Associated Bacterial Coinfections in COVID-19-Positive Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Microbiological Sampling
2.3. Statistical Analysis
3. Results
3.1. COVID-19-Negative Patients
3.2. COVID-19-Positive Patients
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization—WHO. Coronavirus Disease (COVID-19) Pandemic: Advice for the Pubic: Country and Technical Guidance; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.Who.Int/emergencies/diseases/novelcoronavirus-2019 (accessed on 15 September 2023).
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. China Medical Treatment Expert Group for COVID-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Soffritti, I.; D’Accolti, M.; Fabbri, C.; Passaro, A.; Manfredini, R.; Zuliani, G.; Libanore, M.; Franchi, M.; Contini, C.; Caselli, E. Oral Microbiome Dysbiosis Is Associated with Symptoms Severity and Local Immune/Inflammatory Response in COVID-19 Patients: A Cross-Sectional Study. Front. Microbiol. 2021, 12, 687513. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Koo, H.; Chen, Q.; Zhou, X.; Liu, Y.; Simon-Soro, A. Potential implications of SARS-CoV-2 oral infection in the host microbiota. J. Oral Microbiol. 2020, 13, 1853451. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Pérez, P.; Kato, T.; Mikami, Y.; Okuda, K.; Gilmore, R.C.; Conde, C.D.; Gasmi, B.; Stein, S.; Beach, M.; et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med. 2021, 27, 892–903. [Google Scholar] [CrossRef]
- Takahashi, Y.; Watanabe, N.; Kamio, N.; Kobayashi, R.; Iinuma, T.; Imai, K. Aspiration of periodontopathic bacteria due to poor oral hygiene potentially contributes to the aggravation of COVID-19. J. Oral Sci. 2020, 63, 1–3. [Google Scholar] [CrossRef]
- Bao, L.; Zhang, C.; Dong, J.; Zhao, L.; Li, Y.; Sun, J. Oral Microbiome and SARS-CoV-2: Beware of Lung Co-infection. Front. Microbiol. 2020, 11, 1840. [Google Scholar] [CrossRef]
- Zhu, X.; Ge, Y.; Wu, T.; Zhao, K.; Chen, Y.; Wu, B.; Zhu, F.; Zhu, B.; Cui, L. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res. 2020, 285, 198005. [Google Scholar] [CrossRef]
- Westblade, L.F.; Simon, M.S.; Satlin, M.J. Bacterial Coinfections in Coronavirus Disease 2019. Trends Microbiol. 2021, 29, 930–941. [Google Scholar] [CrossRef]
- Anand, P.S.; Jadhav, P.; Kamath, K.P.; Kumar, S.R.; Vijayalaxmi, S.; Anil, S. A case-control study on the association between periodontitis and coronavirus disease (COVID-19). J. Periodontol. 2022, 93, 584–590. [Google Scholar] [CrossRef]
- Kumar, G.; Adams, A.; Hererra, M.; Rojas, E.R.; Singh, V.; Sakhuja, A.; Meersman, M.; Dalton, D.; Kethireddy, S.; Nanchal, R.; et al. Predictors and outcomes of HAIs in COVID-19 patients. Int. J. Infect. Dis. 2020, 104, 287–292. [Google Scholar] [CrossRef]
