Effects of Nandrolone Decanoate on Skeletal Muscle and Neuromuscular Junction of Sedentary and Exercised Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Experimental Protocol
2.3. Resistance Physical Exercise by Jumping in a Liquid Medium
2.4. Material Processing
2.5. Morphological and Morphometric Analysis of NMJ
2.6. Ultrastructural Analysis of NMJ
2.7. Analysis of Acetylcholine Receptors of NMJ by Confocal Microscopy
2.8. Morphological and Morphometric Analysis of Muscle Fibers
2.9. Intramuscular Collagen Analysis
2.10. Immunohistochemistry Analysis (Fast and Slow-Twitch Fibers)
2.11. Statistical Analysis
3. Results
3.1. Body and Soleus Muscle Weights
3.2. Neuromuscular Junction Results
3.3. Muscle Fibers Results
3.4. Intramuscular Collagen Results
3.5. Immunohistochemistry Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basaria, S. Androgen Abuse in Athletes: Detection and Consequences. J. Clin. Endocrinol. Metab. 2010, 95, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.; Roman, D.L.; Ostafe, V.; Ciorsac, A.; Isvoran, A. Computational Assessment of Pharmacokinetics and Biological Effects of Some Anabolic and Androgen Steroids. Pharm. Res. 2018, 35, 41. [Google Scholar] [CrossRef] [PubMed]
- Sessa, F.; Esposito, M.; Salerno, M. Experimental Studies on Androgen Administration in Animal Models: Current and Future Perspectives. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 566–585. [Google Scholar] [CrossRef]
- Gordon, P.L.; Frassetto, L.A. Management of Osteoporosis in CKD Stages 3 to 5. Am. J. Kidney Dis. 2010, 55, 941–956. [Google Scholar] [CrossRef] [PubMed]
- Johansen, K.L.; Painter, P.L.; Sakkas, G.K.; Gordon, P.; Doyle, J.; Shubert, T. Effects of Resistance Exercise Training and Nandrolone Decanoate on Body Composition and Muscle Function among Patients Who Receive Hemodialysis: A Randomized, Controlled Trial. J. Am. Soc. Nephrol. 2006, 17, 2307–2314. [Google Scholar] [CrossRef] [PubMed]
- Patanè, F.G.; Liberto, A.; Maria Maglitto, A.N.; Malandrino, P.; Esposito, M.; Amico, F.; Cocimano, G.; Rosi, G.L.; Condorelli, D.; Nunno, N.D.; et al. Nandrolone Decanoate: Use, Abuse and Side Effects. Medicina 2020, 56, 606. [Google Scholar] [CrossRef] [PubMed]
- Salem, N.A.; Alnahdi, H.S. The Impact of Nandrolone Decanoate Abuse on Experimental Animal Model: Hormonal and Biochemical Assessment. Steroids 2020, 153, 108526. [Google Scholar] [CrossRef]
- Gomes, F.C.; Chuffa, L.G.A.; Scarano, W.R.; Pinheiro, P.F.F.; Fávaro, W.J.; Domeniconi, R.F. Nandrolone Decanoate and Resistance Exercise Training Favor the Occurrence of Lesions and Activate the Inflammatory Response in the Ventral Prostate. Andrology 2016, 4, 473–480. [Google Scholar] [CrossRef]
- Pozzi, R.; Fernandes, L.; Cavalcante da Silva, V.; D’Almeida, V. Nandrolone Decanoate and Resistance Exercise Affect Body Composition and Energy Metabolism. Steroids 2021, 174, 108899. [Google Scholar] [CrossRef]
