.; Constantinescu, S.N.; et al. A Biological Profile for Diagnosis and Outcome of COVID-19 Patients. Clin. Chem. Lab. Med. 2020, 58, 2141–2150. [Google Scholar] [CrossRef]
- Fumagalli, J.; Panigada, M.; Klompas, M.; Berra, L. Ventilator-associated pneumonia among SARS-CoV-2 acute respiratory distress syndrome patients. Curr. Opin. Crit. Care 2022, 28, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Meawed, T.E.; Ahmed, S.M.; Mowafy, S.M.S.; Samir, G.M.; Anis, R.H. Bacterial and fungal ventilator associated pneumonia in critically ill COVID-19 patients during the second wave. J. Infect. Public Health 2021, 14, 1375–1380. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Gavaruzzi, F.; Ceccarelli, G.; Borrazzo, C.; Oliva, A.; Alessandri, F.; Magnanimi, E.; Pugliese, F.; Venditti, M. Multidrug-resistant Acinetobacter baumannii infections in COVID-19 patients hospitalized in intensive care unit. Infection 2022, 50, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Montrucchio, G.; Corcione, S.; Lupia, T.; Shbaklo, N.; Olivieri, C.; Poggioli, M.; Pagni, A.; Colombo, D.; Roasio, A.; Bosso, S.; et al. The Burden of Carbapenem-Resistant Acinetobacter baumannii in ICU COVID-19 Patients: A Regional Experience. J. Clin. Med. 2022, 11, 5208. [Google Scholar] [CrossRef]
- Moisa, E.; Corneci, D.; Negoita, S.; Filimon, C.R.; Serbu, A.; Negutu, M.I.; Grintescu, I.M. Dynamic Changes of the Neutrophil-to-Lymphocyte Ratio, Systemic Inflammation Index, and Derived Neutrophil-to-Lymphocyte Ratio Independently Predict Invasive Mechanical Ventilation Need and Death in Critically Ill COVID-19 Patients. Biomedicines 2021, 9, 1656. [Google Scholar] [CrossRef]
- Zanella, A.; Florio, G.; Antonelli, M.; Bellani, G.; Berselli, A.; Bove, T.; Cabrini, L.; Carlesso, E.; Castelli, G.P.; Cecconi, M.; et al. Time course of risk factors associated with mortality of 1260 critically ill patients with COVID-19 admitted to 24 Italian intensive care units. Intensive Care Med. 2021, 47, 995–1008. [Google Scholar] [CrossRef]
- D’Amico, G.; Morabito, A.; D’Amico, M.; Pasta, L.; Malizia, G.; Rebora, P.; Valsecchi, M.G. Clinical states of cirrhosis and competing risks. J. Hepatol. 2018, 68, 563–576. [Google Scholar] [CrossRef] [Green Version]
- Zuccaro, V.; Celsa, C.; Sambo, M.; Battaglia, S.; Sacchi, P.; Biscarini, S.; Valsecchi, P.; Pieri, T.C.; Gallazzi, I.; Colaneri, M.; et al. Competing-risk analysis of coronavirus disease 2019 in-hospital mortality in a Northern Italian centre from SMAtteo COvid19 REgistry (SMACORE). Sci. Rep. 2021, 11, 1137. [Google Scholar] [CrossRef]
- Simadibrata, D.M.; Pandhita, B.A.W.; Ananta, M.E.; Tango, T. Platelet-to-Lymphocyte Ratio, a Novel Biomarker to Predict the Severity of COVID-19 Patients: A Systematic Review and Meta-Analysis. J. Intensive Care Soc. 2022, 23, 20–26. [Google Scholar] [CrossRef]
- Simon, P.; Le Borgne, P.; Lefevbre, F.; Cipolat, L.; Remillon, A.; Dib, C.; Hoffmann, M.; Gardeur, I.; Sabah, J.; Kepka, S.; et al. Platelet-to-Lymphocyte Ratio (PLR) Is Not a Predicting Marker of Severity but of Mortality in COVID-19 Patients Admitted to the Emergency Department: A Retrospective Multicenter Study. J. Clin. Med. 2022, 11, 4903. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Ling, Y.; Zhang, Y.H.Z.; Wei, L.Y.; Chen, X.; Li, X.M.; Liu, X.Y.; Liu, H.M.; Guo, Z.; Ren, H.; et al. Platelet-to-Lymphocyte Ratio Is Associated with Prognosis in Patients with Coronavirus Disease-19. J. Med. Virol. 2020, 92, 1533–1541. [Google Scholar] [CrossRef] [PubMed]