- Ripa, M.; Galli, L.; Poli, A.; Oltolini, C.; Spagnuolo, V.; Mastrangelo, A.; Muccini, C.; Monti, G.; De Luca, G.; Landoni, G.; et al. Secondary infections in patients hospitalized with COVID-19: Incidence and predictive factors. Clin. Microbiol. Infect. 2021, 27, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Tiseo, G.; Giordano, C.; Leonildi, A.; Menichini, M.; Vecchione, A.; Pistello, M.; Guarracino, F.; Ghiadoni, L.; Forfori, F.; et al. Predictors of hospital-acquired bacterial and fungal superinfections in COVID-19: A prospective observational study. J. Antimicrob. Chemother. 2021, 76, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; He, M.; Shu, Q.; Wu, M.; Chen, C.; Xue, Y. Analysis of the risk factors for nosocomial bacterial infection in patients with COVID-19 in a tertiary care hospital. Risk Manag. Healthc. Policy 2020, 13, 2593–2599. [Google Scholar] [CrossRef]
- Bardi, T.; Pintado, V.; Gomez-Rojo, M.; Escudero-Sanchez, R.; Azzam Lopez, A.; Diez-Remesal, Y.; Martinez Castro, N.; Ruiz-Garbajosa, P.; Pestaña, D. Nosocomial infections associated to COVID-19 in the intensive care unit: Clinical characteristics and outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Pal, C.; Przydzial, P.; Chika-Nwosuh, O.; Shah, S.; Patel, P.; Madan, N. Streptococcus pneumoniae Coinfection in COVID-19: A Series of Three Cases. Case Rep. Pulmonol. 2020, 2020, 8849068. [Google Scholar] [CrossRef]
- Hajishengallis, G.; Darveau, R.P.; Curtis, M.A. The keystone-pathogen hypothesis. Nat. Rev. Microbiol. 2012, 10, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Dubin, J.M.; Bennett, N.E.; Halpern, J.A. The adverse impact of COVID-19 on men’s health. Curr. Opin. Urol. 2022, 32, 146–151. [Google Scholar] [CrossRef]
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef]
- Bienvenu, L.A.; Noonan, J.; Wang, X.; Peter, K. Higher mortality of COVID-19 in males: Sex differences in immune response and cardiovascular comorbidities. Cardiovasc. Res. 2020, 116, 2197–2206. [Google Scholar] [CrossRef]
- Sarialioğlu, F.; Belen, F.B.; Hayran, K.M. Hepatitis A susceptibility parallels high COVID-19 mortality. Turk. J. Med. Sci. 2021, 51, 382–384. [Google Scholar] [CrossRef]
- Abdollahi, A.; Salarvand, S.; Mehrtash, V.; Jafarzadeh, B.; Ghalehtaki, R.; Nateghi, S. Is There a Correlation Between COVID-19 and Hepatitis A and Hepatitis E Serum Antibody Level? Iran. J. Pathol. 2022, 17, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, S.A.; Buti, M. COVID-19 and hepatitis B infection. Antivir. Ther. 2020, 25, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Katz, J. Prevalence of candidiasis and oral candidiasis in COVID-19 patients: A cross-sectional pilot study from the patients’ registry in a large health center. Quintessence Int. 2021, 52, 714–718. [Google Scholar] [CrossRef]
- Babamahmoodi, F.; Rezai, M.S.; Ahangarkani, F.; Mohammadi Kali, A.; Alizadeh-Navaei, R.; Alishahi, A.; Najafi, N.; Haddadi, A.; Davoudi, A.; Azargon, L.; et al. Multiple Candida strains causing oral infection in COVID-19 patients under corticosteroids and antibiotic therapy: An observational study. Front. Cell. Infect. Microbiol. 2022, 12, 1103226. [Google Scholar] [CrossRef] [PubMed]
- Nambiar, M.; Varma, S.R.; Jaber, M.; Sreelatha, S.V.; Thomas, B.; Nair, A.S. Mycotic infections–mucormycosis and oral candidiasis associated with COVID-19: A significant and challenging association. J. Oral Microbiol. 2021, 13, 1967699. [Google Scholar] [CrossRef] [PubMed]
