Epidemiological, Pathophysiological, and Clinical Considerations on the Interplay between Thyroid Disorders and Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Epidemiological Data on the Coexistence of Type 2 Diabetes Mellitus and Thyroid Disorders
3. The Interplay between Thyroid Hormones and Glucose Homeostasis
4. Specific Thyroid Disorders and Type 2 Diabetes Mellitus
4.1. Hyperthyroidism
4.2. Hypothyroidism
4.3. Thyroid Malignancies
5. Antidiabetic Agents and Thyroid Disorders
6. Conclusions and Future Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas. 2021. Available online: https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html (accessed on 11 February 2019).
- Garmendia Madariaga, A.; Santos Palacios, S.; GuillénGrima, F.; Galofré, J.C. The incidence and prevalence of thyroid dysfunction in Europe: A meta-analysis. J. Clin. Endocrinol. Metab. 2014, 99, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Tunbridge, W.M.; Evered, D.C.; Hall, R.; Appleton, D.; Brewis, M.; Clark, F.; Evans, J.G.; Young, E.; Bird, T.; Smith, P.A. The spectrum of thyroid disease in a community: The Whickham survey. Clin. Endocrinol. 1977, 7, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Canaris, G.J.; Manowitz, N.R.; Mayor, G.; Ridgway, E.C. The Colorado thyroid disease prevalence study. Arch. Intern. Med. 2000, 160, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Hollowell, J.G.; Staehling, N.W.; Flanders, W.D.; Hannon, W.H.; Gunter, E.W.; Spencer, C.A.; Braverman, L.E. Serum TSH, T4, and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 2002, 87, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Nederstigt, C.; Corssmit, E.P.M.; de Koning, E.J.P.; Dekkers, O.M. Incidence and prevalence of thyroid dysfunction in type 1 diabetes. J. Diabetes Complicat. 2016, 30, 420–425. [Google Scholar] [CrossRef]
- Gu, Y.; Li, H.; Bao, X.; Zhang, Q.; Liu, L.; Meng, G.; Wu, H.; Du, H.; Shi, H.; Xia, Y.; et al. The relationship between thyroid function and the prevalence of type 2 diabetes mellitus in euthyroid subjects. J. Clin. Endocrinol. Metab. 2017, 102, 434–442. [Google Scholar] [CrossRef]
- Centeno Maxzud, M.; Gomez Rasjido, L.; Fregenal, M.; Arias Calafiore, F.; Cordoba Lanus, M.; D’Urso, M.; Luciardi, H. Prevalence of thyroid dysfunction in patients with type 2 diabetes mellitus. Medicina 2016, 76, 355–358. [Google Scholar]
- Subekti, I.; Pramono, L.A.; Dewiasty, E.; Harbuwono, D.S. Thyroid dysfunction in type 2 diabetes mellitus patients. Acta Med. Indones. 2017, 49, 10. [Google Scholar]
- Perros, P.; McCrimmon, R.J.; Shaw, G.; Frier, B.M. Frequency of thyroid dysfunction in diabetic patients: Value of annual screening. Diabet. Med. 1995, 12, 622–627. [Google Scholar] [CrossRef]
- Radaideh, A.R.; Nusier, M.K.; Amari, F.L.; Bateiha, A.E.; ElKhateeb, M.S.; Naser, A.S.; Ajlouni, K.M. Thyroid dysfunction in patients with type 2 diabetes mellitus in Jordan. Saudi Med. J. 2004, 25, 1046–1050. [Google Scholar]
- Akbar, D.H.; Ahmed, M.M.; Al-Mughales, J. Thyroid dysfunction and thyroid autoimmunity in Saudi type 2 diabetics. Acta Diabetol. 2006, 43, 14–18. [Google Scholar] [CrossRef]
- Papazafiropoulou, A. Prevalence of Thyroid Dysfunction among Greek Type 2 Diabetic Patients Attending an Outpatient Clinic. J. Clin. Med. Res. 2010, 2, 75–78. [Google Scholar] [CrossRef]
