Cognitive Impairment in Parkinson’s Disease: An Updated Overview Focusing on Emerging Pharmaceutical Treatment Approaches
Abstract
:1. Introduction
2. The Clinical Spectrum of Cognitive Impairment in Parkinson’s Disease
2.1. Subjective Cognitive Decline (SCD)
2.2. Mild Cognitive Impairment (MCI)
2.3. Parkinson’s Disease Dementia (PDD)
3. Pharmaceutical Agents for PD-Related Cognitive Impairment: Evidence from Clinical Studies
3.1. Ceftriaxone
3.2. Ambroxol
3.3. Intranasal Insulin
3.4. Nilotinib
3.5. Atomoxetine
3.6. Mevidalen
3.7. Blarcamesine
3.8. Prasinezumab
3.9. SYN120
3.10. ENT-01
3.11. Other Agents in Clinical Trials for PDD
4. Pharmaceutical Agents for PD-Related Cognitive Impairment under Investigation: Preclinical Evidence
4.1. INT-777
4.2. Neuropeptide S
4.3. BDNF Overexpression via AAV
4.4. Silibinin
4.5. Probiotics
4.6. Osmotin
4.7. Cordycepin
4.8. Huperzine A
4.9. Fibroblast Growth Factor 21
4.10. Poloxamer 188
4.11. Ginsenoside Rb1
4.12. Thioredoxin-1
4.13. Tangeretin
4.14. Istradefylline
4.15. Eugenia uniflora
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.S.; Williams, D.R.; Gallagher, D.A.; Massey, L.A.; Silveira-Moriyama, L.; Lees, A.J. Nonmotor symptoms as presenting complaints in Parkinson’s disease: A clinicopathological study. Mov. Disord. Off. J. Mov. Disord. Soc. 2008, 23, 101–106. [Google Scholar] [CrossRef]
- Schapira, A.H.V.; Chaudhuri, K.R.; Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 2017, 18, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Backstrom, D.; Granasen, G.; Domellof, M.E.; Linder, J.; Jakobson Mo, S.; Riklund, K.; Zetterberg, H.; Blennow, K.; Forsgren, L. Early predictors of mortality in parkinsonism and Parkinson disease: A population-based study. Neurology 2018, 91, e2045–e2056. [Google Scholar] [CrossRef]
- Garcia-Ptacek, S.; Kramberger, M.G. Parkinson Disease and Dementia. J. Geriatr. Psychiatry Neurol. 2016, 29, 261–270. [Google Scholar] [CrossRef]
- Rissardo, J.P.C.; Caprara, A.L.F. Risk factors for Parkinson’s disease dementia. Ann. Mov. Disord. 2023, 1–4. [Google Scholar] [CrossRef]
- Irwin, D.J.; White, M.T.; Toledo, J.B.; Xie, S.X.; Robinson, J.L.; Van Deerlin, V.; Lee, V.M.; Leverenz, J.B.; Montine, T.J.; Duda, J.E.; et al. Neuropathologic substrates of Parkinson disease dementia. Ann. Neurol. 2012, 72, 587–598. [Google Scholar] [CrossRef]
- Han, J.; Fan, Y.; Wu, P.; Huang, Z.; Li, X.; Zhao, L.; Ji, Y.; Zhu, M. Parkinson’s Disease Dementia: Synergistic Effects of Alpha-Synuclein, Tau, Beta-Amyloid, and Iron. Front. Aging Neurosci. 2021, 13, 743754. [Google Scholar] [CrossRef]
- Szewczyk-Krolikowski, K.; Tomlinson, P.; Nithi, K.; Wade-Martins, R.; Talbot, K.; Ben-Shlomo, Y.; Hu, M.T. The influence of age and gender on motor and non-motor features of early Parkinson’s disease: Initial findings from the Oxford Parkinson Disease Center (OPDC) discovery cohort. Park. Relat. Disord. 2014, 20, 99–105. [Google Scholar] [CrossRef]
- Smith, C.; Malek, N.; Grosset, K.; Cullen, B.; Gentleman, S.; Grosset, D.G. Neuropathology of dementia in patients with Parkinson’s disease: A systematic review of autopsy studies. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1234–1243. [Google Scholar] [CrossRef]
- Chahine, L.M.; Xie, S.X.; Simuni, T.; Tran, B.; Postuma, R.; Amara, A.; Oertel, W.H.; Iranzo, A.; Scordia, C.; Fullard, M.; et al. Longitudinal changes in cognition in early Parkinson’s disease patients with REM sleep behavior disorder. Park. Relat. Disord. 2016, 27, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Oedekoven, C.; Egeri, L.; Jessen, F.; Wagner, M.; Dodel, R. Subjective cognitive decline in idiopathic Parkinson s disease: A systematic review. Ageing Res. Rev. 2022, 74, 101508. [Google Scholar] [CrossRef] [PubMed]