- Meakin, L.B.; Udeh, C.; Galea, G.L.; Lanyon, L.E.; Price, J.S. Exercise Does Not Enhance Aged Bone’s Impaired Response to Artificial Loading in C57Bl/6 Mice. Bone 2015, 81, 47–52. [Google Scholar] [CrossRef]
- Saner, N.J.; Lee, M.J.-C.; Pitchford, N.W.; Kuang, J.; Roach, G.D.; Garnham, A.; Stokes, T.; Phillips, S.M.; Bishop, D.J.; Bartlett, J.D. The Effect of Sleep Restriction, with or without High-Intensity Interval Exercise, on Myofibrillar Protein Synthesis in Healthy Young Men. J. Physiol. 2020, 598, 1523–1536. [Google Scholar] [CrossRef]
- Schild, M.; Ruhs, A.; Beiter, T.; Zügel, M.; Hudemann, J.; Reimer, A.; Krumholz-Wagner, I.; Wagner, C.; Keller, J.; Eder, K.; et al. Basal and Exercise Induced Label-Free Quantitative Protein Profiling of m. Vastus Lateralis in Trained and Untrained Individuals. J. Proteom. 2015, 122, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Gehlert, S.; Weber, S.; Weidmann, B.; Gutsche, K.; Platen, P.; Graf, C.; Kappes-Horn, K.; Bloch, W. Cycling Exercise-Induced Myofiber Transitions in Skeletal Muscle Depend on Basal Fiber Type Distribution. Eur. J. Appl. Physiol. 2012, 112, 2393–2402. [Google Scholar] [CrossRef]
- Seene, T.; Alev, K.; Kaasik, P.; Pehme, A. Changes in Fast-Twitch Muscle Oxidative Capacity and Myosin Isoforms Modulation during Endurance Training. J. Sports Med. Phys. Fit. 2007, 47, 124–132. [Google Scholar]
- Booth, F.W.; Ruegsegger, G.N.; Toedebusch, R.G.; Yan, Z. Endurance Exercise and the Regulation of Skeletal Muscle Metabolism. Prog. Mol. Biol. Transl. Sci. 2015, 135, 129–151. [Google Scholar] [CrossRef] [PubMed]
- Dunn, S.L.; Siu, W.; Freund, J.; Boutcher, S.H. The Effect of a Lifestyle Intervention on Metabolic Health in Young Women. Diabetes. Metab. Syndr. Obes. 2014, 7, 437–444. [Google Scholar] [CrossRef]
- Siu, P.M.; Donley, D.A.; Bryner, R.W.; Alway, S.E. Myogenin and Oxidative Enzyme Gene Expression Levels Are Elevated in Rat Soleus Muscles after Endurance Training. J. Appl. Physiol. (1985) 2004, 97, 277–285. [Google Scholar] [CrossRef]
- D’Amico, D.; Fiore, R.; Caporossi, D.; Di Felice, V.D.; Cappello, F.; Dimauro, I.; Barone, R. Function and Fiber-Type Specific Distribution of Hsp60 and αB-Crystallin in Skeletal Muscles: Role of Physical Exercise. Biology 2021, 10, 77. [Google Scholar] [CrossRef]
- Booth, F.W.; Chakravarthy, M.V.; Gordon, S.E.; Spangenburg, E.E. Waging War on Physical Inactivity: Using Modern Molecular Ammunition against an Ancient Enemy. J. Appl. Physiol. (1985) 2002, 93, 3–30. [Google Scholar] [CrossRef]
- Handschin, C.; Spiegelman, B.M. The Role of Exercise and PGC1α in Inflammation and Chronic Disease. Nature 2008, 454, 463–469. [Google Scholar] [CrossRef]