- Riad, A.; Gad, A.; Hockova, B.; Klugar, M. Oral candidiasis in non-severe COVID-19 patients: Call for antibiotic stewardship. Oral Surg. 2022, 15, 465. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Ahmadikia, K.; Mahmoudi, S.; Kalantari, S.; Jamalimoghadamsiahkali, S.; Izadi, A.; Kord, M.; Dehghan Manshadi, S.A.; Seifi, A.; Ghiasvand, F.; et al. Oropharyngeal candidiasis in hospitalised COVID-19 patients from Iran: Species identification and antifungal susceptibility pattern. Mycoses 2020, 63, 771–778. [Google Scholar] [CrossRef]
- Frías-De-León, M.G.; Pinto-Almazán, R.; Hernández-Castro, R.; García-Salazar, E.; Meza-Meneses, P.; Rodríguez-Cerdeira, C.; Arenas, R.; Conde-Cuevas, E.; Acosta-Altamirano, G.; Martínez-Herrera, E. Epidemiology of Systemic Mycoses in the COVID-19 Pandemic. J. Fungi 2021, 7, 556. [Google Scholar] [CrossRef]
- Larios Serrato, V.; Meza, B.; Gonzalez-Torres, C.; Gaytan-Cervantes, J.; González Ibarra, J.; Santacruz Tinoco, C.E.; Anguiano Hernández, Y.M.; Martínez Miguel, B.; Cázarez Cortazar, A.; Sarquiz Martínez, B.; et al. Diversity, composition, and networking of saliva microbiota distinguish the severity of COVID-19 episodes as revealed by an analysis of 16S rRNA variable V1-V3 region sequences. mSystems 2023, 8, e0106222. [Google Scholar] [CrossRef]
- Wei, N.; Zhu, G.; Zhao, T.; Wang, Y.; Lou, H.; Li, H.; Yang, Z.; Zhang, Z.; Wang, Q.; Han, M.; et al. Characterization of oral bacterial and fungal microbiome in recovered COVID-19 patients. BMC Microbiol. 2023, 23, 123. [Google Scholar] [CrossRef]
- Kim, J.G.; Zhang, A.; Rauseo, A.M.; Goss, C.W.; Mudd, P.A.; O’Halloran, J.A.; Wang, L. The salivary and nasopharyngeal microbiomes are associated with SARS-CoV-2 infection and disease severity. J. Med. Virol. 2023, 95, e28445. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Bhanushali, S.; Sanap, A.; Shekatkar, M.; Kharat, A.; Raut, C.; Bhonde, R.; Shouche, Y.; Kheur, S.; Sharma, A. Oral dysbiosis and its linkage with SARS-CoV-2 infection. Microbiol. Res. 2022, 261, 127055. [Google Scholar] [CrossRef] [PubMed]
- Naik, T.B.; Nadagir, S.D.; Biradar, A. Prevalence of Beta-Hemolytic Streptococci Groups A, C, and G in Patients with Acute Pharyngitis. J. Lab. Physicians 2016, 8, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Long, S.S.; Prober, C.G.; Fischer, M.; Kimberlin, D.W. (Eds.) Principles and Practice of Pediatric Infectious Diseases; Elsevier Health Sciences: Philadelphia, PA, USA, 2022. [Google Scholar]
- Siemens, N.; Snäll, J.; Svensson, M.; Norrby-Teglund, A. Pathogenic Mechanisms of Streptococcal Necrotizing Soft Tissue Infections. Adv. Exp. Med. Biol. 2020, 1294, 127–150. [Google Scholar] [CrossRef]
- Siemens, N.; Kittang, B.R.; Chakrakodi, B.; Oppegaard, O.; Johansson, L.; Bruun, T.; Mylvaganam, H.; INFECT Study Group; Svensson, M.; Skrede, S.; et al. Increased cytotoxicity and streptolysin O activity in group G streptococcal strains causing invasive tissue infections. Sci. Rep. 2015, 5, 16945. [Google Scholar] [CrossRef]