- Nandipati, S.; Litvan, I. Environmental Exposures and Parkinson’s Disease. Int. J. Environ. Res. Public Health 2016, 13, 881. [Google Scholar] [CrossRef] [PubMed]
- Hoglinger, G.; Schulte, C.; Jost, W.H.; Storch, A.; Woitalla, D.; Kruger, R.; Falkenburger, B.; Brockmann, K. GBA-associated PD: Chances and obstacles for targeted treatment strategies. J. Neural Transm. 2022, 129, 1219–1233. [Google Scholar] [CrossRef] [PubMed]
- Paul, K.C.; Rausch, R.; Creek, M.M.; Sinsheimer, J.S.; Bronstein, J.M.; Bordelon, Y.; Ritz, B. APOE, MAPT, and COMT and Parkinson’s Disease Susceptibility and Cognitive Symptom Progression. J. Park. Dis. 2016, 6, 349–359. [Google Scholar] [CrossRef]
- Szwedo, A.A.; Pedersen, C.C.; Ushakova, A.; Forsgren, L.; Tysnes, O.B.; Counsell, C.E.; Alves, G.; Lange, J.; Macleod, A.D.; Maple-Grodem, J. Association of SNCA Parkinson’s Disease Risk Polymorphisms with Disease Progression in Newly Diagnosed Patients. Front. Neurol. 2020, 11, 620585. [Google Scholar] [CrossRef]
- Alves, G.; Lange, J.; Blennow, K.; Zetterberg, H.; Andreasson, U.; Forland, M.G.; Tysnes, O.B.; Larsen, J.P.; Pedersen, K.F. CSF Abeta42 predicts early-onset dementia in Parkinson disease. Neurology 2014, 82, 1784–1790. [Google Scholar] [CrossRef]
- Zhang, Q.; Aldridge, G.M.; Narayanan, N.S.; Anderson, S.W.; Uc, E.Y. Approach to Cognitive Impairment in Parkinson’s Disease. Neurotherapeutics 2020, 17, 1495–1510. [Google Scholar] [CrossRef]
- Vasconcellos, L.F.; Pereira, J.S. Parkinson’s disease dementia: Diagnostic criteria and risk factor review. J. Clin. Exp. Neuropsychol. 2015, 37, 988–993. [Google Scholar] [CrossRef]
- Aarsland, D.; Batzu, L.; Halliday, G.M.; Geurtsen, G.J.; Ballard, C.; Ray Chaudhuri, K.; Weintraub, D. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers 2021, 7, 47. [Google Scholar] [CrossRef]
- Goldman, J.G.; Sieg, E. Cognitive Impairment and Dementia in Parkinson Disease. Clin. Geriatr. Med. 2020, 36, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.G.; Holden, S. Treatment of psychosis and dementia in Parkinson’s disease. Curr. Treat. Options Neurol. 2014, 16, 281. [Google Scholar] [CrossRef] [PubMed]
- Rissardo, J.P.; Durante, I.; Sharon, I.; Fornari Caprara, A.L. Pimavanserin and Parkinson’s Disease Psychosis: A Narrative Review. Brain Sci. 2022, 12, 1286. [Google Scholar] [CrossRef] [PubMed]
- Koster, D.P.; Higginson, C.I.; MacDougall, E.E.; Wheelock, V.L.; Sigvardt, K.A. Subjective Cognitive Complaints in Parkinson Disease Without Dementia: A Preliminary Study. Appl. Neuropsychol. Adult 2015, 22, 287–292. [Google Scholar] [CrossRef]
- Kjeldsen, P.L.; Damholdt, M.F. Subjective cognitive complaints in patients with Parkinson’s disease. Acta Neurol. Scand. 2019, 140, 375–389. [Google Scholar] [CrossRef]
- Jongsiriyanyong, S.; Limpawattana, P. Mild Cognitive Impairment in Clinical Practice: A Review Article. Am. J. Alzheimers Dis. Other Dement. 2018, 33, 500–507. [Google Scholar] [CrossRef]
- Aarsland, D.; Kurz, M.W. The epidemiology of dementia associated with Parkinson’s disease. Brain Pathol. 2010, 20, 633–639. [Google Scholar] [CrossRef]
- Yu, R.L.; Wu, R.M. Mild cognitive impairment in patients with Parkinson’s disease: An updated mini-review and future outlook. Front. Aging Neurosci. 2022, 14, 943438. [Google Scholar] [CrossRef]