- Nishimune, H.; Stanford, J.A.; Mori, Y. Role of Exercise in Maintaining the Integrity of the Neuromuscular Junction. Muscle Nerve 2014, 49, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Deschenes, M.R.; Tenny, K.A.; Wilson, M.H. Increased and Decreased Activity Elicits Specific Morphological Adaptations of the Neuromuscular Junction. Neuroscience 2006, 137, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Deschenes, M.R.; Kressin, K.A.; Garratt, R.N.; Leathrum, C.M.; Shaffrey, E.C. Effects of Exercise Training on Neuromuscular Junction Morphology and Pre- to Post-Synaptic Coupling in Young and Aged Rats. Neuroscience 2016, 316, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Valdez, G.; Tapia, J.C.; Kang, H.; Clemenson, G.D.; Gage, F.H.; Lichtman, J.W.; Sanes, J.R. Attenuation of Age-Related Changes in Mouse Neuromuscular Synapses by Caloric Restriction and Exercise. Proc. Natl. Acad. Sci. USA 2010, 107, 14863–14868. [Google Scholar] [CrossRef]
- Binayi, F.; Joukar, S.; Najafipour, H.; Karimi, A.; Abdollahi, F.; Masumi, Y. The Effects of Nandrolone Decanoate Along with Prolonged Low-Intensity Exercise on Susceptibility to Ventricular Arrhythmias. Cardiovasc. Toxicol. 2016, 16, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Sretenovic, J.; Ajdzanovic, V.; Zivkovic, V.; Srejovic, I.; Corbic, M.; Milosevic, V.; Jakovljevic, V.; Milosavljevic, Z. Nandrolone Decanoate and Physical Activity Affect Quadriceps in Peripubertal Rats. Acta Histochem. 2018, 120, 429–437. [Google Scholar] [CrossRef]
- Cavalcante, W.L.G.; Dal Pai-Silva, M.; Gallacci, M. Effects of Nandrolone Decanoate on the Neuromuscular Junction of Rats Submitted to Swimming. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2004, 139, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, A.R.; Cope, E.; Bailey, R.; Koenen, K.; Dumon, D.; Theodorou, N.C.; Chanal, B.; Saint Laurent, D.; Müller, D.; Andrés, M.P.; et al. Children’s First Experience of Taking Anabolic-Androgenic Steroids Can Occur before Their 10th Birthday: A Systematic Review Identifying 9 Factors That Predicted Doping among Young People. Front Psychol. 2017, 8, 1015. [Google Scholar] [CrossRef]
- Reyes-Vallejo, L. Current Use and Abuse of Anabolic Steroids. Actas Urológicas Españolas 2020, 44, 309–313. [Google Scholar] [CrossRef]
- Bond, P.; Smit, D.L.; de Ronde, W. Anabolic-Androgenic Steroids: How Do They Work and What Are the Risks? Front. Endocrinol. 2022, 13, 1059473. [Google Scholar] [CrossRef]
- Shokri, S.; Aitken, R.J.; Abdolvahhabi, M.; Abolhasani, F.; Ghasemi, F.M.; Kashani, I.; Ejtemaeimehr, S.; Ahmadian, S.; Minaei, B.; Naraghi, M.A.; et al. Exercise and Supraphysiological Dose of Nandrolone Decanoate Increase Apoptosis in Spermatogenic Cells. Basic Clin. Pharmacol. Toxicol. 2010, 106, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Pope, H.G.; Katz, D.L. Affective and Psychotic Symptoms Associated with Anabolic Steroid Use. Am. J. Psychiatry 1988, 145, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Valentino, E.; Leite, A.P.S.; Pinto, C.G.; Tibúrcio, F.C.; de Souza Castro, P.A.T.; Matheus, S.M.M. Physical Exercises during Youth Regardless of Nandrolone Decanoate Use Prevent Neuromuscular Morphological Alterations Caused by Aging. World. J. Phys. Rehabil. Med. 2021, 5, 1017. [Google Scholar]
- Portes, L.A.; Tucci, P.J.F. Swim Training Attenuates Myocardial Remodeling and the Pulmonary Congestion in Wistar Rats with Secondary Heart Failure to Myocardial Infarction. Arq. Bras. Cardiol. 2006, 87, 54–59. [Google Scholar] [CrossRef] [PubMed]