- Berenguer, J.; Sampedro, I.; Cercenado, E.; Baraia, J.; Rodríguez-Créixems, M.; Bouza, E. Group-C beta-hemolytic streptococcal bacteremia. Diagn. Microbiol. Infect. Dis. 1992, 15, 151–155. [Google Scholar] [CrossRef]
- Inagaki, Y.; Abe, M.; Inaki, R.; Zong, L.; Suenaga, H.; Abe, T.; Hoshi, K. A Case of Systemic Infection Caused by Streptococcus pyogenes Oral Infection in an Edentulous Patient. Diseases 2017, 5, 17. [Google Scholar] [CrossRef]
- Mitchell, T. The pathogenesis of streptococcal infections: From Tooth decay to meningitis. Nat. Rev. Microbiol. 2003, 1, 219–230. [Google Scholar] [CrossRef]
- Riba-Terés, N.; Jorba-García, A.; Toledano-Serrabona, J.; Aguilar-Durán, L.; Figueiredo, R.; Valmaseda-Castellón, E. Microbiota of alveolar osteitis after permanent tooth extractions: A systematic review. J. Stomatol. Oral Maxillofac. Surg. 2021, 122, 173–181. [Google Scholar] [CrossRef]
- Nosari, A. Infectious complications in chronic lymphocytic leukemia. Mediterr. J. Hematol. Infect Dis. 2012, 4, e2012070. [Google Scholar] [CrossRef]
- Brueggemann, A.B.; Jansen van Rensburg, M.J.; Shaw, D.; McCarthy, N.D.; Jolley, K.A.; Maiden, M.C.J.; van der Linden, M.P.G.; Amin-Chowdhury, Z.; Bennett, D.E.; Borrow, R.; et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: A prospective analysis of surveillance data. Lancet Digit. Health 2021, 3, e360–e370, Erratum in Lancet Digit. Health 2021. [Google Scholar] [CrossRef] [PubMed]
- Rademaker, E.; Doorduijn, D.J.; Kusadasi, N.; Maas, C.; Drylewicz, J.; Huisman, A.; Hoefer, I.E.; Bonten, M.J.M.; Derde, L.P.G.; Rooijakkers, S.H.M.; et al. Thrombosis pathways in COVID-19 vs. influenza-associated ARDS: A targeted proteomics approach. J. Thromb. Haemost. 2022, 20, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Hindy, J.R.; Quintero-Martinez, J.A.; Lee, A.T.; Scott, C.G.; Gerberi, D.J.; Mahmood, M.; DeSimone, D.C.; Baddour, L.M. Incidence Trends and Epidemiology of Staphylococcus aureus Bacteremia: A Systematic Review of Population-Based Studies. Cureus 2022, 14, e25460. [Google Scholar] [CrossRef] [PubMed]
- Olsen, K.; Sangvik, M.; Simonsen, G.S.; Sollid, J.U.; Sundsfjord, A.; Thune, I.; Furberg, A.S. Prevalence and population structure of Staphylococcus aureus nasal carriage in healthcare workers in a general population. The Tromsø Staph and Skin Study. Epidemiol. Infect. 2013, 141, 143–152. [Google Scholar] [CrossRef]
- Sasson, G.; Bai, A.D.; Showler, A.; Burry, L.; Steinberg, M.; Ricciuto, D.R.; Fernandes, T.; Chiu, A.; Raybardhan, S.; Science, M.; et al. Staphylococcus aureus bacteremia in immunosuppressed patients: A multicenter, retrospective cohort study. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1231–1241. [Google Scholar] [CrossRef]
- Grdanoska, T.; Zafirovska, P.; Jaglikovski, B.; Pavlovska, I.; Zafirova, B.; Tosheska-Trajkovska, K.; Trajkovska-Dokic, E.; Petrovska, M.; Cekovska, Z.; Kondova-Topuzovska, I.; et al. Chlamydia pneumoniae and helicobacter pylori serology—Importance in patients with coronary heart disease. Mater. Sociomed. 2012, 24, 151–156. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.; Jiman-Fatani, A.A.; El-Banna, H. Role of Chlamydia pneumoniae, helicobacter pylori and cytomegalovirus in coronary artery disease. Pak. J. Pharm. Sci. 2011, 24, 95–101. [Google Scholar]