- Dziedzic, E.A.; Gąsior, J.S.; Tuzimek, A.; Dąbrowski, M.; Jankowski, P. Neutrophil-to-Lymphocyte Ratio Is Not Associated with Severity of Coronary Artery Disease and Is Not Correlated with Vitamin D Level in Patients with a History of an Acute Coronary Syndrome. Biology 2022, 11, 1001. [Google Scholar] [CrossRef]
- Alster, P.; Madetko, N.; Friedman, A. Neutrophil-to-lymphocyte ratio (NLR) at boundaries of Progressive Supranuclear Palsy Syndrome (PSPS) and Corticobasal Syndrome (CBS). Neurol. Neurochir. Pol. 2021, 55, 97–101. [Google Scholar] [CrossRef]
- Ripa, M.; Galli, L.; Poli, A.; Oltolini, C.; Spagnuolo, V.; Mastrangelo, A.; Muccini, C.; Monti, G.; Luca, G.; De Landoni, G.; et al. Secondary Infections in Patients Hospitalized with COVID-19: Incidence and Predictive Factors. Clin. Microbiol. Infect. 2021, 27, 451–457. [Google Scholar] [CrossRef]
- Bhatt, P.J.; Shiau, S.; Brunetti, L.; Xie, Y.; Solanki, K.; Khalid, S.; Mohayya, S.; Au, P.H.; Pham, C.; Uprety, P.; et al. Risk Factors and Outcomes of Hospitalized Patients with Severe COVID-19 and Secondary Bloodstream Infections: A Multicenter, Case-Control Study. Clin. Infect. Dis. 2021, 72, e995–e1003. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-Infections in People with COVID-19: A Systematic Review and Meta-Analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Sharifipour, E.; Shams, S.; Esmkhani, M.; Khodadadi, J.; Fotouhi-Ardakani, R.; Koohpaei, A.; Doosti, Z.; Ej Golzari, S. Evaluation of Bacterial Co-Infections of the Respiratory Tract in COVID-19 Patients Admitted to ICU. BMC Infect. Dis. 2020, 20, 1–7. [Google Scholar] [CrossRef]
Variable | Entire Group (n = 90) | No Septic Shock (n = 45) | Septic Shock (n = 45) | p-Value |
---|---|---|---|---|
General data | ||||
Age (years) | 65.58 ± 11.21 | 62.53 ± 11.99 | 68.62 ± 9.56 | 0.009 |
Gender, male (n, %) | 53 (58.88%) | 25 (55.55) | 28 (62.22) | 0.520 |
Charlson Comorbidity Index | 4 (4–5.4) | 4 (2–6) | 4 (3–7) | 0.286 |
Obesity (n, %) | 41 (45.55) | 19 (42.22) | 22 (48.88) | 0.525 |
Diabetes mellitus (n, %) | 39 (43.33) | 17 (37.77) | 22 (48.77) | 0.288 |
Chronic pulmonary disease (n, %) | 20 (22.22) | 8 (17.77) | 12 (26.66) | 0.310 |
SOFA score at ICU admission | 5 (4.8–6.1) | 4 (3–6) | 5 (4–9) | 0.195 |
APACHE II score at ICU admission | 15 (14.1–17.3) | 14 (9.5–19) | 16 (12.5–24) | 0.205 |
Total severity score at admission | 14 (11–17) | 13 (10.5–16) | 15 (11.5–18) | 0.202 |
Peak total severity score | 17 (13–19) | 15 (12–18.5) | 18 (15–19) | 0.033 |
Infection sites during hospital stay | ||||
Culture-proven infection (n, %) | 69 (76.66) | 24 (53.33) | 45 (100) | <0.001 |
Positive tracheal culture/sputum (n, %) | 47 (52.22) | 12 (26.66) | 35 (77.77) | <0.001 |
Positive urine culture (n, %) | 33 (36.66) | 14 (31.11) | 19 (42.22) | 0.274 |
Positive stool culture (n, %) | 9 (10) | 5 (11.11) | 4 (8.88) | 0.725 |
Clostridoides Difficile (n, %) | 6 (6.66) | 2 (4.44) | 4 (8.88) | 0.398 |
Positive wound culture—pressure ulcers (n, %) | 4 (4.44) | 0 (0) | 4 (8.88) | 0.041 |