- Palavra, N.C.; Naismith, S.L.; Lewis, S.J. Mild cognitive impairment in Parkinson’s disease: A review of current concepts. Neurol. Res. Int. 2013, 2013, 576091. [Google Scholar] [CrossRef]
- Peng, Z.; Dong, S.; Tao, Y.; Huo, Y.; Zhou, Z.; Huang, W.; Qu, H.; Liu, J.; Chen, Y.; Xu, Z.; et al. Metabolic syndrome contributes to cognitive impairment in patients with Parkinson’s disease. Park. Relat. Disord. 2018, 55, 68–74. [Google Scholar] [CrossRef]
- Wojtala, J.; Heber, I.A.; Neuser, P.; Heller, J.; Kalbe, E.; Rehberg, S.P.; Storch, A.; Linse, K.; Schneider, C.; Graber, S.; et al. Cognitive decline in Parkinson’s disease: The impact of the motor phenotype on cognition. J. Neurol. Neurosurg. Psychiatry 2019, 90, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.G.; Holden, S.; Ouyang, B.; Bernard, B.; Goetz, C.G.; Stebbins, G.T. Diagnosing PD-MCI by MDS Task Force criteria: How many and which neuropsychological tests? Mov. Disord. Off. J. Mov. Disord. Soc. 2015, 30, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Melzer, T.R.; Watts, R.; MacAskill, M.R.; Pitcher, T.L.; Livingston, L.; Keenan, R.J.; Dalrymple-Alford, J.C.; Anderson, T.J. White matter microstructure deteriorates across cognitive stages in Parkinson disease. Neurology 2013, 80, 1841–1849. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jia, X.; Chen, H.; Feng, T.; Wang, H. Abnormal Spontaneous Brain Activity in Early Parkinson’s Disease with Mild Cognitive Impairment: A Resting-State fMRI Study. Front. Physiol. 2018, 9, 1093. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, F.C.; Iop, R.D.R.; de Oliveira, L.C.; Boll, A.M.; de Alvarenga, J.G.S.; Gutierres Filho, P.J.B.; de Melo, L.; Xavier, A.J.; da Silva, R. Effects of physical exercise programs on cognitive function in Parkinson’s disease patients: A systematic review of randomized controlled trials of the last 10 years. PLoS ONE 2018, 13, e0193113. [Google Scholar] [CrossRef] [PubMed]
- Cammisuli, D.M.; Cammisuli, S.M.; Fusi, J.; Franzoni, F.; Pruneti, C. Parkinson’s Disease-Mild Cognitive Impairment (PD-MCI): A Useful Summary of Update Knowledge. Front. Aging Neurosci. 2019, 11, 303. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, J.; Shang, H. Meta-analysis of risk factors for Parkinson’s disease dementia. Transl. Neurodegener. 2016, 5, 11. [Google Scholar] [CrossRef]
- Emre, M. Clinical features, pathophysiology and treatment of dementia associated with Parkinson’s disease. Handb. Clin. Neurol. 2007, 83, 401–419. [Google Scholar] [CrossRef]
- Harhangi, B.S.; de Rijk, M.C.; van Duijn, C.M.; Van Broeckhoven, C.; Hofman, A.; Breteler, M.M. APOE and the risk of PD with or without dementia in a population-based study. Neurology 2000, 54, 1272–1276. [Google Scholar] [CrossRef]
- Rub, U.; Del Tredici, K.; Schultz, C.; Ghebremedhin, E.; de Vos, R.A.; Jansen Steur, E.; Braak, H. Parkinson’s disease: The thalamic components of the limbic loop are severely impaired by alpha-synuclein immunopositive inclusion body pathology. Neurobiol. Aging 2002, 23, 245–254. [Google Scholar] [CrossRef]
- Emre, M. What causes mental dysfunction in Parkinson’s disease? Mov. Disord. Off. J. Mov. Disord. Soc. 2003, 18 (Suppl. 6), 63–71. [Google Scholar] [CrossRef] [PubMed]
- Emre, M.; Aarsland, D.; Albanese, A.; Byrne, E.J.; Deuschl, G.; De Deyn, P.P.; Durif, F.; Kulisevsky, J.; van Laar, T.; Lees, A.; et al. Rivastigmine for dementia associated with Parkinson’s disease. N. Engl. J. Med. 2004, 351, 2509–2518. [Google Scholar] [CrossRef] [PubMed]