- Celani, M.F.; Bonati, M.E.; Stucci, N. Prevalence of abnormal thyrotropin concentrations measured by a sensitive assay in patients with type 2 diabetes mellitus. Diabetes Res. 1994, 27, 15–25. [Google Scholar] [PubMed]
- Cheng, H. Subclinical Hypothyroidism and Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0135233. [Google Scholar]
- Rivolta, G.; Cerutti, R.; Colombo, R.; Miano, G.; Dionisio, P.; Grossi, E. Prevalence of subclinical hypothyroidism in a population living in the Milan metropolitan area. J. Endocrinol. Investig. 1999, 22, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Wu, F.; Guo, C.; Song, J.; Huang, C.; Zhu, Z.; Yu, H.; Guo, Y.; Lu, X.; Ruan, Y. Iodine nutrition and the prevalence of thyroid disease after salt iodization: A cross-sectional survey in Shanghai, a coastal area in China. PLoS ONE 2012, 7, e40718. [Google Scholar] [CrossRef] [PubMed]
- Tamez-Perez, H.E.; Martinez, E.; Quintanilla-Flores, D.L.; Tamez-Pena, A.L.; Gutierrez-Hermosillo, H.; Diaz de Leon-Gonzalez, E. The rate of primary hypothyroidism in diabetic patients is greater than in the non-diabetic population. An observational study. Med. Clin. 2012, 138, 475–477. [Google Scholar] [CrossRef]
- Brent, G.A. Mechanisms of thyroid hormone action. J. Clin. Investig. 2012, 122, 3035–3043. [Google Scholar] [CrossRef]
- Nishi, M. Diabetes mellitus and thyroid diseases. Diabetol. Int. 2018, 9, 108–112. [Google Scholar] [CrossRef]
- Wang, C. The relationship between type 2 diabetes mellitus and related thyroid diseases. J. Diabetes Res. 2013, 2013, 390534. [Google Scholar] [CrossRef]
- Imai, Y.; Toyoda, N.; Maeda, A.; Kadobayashi, T.; Fangzheng, G.; Nishikawa, M.; Iwasaka, T. Type 2 iodothyronine deiodinase expression is upregulated by the protein kinase Adependent pathway and is downregulated by the protein kinase C-dependent pathway in cultured human thyroid cells. Thyroid 2001, 11, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Borges, M.; Ingbar, S.H.; Silva, J.E. Iodothyronine deiodinase activities in FRTL5 cells: Predominance of type I 5′-deiodinase. Endocrinology 1990, 126, 3059–3068. [Google Scholar] [CrossRef] [PubMed]
- Kohrle, J. Thyroid hormone transporters in health and disease: Advances in thyroid hormone deiodination. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 173–191. [Google Scholar] [CrossRef] [PubMed]
- Gereben, B.; Zavacki, A.M.; Ribich, S.; Kim, B.W.; Huang, S.A.; Simonides, W.S.; Zeold, A.; Bianco, A.C. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 2008, 29, 898–938. [Google Scholar] [CrossRef]
- Ray, S.; Ghosh, S. Thyroid disorders and diabetes mellitus: Double trouble. J. Diabetes Res. Ther. 2016, 2, 1–7. [Google Scholar]
- Tang, Y.; Yan, T.; Wang, G.; Chen, Y.; Zhu, Y.; Jiang, Z.; Yang, M.; Li, C.; Li, Z.; Yu, P.; et al. Correlation between insulin resistance and thyroid nodule in type 2 diabetes mellitus. Int. J. Endocrinol. 2017, 2017, 1617458. [Google Scholar] [CrossRef]
- Rosano, G.; Vitale, C.; Silvestri, A.; Fini, M. The metabolic syndrome in women: Implications for therapy. Int. J. Clin. Pract. Suppl. 2004, 3, 20–25. [Google Scholar]
- Nair, A.; Jayakumari, C.; Jabbar, P.K.; Jayakumar, R.V.; Raizada, N.; Gopi, A.; George, G.S.; Seena, T.P. Prevalence and associations of hypothyroidism in Indian patients with type 2 diabetes mellitus. J. Thyroid. Res. 2018, 2018, 5386129. [Google Scholar] [CrossRef]