Positive blood cultures (n, %) | 18 (20) | 4 (8.88) | 14 (31.11) | 0.008 |
Outcomes | ||||
Total hospital stay (days) | 24 (23.8–31.2) | 23 (16–33) | 25 (16.5–33.5) | 1.000 |
Length of ICU stay (days) | 11.1 (11–17.1) | 8 (3–11.5) | 15 (8–21) | 0.001 |
Mechanical ventilation (n, %) | 45 (50%) | 6 (13.33) | 39 (86.66) | <0.001 |
Continuous veno–venous hemodiafiltration (n, %) | 16 (17.77) | 2 (4.44) | 14 (31.11) | <0.001 |
Pulmonary thromboembolism (n, %) | 8 (8.88) | 0 (0) | 8 (17.77) | 0.003 |
In-hospital mortality (n, %) | 42 (46.66) | 5 (11.11) | 37 (82.22) | <0.001 |
Laboratory work-up on admission | ||||
Hemoglobin (g/dL) | 13.8 (13–13.9) | 13.9 (12.25–15.05) | 13.7 (11.95–15) | 1.000 |
White blood cell count (×109/L) | 7.1 (6.8–9.6) | 6.9 (5.37–9.72) | 7.33 (5.59–11.97) | 0.673 |
Neutrophil count (×109/L) | 5.8 (5.5–8.2) | 5.92 (3.91–8.3) | 5.77 (4.35–10.09) | 0.673 |
Lymphocyte count (×109/L) | 0.8 (0.8–1.1) | 0.79 (0.54–1.29) | 0.82 (0.54–1.12) | 1.000 |
Platelet count (×109/L) | 193 (192–238.2) | 193 (150–280.5) | 194 (137.5–239) | 0.833 |
C-reactive protein (mg/dL) | ||||
On admission | 14 (12–16.9) | 13 (7.36–19.15) | 14.7 (5.2–22.25) | 0.915 |
Day 7 | 3.88 (1.49–8.45) | 2.5 (1.3–5.6) | 4.3 (3–13.6) | 0.033 |
Day 14 | 3.9 (1.45–8.32) | 2.19 (0.81–5.86) | 5.8 (2.4–14.63) | 0.008 |
Procalcitonin (ng/mL) | 0.1 (0.0–0.45) | 0.1 (0.1–0.33) | 0.1 (0.1–0.55) | 0.522 |
Interleukin-6 (pg/mL) | 23.1 (20–205.2) | 12.52 (6.47–46.21) | 58 (24–146.37) | 0.004 |
Creatinine (mg/dL) | 1.06 (0.8–1.51) | 1.03 (0.8–1.32) | 1.14 (0.98–1.51) | 0.102 |
NT-proBNP (pg/mL) | 506 (302.2–4 560.1) | 421 (157.5–987.65) | 747.5 (262–1774.25) | 0.052 |
Hematologic biomarkers | ||||
NLR | ||||
On admission | 7.65 (4.75–12.01) | 7.65 (3.94–11.71) | 7.82 (4.90–12.43) | 1.000 |
Day 7 | 16.02 (10.49–24.93) | 13.14 (6.45–20.94) | 16.80 (11.08–27.60) | 0.399 |
Day 14 | 20.39 (10.16–25.78) | 11.84 (5.81–20.43) | 26.44 (13.37–54.19) | <0.001 |
dNLR | ||||
On admission | 4.99 (3.05–7.38) | 5.07 (2.91–7.45) | 4.93 (3.22–7.48) | 1.000 |
Day 7 | 8.05 (6.02–12.39) | 7.54 (4.22–10.43) | 9.65 (6.62–12.73) | 0.092 |
Day 14 | 9.45 (4.66–16.18) | 6.94 (3.31–9.72) | 14.67 (7.41–19.63) | <0.001 |
PLR | ||||
On admission | 236.58 (149.14–353.06) | 272.98 (154.47–375.55) | 229.52 (153.46–323.40) | 0.399 |
Day 7 | 457.14 (302.05–645.82) | 432.83 (252.43–622.47) | 440 (294.72–684.64) | 1.000 |
Day 14 | 383.87 (246.87–539.48) | 279.10 (170.14–397.91) | 452.38 (277.03–681.57) | 0.003 |
LCR | ||||
On admission | 0.06 (0.03–0.14) | 0.06 (0.03–0.11) | 0.06 (0.03–0.17) | 0.751 |
Day 7 | 0.12 (0.06–0.44) | 0.23 (0.07–0.51) | 0.09 (0.04–0.30) | 0.088 |
Day 14 | 0.13 (0.05–0.49) | 0.33 (0.13–1.13) | 0.06 (0.04–0.30) | <0.001 |
Septic Shock | In-Hospital Mortality | |||||
---|---|---|---|---|---|---|
Variables | Hazard Ratio | 95% Confidence Interval | p-Value | Hazard Ratio | 95% Confidence Interval | p-Value |
Age (years) | 1.037 | 1.005–1.07 | 0.019 | 1.058 | 1.024–1.093 | <0.001 |
Peak total severity score | 0.969 | 0.888–1.058 | 0.496 | 0.995 | 0.908–1.090 | 0.913 |
Positive tracheal/sputum culture | 2.162 | 1.052–4.441 | 0.036 | 1.935 | 0.962–3.892 | 0.064 |
Positive blood culture | 0.845 | 0.413–1.726 | 0.643 | 0.989 | 0.484–2.023 | 0.976 |