- Seppi, K.; Ray Chaudhuri, K.; Coelho, M.; Fox, S.H.; Katzenschlager, R.; Perez Lloret, S.; Weintraub, D.; Sampaio, C.; the Collaborators of the Parkinson’s Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine Committee. Update on treatments for nonmotor symptoms of Parkinson’s disease—An evidence-based medicine review. Mov. Disord. Off. J. Mov. Disord. Soc. 2019, 34, 180–198. [Google Scholar] [CrossRef]
- Emre, M.; Tsolaki, M.; Bonuccelli, U.; Destee, A.; Tolosa, E.; Kutzelnigg, A.; Ceballos-Baumann, A.; Zdravkovic, S.; Bladstrom, A.; Jones, R.; et al. Memantine for patients with Parkinson’s disease dementia or dementia with Lewy bodies: A randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010, 9, 969–977. [Google Scholar] [CrossRef]
- Tai, C.H.; Bellesi, M.; Chen, A.C.; Lin, C.L.; Li, H.H.; Lin, P.J.; Liao, W.C.; Hung, C.S.; Schwarting, R.K.; Ho, Y.J. A new avenue for treating neuronal diseases: Ceftriaxone, an old antibiotic demonstrating behavioral neuronal effects. Behav. Brain Res. 2019, 364, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.H.; Meng, W.Y.; Liao, W.C.; Weng, J.C.; Li, H.H.; Su, H.L.; Lin, C.L.; Hung, C.S.; Ho, Y.J. Ceftriaxone reverses deficits of behavior and neurogenesis in an MPTP-induced rat model of Parkinson’s disease dementia. Brain Res. Bull. 2017, 132, 129–138. [Google Scholar] [CrossRef]
- Huang, C.K.; Chang, Y.T.; Amstislavskaya, T.G.; Tikhonova, M.A.; Lin, C.L.; Hung, C.S.; Lai, T.J.; Ho, Y.J. Synergistic effects of ceftriaxone and erythropoietin on neuronal and behavioral deficits in an MPTP-induced animal model of Parkinson’s disease dementia. Behav. Brain Res. 2015, 294, 198–207. [Google Scholar] [CrossRef]
- Yang, S.Y.; Taanman, J.W.; Gegg, M.; Schapira, A.H.V. Ambroxol reverses tau and alpha-synuclein accumulation in a cholinergic N370S GBA1 mutation model. Hum. Mol. Genet. 2022, 31, 2396–2405. [Google Scholar] [CrossRef]
- Novak, P.; Pimentel Maldonado, D.A.; Novak, V. Safety and preliminary efficacy of intranasal insulin for cognitive impairment in Parkinson disease and multiple system atrophy: A double-blinded placebo-controlled pilot study. PLoS ONE 2019, 14, e0214364. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X.; Li, S.; Wang, H.; Zhang, X.; Liu, L.; Xie, A. Intranasal insulin ameliorates cognitive impairment in a rat model of Parkinson’s disease through Akt/GSK3beta signaling pathway. Life Sci. 2020, 259, 118159. [Google Scholar] [CrossRef]
- Pagan, F.L.; Wilmarth, B.; Torres-Yaghi, Y.; Hebron, M.L.; Mulki, S.; Ferrante, D.; Matar, S.; Ahn, J.; Moussa, C. Long-Term Safety and Clinical Effects of Nilotinib in Parkinson’s Disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2021, 36, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xu, X.; Zheng, L.; Mo, J.; Jin, X.; Bao, Y. Nilotinib inhibits microglia-mediated neuroinflammation to protect against dopaminergic neuronal death in Parkinson’s disease models. Int. Immunopharmacol. 2021, 99, 108025. [Google Scholar] [CrossRef]
- Zweig, R.M.; Cardillo, J.E.; Cohen, M.; Giere, S.; Hedreen, J.C. The locus ceruleus and dementia in Parkinson’s disease. Neurology 1993, 43, 986–991. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, D.; Mavandadi, S.; Mamikonyan, E.; Siderowf, A.D.; Duda, J.E.; Hurtig, H.I.; Colcher, A.; Horn, S.S.; Nazem, S.; Ten Have, T.R.; et al. Atomoxetine for depression and other neuropsychiatric symptoms in Parkinson disease. Neurology 2010, 75, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Marsh, L.; Biglan, K.; Gerstenhaber, M.; Williams, J.R. Atomoxetine for the treatment of executive dysfunction in Parkinson’s disease: A pilot open-label study. Mov. Disord. Off. J. Mov. Disord. Soc. 2009, 24, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Hinson, V.K.; Delambo, A.; Elm, J.; Turner, T. A Randomized Clinical Trial of Atomoxetine for Mild Cognitive Impairment in Parkinson’s Disease. Mov. Disord. Clin. Pract. 2017, 4, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Armstrong, M.J. Treatment of Parkinson’s Disease with Cognitive Impairment: Current Approaches and Future Directions. Behav. Sci. 2021, 11, 54. [Google Scholar] [CrossRef]