- de Melo Neto, J.S.; de Campos Gomes, F.; Pinheiro, P.F.F.; Pereira, S.; Scarano, W.R.; Fávaro, W.J.; Domeniconi, R.F. The Effects of High Doses of Nandrolone Decanoate and Exercise on Prostate Microvasculature of Adult and Older Rats. Life Sci. 2015, 121, 16–21. [Google Scholar] [CrossRef]
- Harri, M.; Kuusela, P. Is Swimming Exercise or Cold Exposure for Rats? Acta. Physiol. Scand. 1986, 126, 189–197. [Google Scholar] [CrossRef]
- Neptune, R.R.; Kautz, S.A.; Zajac, F.E. Contributions of the Individual Ankle Plantar Flexors to Support, Forward Progression and Swing Initiation during Walking. J. Biomech. 2001, 34, 1387–1398. [Google Scholar] [CrossRef]
- Lehrer, G.M.; Ornstein, L. A Diazo Coupling Method for the Electron Microscopic Localization of Cholinesterase. J. Biophys Biochem. Cytol. 1959, 6, 399–406. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2009; ISBN 978-0-13-100846-5. [Google Scholar]
- Breuner, C.C. Performance-Enhancing Substances. Adolesc. Med. State Art. Rev. 2014, 25, 113–125. [Google Scholar]
- Reardon, C.L.; Creado, S. Drug Abuse in Athletes. Subst Abus. Rehabil. 2014, 5, 95–105. [Google Scholar] [CrossRef]
- Carson, J.A.; Lee, W.J.; McClung, J.; Hand, G.A. Steroid Receptor Concentration in Aged Rat Hindlimb Muscle: Effect of Anabolic Steroid Administration. J. Appl. Physiol. (1985) 2002, 93, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Frankenfeld, S.P.; de Oliveira, L.P.; Ignacio, D.L.; Coelho, R.G.; Mattos, M.N.; Ferreira, A.C.F.; Carvalho, D.P.; Fortunato, R.S. Nandrolone Decanoate Inhibits Gluconeogenesis and Decreases Fasting Glucose in Wistar Male Rats. J. Endocrinol. 2014, 220, 143–153. [Google Scholar] [CrossRef]
- Horstman, A.M.H.; Backx, E.M.P.; Smeets, J.S.J.; Marzuca-Nassr, G.N.; van Kranenburg, J.; de Boer, D.; Dolmans, J.; Snijders, T.; Verdijk, L.B.; de Groot, L.C.P.G.M.; et al. Nandrolone Decanoate Administration Does Not Attenuate Muscle Atrophy during a Short Period of Disuse. PLoS ONE 2019, 14, e0210823. [Google Scholar] [CrossRef]
- Leite, A.P.S.; Pinto, C.G.; Tibúrcio, F.C.; Sartori, A.A.; de Castro Rodrigues, A.; Barraviera, B.; Ferreira, R.S.; Filadelpho, A.L.; Matheus, S.M.M. Heterologous Fibrin Sealant Potentiates Axonal Regeneration after Peripheral Nerve Injury with Reduction in the Number of Suture Points. Injury 2019, 50, 834–847. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.G.; Leite, A.P.S.; Sartori, A.A.; Tibúrcio, F.C.; Barraviera, B.; Junior, R.S.F.; Filadelpho, A.L.; de Carvalho, S.C.; Matheus, S.M.M. Heterologous Fibrin Biopolymer Associated to a Single Suture Stitch Enables the Return of Neuromuscular Junction to Its Mature Pattern after Peripheral Nerve Injury. Injury 2021, 52, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.P.S.; Pinto, C.G.; Tibúrcio, F.C.; Muller, K.S.; Padovani, C.R.; Barraviera, B.; Junior, R.S.F.; Leal, C.V.; Matsumura, C.Y.; Matheus, S.M.M. Acetylcholine Receptors of the Neuromuscular Junctions Present Normal Distribution after Peripheral Nerve Injury and Repair through Nerve Guidance Associated with Fibrin Biopolymer. Injury 2023, 54, 345–361. [Google Scholar] [CrossRef]