Interleukin-6 (pg/mL) | 1.000 | 0.999–1.001 | 0.708 | 1.000 | 0.999–1.001 | 0.911 |
C-reactive protein—day 14 (mg/dL) | 1.006 | 1.002–1.010 | 0.005 | 1.007 | 1.002–1.011 | 0.002 |
NLR—day 14 | 1.029 | 1.015–1.042 | <0.001 | 1.028 | 1.014–1.041 | <0.001 |
dNLR—day 14 | 1.092 | 1.053–1.133 | <0.001 | 1.087 | 1.049–1.128 | <0.001 |
PLR—day 14 | 1.002 | 1.001–1.003 | <0.001 | 1.002 | 1.001–1.003 | <0.001 |
LCR—day 14 | 0.107 | 0.003–3.301 | 0.201 | 0.000 | 0.000–1.290 | 0.055 |
Septic Shock | In-Hospital Mortality | |||||
---|---|---|---|---|---|---|
Variables | Hazard Ratio | 95% Confidence Interval | p-Value | Hazard Ratio | 95% Confidence Interval | p-Value |
Scenario 1 | ||||||
Age | 1.027 | 0.992–1.063 | 0.135 | 1.053 | 1.015–1.092 | 0.006 |
Positive tracheal/sputum culture | 1.834 | 0.860–3.913 | 0.117 | |||
C-reactive protein—day 14 (mg/dL) | 1.005 | 1.001–1.009 | 0.026 | 1.005 | 1.001–1.009 | 0.016 |
NLR—day 14 | 1.024 | 1.009–1.039 | 0.001 | 1.021 | 1.006–1.037 | 0.006 |
Scenario 2 | ||||||
Age | 1.022 | 0.986–1.059 | 0.234 | 1.049 | 1.011–1.088 | 0.012 |
Positive tracheal/sputum culture | 1.679 | 0.784–3.593 | 0.182 | |||
C-reactive protein—day 14 (mg/dL) | 1.005 | 1.001–1.009 | 0.025 | 1.005 | 1.001–1.009 | 0.020 |
dNLR—day 14 | 1.066 | 1.025–1.088 | 0.001 | 1.057 | 1.018–1.098 | 0.004 |
Scenario 3 | ||||||
Age | 1.027 | 0.994–1.062 | 0.111 | 1.052 | 1.016–1.091 | 0.005 |
Positive tracheal/sputum culture | 1.907 | 0.896–4.054 | 0.094 | |||
C-reactive protein—day 14 (mg/dL) | 1.005 | 1.001–1.009 | 0.011 | 1.005 | 1.001–1.009 | 0.008 |
PLR—day 14 | 1.002 | 1.001–1.003 | <0.001 | 1.002 | 1.001–1.003 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botoș, I.D.; Pantiș, C.; Bodolea, C.; Nemes, A.; Crișan, D.; Avram, L.; Negrău, M.O.; Hirișcău, I.E.; Crăciun, R.; Puia, C.I. The Dynamics of the Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios Predict Progression to Septic Shock and Death in Patients with Prolonged Intensive Care Unit Stay. Medicina 2023, 59, 32. https://doi.org/10.3390/medicina59010032
Botoș ID, Pantiș C, Bodolea C, Nemes A, Crișan D, Avram L, Negrău MO, Hirișcău IE, Crăciun R, Puia CI. The Dynamics of the Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios Predict Progression to Septic Shock and Death in Patients with Prolonged Intensive Care Unit Stay. Medicina. 2023; 59(1):32. https://doi.org/10.3390/medicina59010032
Chicago/Turabian StyleBotoș, Ioana Denisa, Carmen Pantiș, Constantin Bodolea, Andrada Nemes, Dana Crișan, Lucreția Avram, Marcel Ovidiu Negrău, Ioana Elisabeta Hirișcău, Rareș Crăciun, and Cosmin Ioan Puia. 2023. "The Dynamics of the Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios Predict Progression to Septic Shock and Death in Patients with Prolonged Intensive Care Unit Stay" Medicina 59, no. 1: 32. https://doi.org/10.3390/medicina59010032
APA StyleBotoș, I. D., Pantiș, C., Bodolea, C., Nemes, A., Crișan, D., Avram, L., Negrău, M. O., Hirișcău, I. E., Crăciun, R., & Puia, C. I. (2023). The Dynamics of the Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios Predict Progression to Septic Shock and Death in Patients with Prolonged Intensive Care Unit Stay. Medicina, 59(1), 32. https://doi.org/10.3390/medicina59010032