- Sathish, R. Diabetes and Thyroid diseases—A review. Int. J. Diab. Dev. Ctries. 2003, 23, 120–123. [Google Scholar]
- Rosenbaum, M.; Hirsch, J.; Murphy, E.; Leibel, R.L. Effects of changes in body weight on carbohydrate metabolism, catecholamine excretion, and thyroid function. Am. J. Clin. Nutr. 2000, 71, 1421–1432. [Google Scholar] [CrossRef]
- Mirboluk, A.A.; Rohani, F.; Asadi, R.; Eslamian, M.R. Thyroid function test in diabetic ketoacidosis. Diabetes Metab. Syndr. 2017, 11 (Suppl. S2), S623–S625. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S. Insulin resistance and body fat distribution. Diabetes Care 1996, 19, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Bastemir, M. Obesity is associated with increased serum TSH level, independent of thyroid function. Swiss Med. Wkly. 2007, 137, 431–434. [Google Scholar] [CrossRef]
- Menendez, C.; Baldelli, R.; Camina, J.; Escudero, B.; Peino, R.; Dieguez, C.; Casanueva, F. TSH stimulates leptin secretion by a direct effect on adipocytes. J. Endocrinol. 2003, 176, 7–12. [Google Scholar] [CrossRef]
- Matthews, D.R. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Zimmermann-Belsing, T.; Brabant, G.; Holst, J.J.; Feldt-Rasmussen, U. Circulating leptin and thyroid dysfunction. Eur. J. Endocrinol. 2003, 149, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Seoane, L.M.; Carro, E.; Tovar, S.; Casanueva, F.F.; Dieguez, C. Regulation of in vivo TSH secretion by leptin. Regul Pept. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Chikunguwo, S. Influence of obesity and surgical weight loss on thyroid hormone levels. Surg. Obes. Relat. Dis. 2007, 3, 631–635. [Google Scholar] [CrossRef]
- Ortiga-Carvalho, T.M.; Oliveira, K.J.; Soares, B.A.; Pazos-Moura, C.C. The role of leptin in the regulation of TSH secretion in the fed state: In vivo and in vitro studies. J. Endocrinol. 2002, 174, 121–125. [Google Scholar] [CrossRef]
- Reusch, C.E.; Tomsa, K. Serum fructosamine concentration in cats with overt hyperthyroidism. J. Am. Vet. Med. Assoc. 1999, 215, 1297–1300. [Google Scholar]
- Duntas, L.H.; Orgiazzi, J.; Brabant, G. The interface between thyroid and diabetes mellitus. Clin. Endocrinol. 2011, 75, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Park, E.A.; Jerden, D.C.; Bahouth, S.W. Regulation of phosphoenolpyruvate carboxykinase gene transcription by thyroid hormone involves two distinct binding sites in the promoter. Biochem. J. 1995, 309 Pt 3, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Jiang, Y.; Meltzer, P.; Yen, P.M. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol. Endocrinol. 2000, 14, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Crunkhorn, S.; Patti, M.E. Links between thyroid hormone action, oxidative metabolism, and diabetes risk? Thyroid 2008, 18, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, S.P.; O’Boyle, E.; Haber, R.S. Thyroid hormone increases basal and insulin-stimulated glucose transport in skeletal muscle. The role of GLUT4 glucose transporter expression. Diabetes 1994, 43, 1185–1189. [Google Scholar] [CrossRef]
- de Lange, P.; Feola, A.; Ragni, M.; Senese, R.; Moreno, M.; Lombardi, A.; Silvestri, E.; Amat, R.; Villarroya, F.; Goglia, F.; et al. Differential 3,5,39-triiodothyroninemediated regulation of uncoupling protein 3 transcription: Role of fatty acids. Endocrinology 2007, 148, 4064–4072. [Google Scholar] [CrossRef]