- Svensson, K.A.; Hao, J.; Bruns, R.F. Positive allosteric modulators of the dopamine D1 receptor: A new mechanism for the treatment of neuropsychiatric disorders. Adv. Pharmacol. 2019, 86, 273–305. [Google Scholar] [CrossRef]
- Biglan, K.; Munsie, L.; Svensson, K.A.; Ardayfio, P.; Pugh, M.; Sims, J.; Brys, M. Safety and Efficacy of Mevidalen in Lewy Body Dementia: A Phase 2, Randomized, Placebo-Controlled Trial. Mov. Disord. Off. J. Mov. Disord. Soc. 2022, 37, 513–524. [Google Scholar] [CrossRef]
- Siddiqui, T.; Bhatt, L.K. Targeting Sigma-1 Receptor: A Promising Strategy in the Treatment of Parkinson’s Disease. Neurochem. Res. 2023, 48, 2925–2935. [Google Scholar] [CrossRef]
- Schenk, D.B.; Koller, M.; Ness, D.K.; Griffith, S.G.; Grundman, M.; Zago, W.; Soto, J.; Atiee, G.; Ostrowitzki, S.; Kinney, G.G. First-in-human assessment of PRX002, an anti-alpha-synuclein monoclonal antibody, in healthy volunteers. Mov. Disord. Off. J. Mov. Disord. Soc. 2017, 32, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J.; Goodman, I.; Safirstein, B.; Marmon, T.K.; Schenk, D.B.; Koller, M.; Zago, W.; Ness, D.K.; Griffith, S.G.; Grundman, M.; et al. Safety and Tolerability of Multiple Ascending Doses of PRX002/RG7935, an Anti-alpha-Synuclein Monoclonal Antibody, in Patients With Parkinson Disease: A Randomized Clinical Trial. JAMA Neurol. 2018, 75, 1206–1214. [Google Scholar] [CrossRef]
- Fernandez, H.H.; Weintraub, D.; Macklin, E.; Litvan, I.; Schwarzschild, M.A.; Eberling, J.; Videnovic, A.; Kenney, C.J.; Parkinson Study Group, S.I. Safety, tolerability, and preliminary efficacy of SYN120, a dual 5-HT6/5-HT2A antagonist, for the treatment of Parkinson disease dementia: A randomized, controlled, proof-of-concept trial. Park. Relat. Disord. 2023, 114, 105511. [Google Scholar] [CrossRef]
- Hauser, R.A.; Sutherland, D.; Madrid, J.A.; Rol, M.A.; Frucht, S.; Isaacson, S.; Pagan, F.; Maddux, B.N.; Li, G.; Tse, W.; et al. Targeting neurons in the gastrointestinal tract to treat Parkinson’s disease. Clin. Park. Relat. Disord. 2019, 1, 2–7. [Google Scholar] [CrossRef]
- Barth, A.L.; Schneider, J.S.; Johnston, T.H.; Hill, M.P.; Brotchie, J.M.; Moskal, J.R.; Cearley, C.N. NYX-458 Improves Cognitive Performance in a Primate Parkinson’s Disease Model. Mov. Disord. Off. J. Mov. Disord. Soc. 2020, 35, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Johnston, J.L.; Reda, S.M.; Setti, S.E.; Taylor, R.W.; Berthiaume, A.A.; Walker, W.E.; Wu, W.; Moebius, H.J.; Church, K.J. Fosgonimeton, a Novel Positive Modulator of the HGF/MET System, Promotes Neurotrophic and Procognitive Effects in Models of Dementia. Neurotherapeutics 2023, 20, 431–451. [Google Scholar] [CrossRef] [PubMed]
- Hanagasi, H.A.; Gurvit, H.; Unsalan, P.; Horozoglu, H.; Tuncer, N.; Feyzioglu, A.; Gunal, D.I.; Yener, G.G.; Cakmur, R.; Sahin, H.A.; et al. The effects of rasagiline on cognitive deficits in Parkinson’s disease patients without dementia: A randomized, double-blind, placebo-controlled, multicenter study. Mov. Disord. Off. J. Mov. Disord. Soc. 2011, 26, 1851–1858. [Google Scholar] [CrossRef]