- Jha, H.C.; Prasad, J.; Mittal, A. High immunoglobulin A seropositivity for combined Chlamydia pneumoniae, Helicobacter pylori infection, and high-sensitivity C-reactive protein in coronary artery disease patients in India can serve as atherosclerotic marker. Heart Vessel. 2008, 23, 390–396. [Google Scholar] [CrossRef]
- Hix, J.K.; Silver, S.; Sterns, R.H. Diuretic-associated hyponatremia. Semin. Nephrol. 2011, 31, 553–566. [Google Scholar] [CrossRef]
- Annane, D.; Bellissant, E.; Bollaert, P.E.; Briegel, J.; Keh, D.; Kupfer, Y.; Pirracchio, R.; Rochwerg, B. Corticosteroids for treating sepsis in children and adults. Cochrane Database Syst. Rev. 2019, 12, CD002243. [Google Scholar] [CrossRef]
- Gunnarsson, R.K.; Manchal, N. Group C beta hemolytic Streptococci as a potential pathogen in patients presenting with an uncomplicated acute sore throat—A systematic literature review and meta-analysis. Scand. J. Prim. Health Care 2020, 38, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Thissen, J.B.; Morrison, M.D.; Mulakken, N.; Nelson, W.C.; Daum, C.; Messenger, S.; Wadford, D.A.; Jaing, C. Evaluation of co-circulating pathogens and microbiome from COVID-19 infections. PLoS ONE 2022, 17, e0278543. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.L.; He, M.Z.; Han, M.Z.; Gui, H.Y.; Wang, P.; Yu, J.L.; Ge, Y.L.; Sun, Y.; Huang, S.H. Characterization of Altered Oropharyngeal Microbiota in Hospitalized Patients with Mild SARS-CoV-2 Infection. Front. Cell. Infect. Microbiol. 2022, 12, 824578. [Google Scholar] [CrossRef] [PubMed]
- Rafiqul Islam, S.M.; Foysal, M.J.; Hoque, M.N.; Mehedi, H.M.H.; Rob, M.A.; Salauddin, A.; Tanzina, A.Y.; Biswas, S.; Noyon, S.H.; Siddiki, A.M.A.M.Z.; et al. Dysbiosis of Oral and Gut Microbiomes in SARS-CoV-2 Infected Patients in Bangladesh: Elucidating the Role of Opportunistic Gut Microbes. Front. Med. 2022, 9, 821777. [Google Scholar] [CrossRef] [PubMed]
Spearman R | Correlation |
---|---|
>0.75 | Very strong |
0.50–0.74 | Strong |
0.25–0.49 | Moderate |
0.01–0.25 | Weak |
Parameter | COVID-19-Negative | COVID-19-Positive | Chi2 Test (p) |
---|---|---|---|
Male | 14 (42.42%) | 19 (67.86%) | 0.049 |
Female | 19 (57.58%) | 9 (32.14%) | |
Urban | 19 (57.58%) | 16 (57.14%) | 0.973 |
Rural | 14 (42.42%) | 12 (42.86%) | |
Parameter | COVID-19-negative | COVID-19-positive | Fisher’s exact test (p) |
S. Aureus positive | 2 (6.06%) | 3 (10.71%) | 0.653 |
S. Aureus negative | 31 (93.94%) | 25 (89.29%) | |
Str. Pyogenes positive | 3 (9.09%) | 0 (0.00%) | 0.243 |
Str. Pyogenes negative | 30 (90.91%) | 28 (100.00%) | |
Str. Beta-hemolytic group G positive | 4 (12.12%) | 2 (7.14%) | 0.678 |
Str. Beta-hemolytic group G negative | 29 (87.88%) | 26 (92.86%) | |
Str. Beta-hemolytic group C positive | 5 (15.15%) | 3 (10.71%) | 0.715 |
Str. Beta-hemolytic group C negative | 28 (84.85%) | 25 (89.29%) | |