- Havekes, B.; Sauerwein, H.P. Adipocyte-myocyte crosstalk in skeletal muscle insulin resistance; is there a role for thyroid hormone? Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 641–646. [Google Scholar] [CrossRef]
- Karbalaei, N. Impaired glucose-stimulated insulin secretion and reduced β-cell mass in pancreatic islets of hyperthyroid rats. Exp. Physiol. 2016, 101, 1114–1127. [Google Scholar] [CrossRef]
- Fukuchi, M.; Shimabukuro, M.; Shimajiri, Y.; Oshiro, Y.; Higa, M.; Akamine, H.; Komiya, I.; Takasu, N. Evidence for a deficient pancreatic b-cell response in a rat model of hyperthyroidism. Life Sci. 2002, 71, 1059–1070. [Google Scholar] [CrossRef]
- Dimitriadis, G.D.; Raptis, S.A. Thyroid hormone excess and glucose intolerance. Exp. Clin. Endocrinol. Diabetes 2001, 109 (Suppl. S2), S225–S239. [Google Scholar] [CrossRef]
- Randin, J.P.; Tappy, L.; Scazziga, B.; Jequier, E.; Felber, J.P. Insulin sensitivity and exogenous insulin clearance in Graves’ disease. Measurement by the glucose clamp technique and continuous indirect calorimetry. Diabetes 1986, 35, 178–181. [Google Scholar] [CrossRef]
- Okajima, F.; Ui, M. Metabolism of glucose in hyper and hypo-thyroid rats in vivo. Glucose-turnover values and futile-cycle activities obtained with 14C- and 3 H-labelled glucose. Biochem. J. 1979, 182, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, G.; Mitrou, P.; Lambadiari, V.; Boutati, E.; Maratou, E.; Panagiotakos, D.B.; Koukkou, E.; Tzanela, M.; Thalassinos, N.; Raptis, S.A. Insulin action in adipose tissue and muscle in hypothyroidism. J. Clin. Endocrinol. Metab. 2006, 91, 4930–4937. [Google Scholar] [CrossRef] [PubMed]
- Maratou, E.; Hadjidakis, D.J.; Kollias, A.; Tsegka, K.; Peppa, M.; Alevizaki, M.; Mitrou, P.; Lambadiari, V.; Boutati, E.; Nikzas, D.; et al. Studies of insulin resistance in patients with clinical and subclinical hypothyroidism. Eur. J. Endocrinol. 2009, 160, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Stanicka, S.; Vondra, K.; Pelikanova, T.; Vlcek, P.; Hill, M.; Zamrazil, V. Insulin sensitivity and counterregulatory hormones in hypothyroidism and during thyroid hormone replacement therapy. Clin. Chem. Lab. Med. 2005, 43, 715–720. [Google Scholar] [CrossRef]
- Lenzen, S.; Bailey, C.J. Thyroid hormones, gonadal and adrenocortical steroids and the function of the islets of Langerhans. Endocr. Rev. 1984, 5, 411–434. [Google Scholar] [CrossRef] [PubMed]
- Mouradian, M.; Abourizk, N. Diabetes mellitus and thyroid disease. Diabetes Care 1983, 6, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.L. Diabetes control in thyroid disease. Diabetes Spectr. 2006, 19, 148–153. [Google Scholar] [CrossRef]
- Davies, L.; Welch, G. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 2006, 295, 2164–2167. [Google Scholar] [CrossRef]
- Zevallos Jose, P. Increased thyroid cancer incidence corresponds to increased use of thyroid ultrasound and fine-needle aspiration: A study of the Veterans Affairs health care system. Cancer 2015, 121, 741–746. [Google Scholar] [CrossRef]