- Tibúrcio, F.C.; Muller, K.S.; Leite, A.P.S.; de Oliveira, I.R.A.; Barraviera, B.; Ferreira, R.S.; Padovani, C.R.; Pinto, C.G.; Matheus, S.M.M. Neuroregeneration and Immune Response after Neurorrhaphy Are Improved with the Use of Heterologous Fibrin Biopolymer in Addition to Suture Repair Alone. Muscle Nerve 2023, 67, 522–536. [Google Scholar] [CrossRef]
- Muller, K.S.; Tibúrcio, F.C.; de Barros, J.W.F.; Matsumura, C.Y.; Matheus, S.M.M. Statin Exposure during Pregnancy Promotes Neuromuscular Junction Alterations in Postpartum Wistar Rats. Muscle Nerve 2023, 67, 537–547. [Google Scholar] [CrossRef]
- Iyer, S.R.; Shah, S.B.; Lovering, R.M. The Neuromuscular Junction: Roles in Aging and Neuromuscular Disease. Int. J. Mol. Sci. 2021, 22, 8058. [Google Scholar] [CrossRef]
- Krause Neto, W.; Ciena, A.P.; Anaruma, C.A.; de Souza, R.R.; Gama, E.F. Effects of Exercise on Neuromuscular Junction Components across Age: Systematic Review of Animal Experimental Studies. BMC Res. Notes 2015, 8, 713. [Google Scholar] [CrossRef]
- Deschenes, M.R.; Judelson, D.A.; Kraemer, W.J.; Meskaitis, V.J.; Volek, J.S.; Nindl, B.C.; Harman, F.S.; Deaver, D.R. Effects of Resistance Training on Neuromuscular Junction Morphology. Muscle Nerve 2000, 23, 1576–1581. [Google Scholar] [CrossRef] [PubMed]
- Murach, K.A.; Dungan, C.M.; Peterson, C.A.; McCarthy, J.J. Muscle Fiber Splitting Is a Physiological Response to Extreme Loading in Animals. Exerc. Sport Sci. Rev. 2019, 47, 108–115. [Google Scholar] [CrossRef]
- Fontana, K.; White, K.E.; Campos, G.E.R.; da Cruz-Höfling, M.-A.; Harris, J.B. Morphological Changes in Murine Skeletal Muscle in Response to Exercise and Mesterolone. J. Electron. Microsc. 2010, 59, 153–164. [Google Scholar] [CrossRef]
- Eriksson, A.; Lindström, M.; Carlsson, L.; Thornell, L.-E. Hypertrophic Muscle Fibers with Fissures in Power-Lifters; Fiber Splitting or Defect Regeneration? Histochem. Cell Biol. 2006, 126, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Soffe, Z.; Radley-Crabb, H.G.; McMahon, C.; Grounds, M.D.; Shavlakadze, T. Effects of Loaded Voluntary Wheel Exercise on Performance and Muscle Hypertrophy in Young and Old Male C57Bl/6J Mice. Scand. J. Med. Sci. Sports 2016, 26, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Zaugg, M.; Jamali, N.Z.; Lucchinetti, E.; Xu, W.; Alam, M.; Shafiq, S.A.; Siddiqui, M.A. Anabolic-Androgenic Steroids Induce Apoptotic Cell Death in Adult Rat Ventricular Myocytes. J. Cell Physiol. 2001, 187, 90–95. [Google Scholar] [CrossRef]
- Riezzo, I.; Turillazzi, E.; Bello, S.; Cantatore, S.; Cerretani, D.; Di Paolo, M.; Fiaschi, A.I.; Frati, P.; Neri, M.; Pedretti, M.; et al. Chronic Nandrolone Administration Promotes Oxidative Stress, Induction of pro-Inflammatory Cytokine and TNF-α Mediated Apoptosis in the Kidneys of CD1 Treated Mice. Toxicol. Appl. Pharmacol. 2014, 280, 97–106. [Google Scholar] [CrossRef]