- Frakey, L.L.; Friedman, J.H. Cognitive Effects of Rasagiline in Mild-to-Moderate Stage Parkinson’s Disease Without Dementia. J. Neuropsychiatry Clin. Neurosci. 2017, 29, 22–25. [Google Scholar] [CrossRef]
- Eggert, K.; Ohlwein, C.; Kassubek, J.; Wolz, M.; Kupsch, A.; Ceballos-Baumann, A.; Ehret, R.; Polzer, U.; Klostermann, F.; Schwarz, J.; et al. Influence of the nonergot dopamine agonist piribedil on vigilance in patients With Parkinson Disease and excessive daytime sleepiness (PiViCog-PD): An 11-week randomized comparison trial against pramipexole and ropinirole. Clin. Neuropharmacol. 2014, 37, 116–122. [Google Scholar] [CrossRef]
- Nie, K.; Li, Y.; Zhang, J.; Gao, Y.; Qiu, Y.; Gan, R.; Zhang, Y.; Wang, L. Distinct Bile Acid Signature in Parkinson’s Disease With Mild Cognitive Impairment. Front. Neurol. 2022, 13, 897867. [Google Scholar] [CrossRef]
- Huang, R.; Gao, Y.; Chen, J.; Duan, Q.; He, P.; Zhang, J.; Huang, H.; Zhang, Q.; Ma, G.; Zhang, Y.; et al. TGR5 Agonist INT-777 Alleviates Inflammatory Neurodegeneration in Parkinson’s Disease Mouse Model by Modulating Mitochondrial Dynamics in Microglia. Neuroscience 2022, 490, 100–119. [Google Scholar] [CrossRef] [PubMed]
- Holanda, V.A.D.; Didonet, J.J.; Costa, M.B.B.; do Nascimento Rangel, A.H.; da Silva, E.D., Jr.; Gavioli, E.C. Neuropeptide S Receptor as an Innovative Therapeutic Target for Parkinson Disease. Pharmaceuticals 2021, 14, 775. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, A.; Bulbul, M.; Derin, N.; Sinen, O.; Akcay, G.; Parlak, H.; Aydin Aslan, M.; Agar, A. Neuropeptide-S affects cognitive impairment and depression-like behavior on MPTP induced experimental mouse model of Parkinson’s disease. Turk. J. Med. Sci. 2021, 51, 3126–3135. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Wang, J. Brain-derived neurotrophic factor attenuates cognitive impairment and motor deficits in a mouse model of Parkinson’s disease. Brain Behav. 2021, 11, e2251. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C.; Liu, W.; Song, S.; Fu, J.; Hayashi, T.; Mizuno, K.; Hattori, S.; Fujisaki, H.; Ikejima, T. Oral Administration of Silibinin Ameliorates Cognitive Deficits of Parkinson’s Disease Mouse Model by Restoring Mitochondrial Disorders in Hippocampus. Neurochem. Res. 2021, 46, 2317–2332. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Yu, L.; Li, Y.; Guo, H.; Zhai, Q.; Chen, W.; Tian, F. Meta-analysis of randomized controlled trials of the effects of probiotics in Parkinson’s disease. Food Funct. 2023, 14, 3406–3422. [Google Scholar] [CrossRef]
- Ishii, T.; Furuoka, H.; Kaya, M.; Kuhara, T. Oral Administration of Probiotic Bifidobacterium breve Improves Facilitation of Hippocampal Memory Extinction via Restoration of Aberrant Higher Induction of Neuropsin in an MPTP-Induced Mouse Model of Parkinson’s Disease. Biomedicines 2021, 9, 167. [Google Scholar] [CrossRef]
- Castelli, V.; d’Angelo, M.; Lombardi, F.; Alfonsetti, M.; Antonosante, A.; Catanesi, M.; Benedetti, E.; Palumbo, P.; Cifone, M.G.; Giordano, A.; et al. Effects of the probiotic formulation SLAB51 in in vitro and in vivo Parkinson’s disease models. Aging 2020, 12, 4641–4659. [Google Scholar] [CrossRef]
- Park, J.S.; Choe, K.; Lee, H.J.; Park, T.J.; Kim, M.O. Neuroprotective effects of osmotin in Parkinson’s disease-associated pathology via the AdipoR1/MAPK/AMPK/mTOR signaling pathways. J. Biomed. Sci. 2023, 30, 66. [Google Scholar] [CrossRef]
- Cheng, C.; Zhu, X. Cordycepin mitigates MPTP-induced Parkinson’s disease through inhibiting TLR/NF-kappaB signaling pathway. Life Sci. 2019, 223, 120–127. [Google Scholar] [CrossRef]