Hemophilus influenzae positive | 0 (0.00%) | 1 (3.57%) | 0.459 |
Hemophilus influenzae negative | 33 (100.00%) | 27 (96.43%) | |
History of A viral hepatitis positive | 0 (0.00%) | 4 (14.29%) | 0.039 |
History of A viral hepatitis negative | 33 (100.00%) | 24 (85.71%) | |
Active oral candidiasis positive | 0 (0.00%) | 6 (21.43%) | 0.007 |
Active oral candidiasis negative | 33 (100.00%) | 22 (78.57%) |
Pathogen | Comorbidities | R | Lower CI | Higher CI | p |
---|---|---|---|---|---|
Beta hemolytic streptococcus group G | Dermatitis | 0.476 | 0.159 | 0.704 | 0.005 |
External otitis | 0.558 | 0.260 | 0.759 | <0.001 | |
Streptococcus pyogenes | Dental alveolitis | 0.559 | 0.267 | 0.757 | <0.001 |
Chronic lymphocytic leukemia | 0.559 | 0.267 | 0.757 | <0.001 |
Pathogen | Comorbidities | R | Lower CI | Higher CI | p |
---|---|---|---|---|---|
Hemophilus influenzae | Pulmonary thromboembolism | 0.694 | 0.433 | 0.848 | <0.001 |
Staphylococcus aureus | Women | 0.503 | 0.160 | 0.738 | 0.006 |
Autoimmune thyroiditis | 0.556 | 0.230 | 0.769 | 0.002 | |
Post-viral immunosuppression | 0.556 | 0.230 | 0.769 | 0.002 | |
Chronic coronary syndrome | 0.556 | 0.230 | 0.769 | 0.002 | |
Hypernatremia | 0.556 | 0.230 | 0.769 | 0.002 | |
Beta hemolytic streptococcus group C | Hepatocytolysis | 0.441 | 0.082 | 0.699 | 0.019 |
Rheumatoid polyneuropathy | 0.556 | 0.230 | 0.769 | 0.002 | |
Beta hemolytic streptococcus group G | Acute respiratory failure | −0.694 | −0.848 | −0.433 | <0.001 |
Asthenic Syndrome | −0.403 | −0.675 | −0.035 | 0.034 | |
Hyperkalemia | 0.462 | 0.107 | 0.712 | 0.013 | |
Hypothyroidism | 0.694 | 0.433 | 0.848 | <0.001 | |
Secondary anemia | 0.694 | 0.433 | 0.848 | <0.001 | |
Splenomegaly | 0.694 | 0.433 | 0.848 | <0.001 | |
Active oral candidiasis | SARS-CoV-2 viral pneumonia | 0.561 | 0.238 | 0.772 | 0.002 |
SARS-CoV-2 viral bronchopneumonia | −0.535 | −0.757 | −0.203 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boia, E.R.; Huț, A.R.; Roi, A.; Luca, R.E.; Munteanu, I.R.; Roi, C.I.; Riviș, M.; Boia, S.; Duse, A.O.; Vulcănescu, D.D.; et al. Associated Bacterial Coinfections in COVID-19-Positive Patients. Medicina 2023, 59, 1858. https://doi.org/10.3390/medicina59101858
Boia ER, Huț AR, Roi A, Luca RE, Munteanu IR, Roi CI, Riviș M, Boia S, Duse AO, Vulcănescu DD, et al. Associated Bacterial Coinfections in COVID-19-Positive Patients. Medicina. 2023; 59(10):1858. https://doi.org/10.3390/medicina59101858
Chicago/Turabian StyleBoia, Eugen Radu, Alexandru Romulus Huț, Alexandra Roi, Ruxandra Elena Luca, Ioana Roxana Munteanu, Ciprian Ioan Roi, Mircea Riviș, Simina Boia, Adina Octavia Duse, Dan Dumitru Vulcănescu, and et al. 2023. "Associated Bacterial Coinfections in COVID-19-Positive Patients" Medicina 59, no. 10: 1858. https://doi.org/10.3390/medicina59101858
APA StyleBoia, E. R., Huț, A. R., Roi, A., Luca, R. E., Munteanu, I. R., Roi, C. I., Riviș, M., Boia, S., Duse, A. O., Vulcănescu, D. D., & Horhat, F. G. (2023). Associated Bacterial Coinfections in COVID-19-Positive Patients. Medicina, 59(10), 1858. https://doi.org/10.3390/medicina59101858