- Turillazzi, E.; Perilli, G.; Di Paolo, M.; Neri, M.; Riezzo, I.; Fineschi, V. Side Effects of AAS Abuse: An Overview. Mini. Rev. Med. Chem. 2011, 11, 374–389. [Google Scholar] [CrossRef] [PubMed]
- Kahal, A.; Allem, R.; Zahzeh, T.; Oulmane, S.; Tafroukhte, Z. Abuse of Androgenic Anabolic Drugs with “Cycling” Induces Hepatic Steatosis in Adult Male Mice. Steroids 2020, 155, 108574. [Google Scholar] [CrossRef] [PubMed]
- Karila, T.; Hovatta, O.; Seppälä, T. Concomitant Abuse of Anabolic Androgenic Steroids and Human Chorionic Gonadotrophin Impairs Spermatogenesis in Power Athletes. Int. J. Sports Med. 2004, 25, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, S.C.; de Oliveira, K.A.; Freiras, P.A.; Moreira Gomes, M.D.; Pereira, L.M.; Boa, L.F.; de Carvalho, D.P.; Fortunato, R.S.; Carneiro Loureiro, A.C.; Brito, L.C.; et al. High-Dose Nandrolone Decanoate Induces Oxidative Stress and Inflammation in Retroperitoneal Adipose Tissue of Male Rats. J. Steroid. Biochem. Mol. Biol. 2020, 203, 105728. [Google Scholar] [CrossRef]
- Ogawa, Y.; Yamamoto, M.; Sato, M.; Odaka, K.; Kasahara, M.; Hinata, N.; Sakiyama, K.; Abe, S. Localization of T-Cell Factor 4 Positive Fibroblasts and CD206-Positive Macrophages during Skeletal Muscle Regeneration in Mice. Ann. Anat. 2021, 235, 151694. [Google Scholar] [CrossRef] [PubMed]
- Piovesan, R.F.; Fernandes, K.P.S.; Alves, A.N.; Teixeira, V.P.; Silva Junior, J.A.; Martins, M.D.; Bussadori, S.K.; Albertini, R.; Mesquita-Ferrari, R.A. Effect of Nandrolone Decanoate on Skeletal Muscle Repair. Int. J. Sports Med. 2013, 34, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Brasil, G.A.; de Lima, E.M.; do Nascimento, A.M.; Caliman, I.F.; de Medeiros, A.R.S.; Silva, M.S.B.; de Abreu, G.R.; dos Reis, A.M.; de Andrade, T.U.; Bissoli, N.S. Nandrolone Decanoate Induces Cardiac and Renal Remodeling in Female Rats, without Modification in Physiological Parameters: The Role of ANP System. Life Sci. 2015, 137, 65–73. [Google Scholar] [CrossRef]
- Pärssinen, M.; Karila, T.; Kovanen, V.; Seppälä, T. The Effect of Supraphysiological Doses of Anabolic Androgenic Steroids on Collagen Metabolism. Int. J. Sports Med. 2000, 21, 406–411. [Google Scholar] [CrossRef]
- Neves, J.d.C.; Rizzato, V.R.; Fappi, A.; Garcia, M.M.; Chadi, G.; van de Vlekkert, D.; d’Azzo, A.; Zanoteli, E. Neuraminidase-1 Mediates Skeletal Muscle Regeneration. Biochim. Biophys. Acta 2015, 1852, 1755–1764. [Google Scholar] [CrossRef]
- Lima, E.M.; Nascimento, A.M.; Brasil, G.A.; Kalil, I.C.; Lenz, D.; Endringer, D.C.; Andrade, T.U.; Bissoli, N.S. Cardiopulmonary Reflex, Cardiac Cytokines, and Nandrolone Decanoate: Response to Resistance Training in Rats. Can. J. Physiol. Pharmacol. 2015, 93, 985–991. [Google Scholar] [CrossRef]
- Tofighi, A.; Ahmadi, S.; Seyyedi, S.M.; Shirpoor, A.; Kheradmand, F.; Gharalari, F.H. Nandrolone Administration with or without Strenuous Exercise Promotes Overexpression of Nephrin and Podocin Genes and Induces Structural and Functional Alterations in the Kidneys of Rats. Toxicol. Lett 2018, 282, 147–153. [Google Scholar] [CrossRef]