- Huang, S.Y.; Su, Z.Y.; Han, Y.Y.; Liu, L.; Shang, Y.J.; Mai, Z.F.; Zeng, Z.W.; Li, C.H. Cordycepin improved the cognitive function through regulating adenosine A(2A) receptors in MPTP induced Parkinson’s disease mice model. Phytomed. Int. J. Phytother. Phytopharm. 2023, 110, 154649. [Google Scholar] [CrossRef]
- Guo, X.; Wu, Y.; Wang, Q.; Zhang, J.; Sheng, X.; Zheng, L.; Wang, Y. Huperzine A injection ameliorates motor and cognitive abnormalities via regulating multiple pathways in a murine model of Parkinson’s disease. Eur. J. Pharmacol. 2023, 956, 175970. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Ma, J.; Mu, D.; Li, B.; Lian, B.; Sun, C. FGF21 Protects Dopaminergic Neurons in Parkinson’s Disease Models Via Repression of Neuroinflammation. Neurotox. Res. 2020, 37, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, W.; Deng, P.; Wang, X.; Zhu, L.; Zhao, L.; Li, C.; Gao, H. Fibroblast growth factor 21 ameliorates behavior deficits in Parkinson’s disease mouse model via modulating gut microbiota and metabolic homeostasis. CNS Neurosci. Ther. 2023; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Lin, H.; Hong, X.; Ji, D.; Wu, F. Poloxamer 188-mediated anti-inflammatory effect rescues cognitive deficits in paraquat and maneb-induced mouse model of Parkinson’s disease. Toxicology 2020, 436, 152437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Liu, Y.; Kang, X.P.; Dou, C.Y.; Zhuo, R.G.; Huang, S.Q.; Peng, L.; Wen, L. Ginsenoside Rb1 confers neuroprotection via promotion of glutamate transporters in a mouse model of Parkinson’s disease. Neuropharmacology 2018, 131, 223–237. [Google Scholar] [CrossRef]
- Qu, S.; Meng, X.; Liu, Y.; Zhang, X.; Zhang, Y. Ginsenoside Rb1 prevents MPTP-induced changes in hippocampal memory via regulation of the alpha-synuclein/PSD-95 pathway. Aging 2019, 11, 1934–1964. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, L.; Zhang, S.; Zhou, X.; Li, Y.; Bai, J. Trx-1 ameliorates learning and memory deficits in MPTP-induced Parkinson’s disease model in mice. Free Radic. Biol. Med. 2018, 124, 380–387. [Google Scholar] [CrossRef]
- Yang, J.S.; Wu, X.H.; Yu, H.G.; Teng, L.S. Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease dementia in rats. Inflammopharmacology 2017, 25, 471–484. [Google Scholar] [CrossRef]
- Cummins, L.; Cates, M.E. Istradefylline: A novel agent in the treatment of “off” episodes associated with levodopa/carbidopa use in Parkinson disease. Ment. Health Clin. 2022, 12, 32–36. [Google Scholar] [CrossRef]
- Ko, W.K.D.; Camus, S.M.; Li, Q.; Yang, J.; McGuire, S.; Pioli, E.Y.; Bezard, E. An evaluation of istradefylline treatment on Parkinsonian motor and cognitive deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaque models. Neuropharmacology 2016, 110, 48–58. [Google Scholar] [CrossRef]
- Savall, A.S.P.; Fidelis, E.M.; de Mello, J.D.; Quines, C.B.; Denardin, C.C.; Marques, L.S.; Klann, I.P.; Nogueira, C.W.; Sampaio, T.B.; Pinton, S. Neuroprotective effect of Eugenia uniflora against intranasal MPTP-induced memory impairments in rats: The involvement of pro-BDNF/p75(NTR) pathway. Life Sci. 2023, 324, 121711. [Google Scholar] [CrossRef] [PubMed]
- Olanow, C.W.; Kieburtz, K.; Schapira, A.H. Why have we failed to achieve neuroprotection in Parkinson’s disease? Ann. Neurol. 2008, 64 (Suppl. 2), S101–S110. [Google Scholar] [CrossRef] [PubMed]
- Mari, Z.; Mestre, T.A. The Disease Modification Conundrum in Parkinson’s Disease: Failures and Hopes. Front. Aging Neurosci. 2022, 14, 810860. [Google Scholar] [CrossRef] [PubMed]