- Vasilaki, F.; Tsitsimpikou, C.; Tsarouhas, K.; Germanakis, I.; Tzardi, M.; Kavvalakis, M.; Ozcagli, E.; Kouretas, D.; Tsatsakis, A.M. Cardiotoxicity in Rabbits after Long-Term Nandrolone Decanoate Administration. Toxicol. Lett. 2016, 241, 143–151. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.W.A.; Aguiar, A.F.; Carani, F.R.; Campos, G.E.R.; Padovani, C.R.; Silva, M.D.P. High-Intensity Resistance Training with Insufficient Recovery Time between Bouts Induce Atrophy and Alterations in Myosin Heavy Chain Content in Rat Skeletal Muscle. Anat. Rec. 2011, 294, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Fontana, K.; Campos, G.E.R.; Staron, R.S.; da Cruz-Höfling, M.A. Effects of Anabolic Steroids and High-Intensity Aerobic Exercise on Skeletal Muscle of Transgenic Mice. PLoS ONE 2013, 8, e80909. [Google Scholar] [CrossRef] [PubMed]
- Bosco, M.C.L. Social Media, Beauty Standards and the Discriminatory Bias in Body Transformation Practices: A Commentary on Why Posthuman Thinking Matters. Interface 2021, 25, e210155. [Google Scholar] [CrossRef]
Exercise Day | Exercise-Overload (% Body Weight) |
---|---|
1st | 2 series of 5 jumps (50%) |
2nd | 3 series of 5 jumps (50%) |
3rd | 4 series of 5 jumps (50%) |
4th | 4 series of 7 jumps (50%) |
5th | 4 series of 9 jumps (50%) |
6th to 20th | 4 series of 10 jumps (50%) |
21th to 35th | 4 series of 10 jumps (60%) |
36th to 54th | 4 series of 10 jumps (70%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tibúrcio, F.C.; Leite, A.P.S.; Muller, K.S.; Pinto, C.G.; Valentino, E.; Castro, P.A.T.d.S.; Matsumura, C.Y.; Carvalho, S.F.d.; Matheus, S.M.M. Effects of Nandrolone Decanoate on Skeletal Muscle and Neuromuscular Junction of Sedentary and Exercised Rats. Medicina 2023, 59, 1940. https://doi.org/10.3390/medicina59111940
Tibúrcio FC, Leite APS, Muller KS, Pinto CG, Valentino E, Castro PATdS, Matsumura CY, Carvalho SFd, Matheus SMM. Effects of Nandrolone Decanoate on Skeletal Muscle and Neuromuscular Junction of Sedentary and Exercised Rats. Medicina. 2023; 59(11):1940. https://doi.org/10.3390/medicina59111940
Chicago/Turabian StyleTibúrcio, Felipe Cantore, Ana Paula Silveira Leite, Kevin Silva Muller, Carina Guidi Pinto, Erick Valentino, Paula Aiello Tomé de Souza Castro, Cintia Yuri Matsumura, Shelly Favorito de Carvalho, and Selma Maria Michelin Matheus. 2023. "Effects of Nandrolone Decanoate on Skeletal Muscle and Neuromuscular Junction of Sedentary and Exercised Rats" Medicina 59, no. 11: 1940. https://doi.org/10.3390/medicina59111940
APA StyleTibúrcio, F. C., Leite, A. P. S., Muller, K. S., Pinto, C. G., Valentino, E., Castro, P. A. T. d. S., Matsumura, C. Y., Carvalho, S. F. d., & Matheus, S. M. M. (2023). Effects of Nandrolone Decanoate on Skeletal Muscle and Neuromuscular Junction of Sedentary and Exercised Rats. Medicina, 59(11), 1940. https://doi.org/10.3390/medicina59111940