- Mathur, S.; DeWitte, S.; Robledo, I.; Isaacs, T.; Stamford, J. Rising to the Challenges of Clinical Trial Improvement in Parkinson’s Disease. J. Park. Dis. 2015, 5, 263–268. [Google Scholar] [CrossRef]
- Delgado-Alvarado, M.; Gago, B.; Navalpotro-Gomez, I.; Jimenez-Urbieta, H.; Rodriguez-Oroz, M.C. Biomarkers for dementia and mild cognitive impairment in Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2016, 31, 861–881. [Google Scholar] [CrossRef]
- Angelopoulou, E.; Papachristou, N.; Bougea, A.; Stanitsa, E.; Kontaxopoulou, D.; Fragkiadaki, S.; Pavlou, D.; Koros, C.; Degirmenci, Y.; Papatriantafyllou, J.; et al. How Telemedicine Can Improve the Quality of Care for Patients with Alzheimer’s Disease and Related Dementias? A Narrative Review. Medicina 2022, 58, 1705. [Google Scholar] [CrossRef]
- Greenland, J.C.; Cutting, E.; Kadyan, S.; Bond, S.; Chhabra, A.; Williams-Gray, C.H. Azathioprine immunosuppression and disease modification in Parkinson’s disease (AZA-PD): A randomised double-blind placebo-controlled phase II trial protocol. BMJ Open 2020, 10, e040527. [Google Scholar] [CrossRef]
Characteristic | PD-NC | PD-SCD | PD-MCI | PDD |
---|---|---|---|---|
Subjective complains | No | Yes | Yes | Yes |
Objective deficits in neuropsychological testing | No | No | Yes | Yes |
Cognitive deficits | No | No | Most commonly executive dysfunction | Executive dysfunction, visuospatial deficits, memory impairment, visual hallucinations, attention deficits, fluctuations |
Functional impairment in ADLs | No | No | Relatively preserved | Yes |
Investigating Drug | Clinical Trial Number | Clinical Trial Status (Date Accessed ClinicalTrials.gov: 16 September 2023) |
---|---|---|
Ceftriaxone | NCT03413384 | Ongoing |
Ambroxol | NCT02914366 | Ongoing |
Intranasal insulin | NCT02064166, NCT04687878 | Completed, Unknown |
Nilotinib | NCT02954978 | Unknown |
Atomoxetine | NCT00304161 | Completed |
Mevidalen | NCT03305809 | Completed |
Blarcamesine | NCT03774459 | Completed |
Prasinezumab | NCT03100149 | Ongoing |
SYN120 | NCT02258152 | Completed |
ENT-01 | NCT03938922 | Suspended |
NYX-458 | NCT04148391 | Ongoing |
GRF6021 | NCT03713957 | Completed |
Fosgonimeton | NCT04831281 | Ongoing |
Rasagiline | NCT00696215, NCT01382342 | Unknown, Completed |
Piribedil | NCT01007864 | Completed |
SAGE-718 | NCT05318937, NCT04476017 | Ongoing, Completed |
CST-2032 and CST-107 | NCT05104463 | Ongoing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degirmenci, Y.; Angelopoulou, E.; Georgakopoulou, V.E.; Bougea, A. Cognitive Impairment in Parkinson’s Disease: An Updated Overview Focusing on Emerging Pharmaceutical Treatment Approaches. Medicina 2023, 59, 1756. https://doi.org/10.3390/medicina59101756
Degirmenci Y, Angelopoulou E, Georgakopoulou VE, Bougea A. Cognitive Impairment in Parkinson’s Disease: An Updated Overview Focusing on Emerging Pharmaceutical Treatment Approaches. Medicina. 2023; 59(10):1756. https://doi.org/10.3390/medicina59101756
Chicago/Turabian StyleDegirmenci, Yildiz, Efthalia Angelopoulou, Vasiliki Epameinondas Georgakopoulou, and Anastasia Bougea. 2023. "Cognitive Impairment in Parkinson’s Disease: An Updated Overview Focusing on Emerging Pharmaceutical Treatment Approaches" Medicina 59, no. 10: 1756. https://doi.org/10.3390/medicina59101756
APA StyleDegirmenci, Y., Angelopoulou, E., Georgakopoulou, V. E., & Bougea, A. (2023). Cognitive Impairment in Parkinson’s Disease: An Updated Overview Focusing on Emerging Pharmaceutical Treatment Approaches. Medicina, 59(10), 1756. https://doi.org/10.3390/medicina59101756