- Morris Luc, G.T. Improved detection does not fully explain the rising incidence of well-differentiated thyroid cancer: A population-based analysis. Am. J. Surg. 2010, 200, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.Y. Body mass index and incidence of thyroid cancer in Korea: The Korean Cancer Prevention Study-II. J. Cancer Res. Clin. Oncol. 2017, 143, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Haymart, M.R. Progress and Challenges in Thyroid Cancer Management. Endocr. Pract. 2021, 27, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Mannathazhathu, A.S. Reproductive factors and thyroid cancer risk: Meta-analysis. Head Neck 2019, 41, 4199–4208. [Google Scholar] [CrossRef]
- Yeo, Y. Diabetes mellitus and risk of thyroid cancer: A meta-analysis. PLoS ONE 2014, 9, e98135. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.T. The association between thyroid cancer and insulin resistance, metabolic syndrome, and its components: A systematic review and meta-analysis. Int. J. Surg. 2018, 57, 66–75. [Google Scholar] [CrossRef]
- Luo, J.; Phillips, L.; Liu, S.; Wactawski-Wende, J.; Margolis, K.L. Diabetes, diabetes treatment, and risk of thyroid cancer. J. Clin. Endocrinol. Metab. 2016, 101, 1243–1248. [Google Scholar] [CrossRef]
- Kitahara, C.M.; Platz, E.A.; Beane Freeman, L.E.; Black, A.; Hsing, A.W.; Linet, M.S.; Park, Y.; Schairer, C.; Berrington de González, A. Physical activity, diabetes, and thyroid cancer risk: A pooled analysis of five prospective studies. Cancer Causes Control 2012, 23, 463–471. [Google Scholar] [CrossRef]
- Shih, S.R.; Chiu, W.Y.; Chang, T.C.; Tseng, C.H. Diabetes and thyroid cancer risk: Literature review. Exp. Diabetes Res. 2012, 2012, 578285. [Google Scholar] [CrossRef]
- Hard, G.C. Recent developments in the investigation of thyroid regulation and thyroid carcinogenesis. Environ. Health Perspect. 1998, 106, 427–436. [Google Scholar] [CrossRef]
- Oberman, B.; Khaku, A.; Camacho, F.; Goldenberg, D. Relationship between obesity, diabetes and the risk of thyroid cancer. Am. J. Otolaryngol. 2015, 36, 535–541. [Google Scholar] [CrossRef]
- Belardi, V.; Gallagher, E.J.; Novosyadlyy, R.; LeRoith, D. Insulin and IGFs in obesity-related breast cancer. J. Mammary Gland Biol. Neoplasia 2013, 18, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Haymart, M.R.; Repplinger, D.J.; Leverson, G.E.; Elson, D.F.; Sippel, R.S.; Jaume, J.C.; Chen, H. Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage. J. Clin. Endocrinol. Metab. 2008, 93, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Zafón, C. TSH-suppressive treatment in differentiated thyroid cancer. Dogma Rev. Endocrinol. Nutr. 2012, 59, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Dang, C.V. Oncogenic alterations of metabolism. Trends Biochem. Sci. 1999, 24, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Cowey, S.; Hardy, R.W. The metabolic syndrome: A high-risk state for cancer? Am. J. Pathol. 2006, 169, 1505–1522. [Google Scholar] [CrossRef]
- Aschebrook-Kilfoy, B.; Sabra, M.M.; Brenner, A.; Moore, S.C.; Ron, E.; Schatzkin, A.; Hollenbeck, A.; Ward, M.H.; Park, J.W.; Han, C.R.; et al. Diabetes and thyroid cancer risk in the national institutes of health-AARP diet and health study. Thyroid 2011, 21, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, S.A.; Kountouras, J.; Zavos, C. Nonalcoholic fatty liver disease: The pathogenetic roles of insulin resistance and adipocytokines. Curr. Mol. Med. 2009, 9, 299–314. [Google Scholar] [CrossRef]
- Rehem, R.A. Study of serum leptin in well-differentiated thyroid carcinoma: Correlation with patient and tumor characteristics. World J. Surg. 2014, 38, 2621–2627. [Google Scholar] [CrossRef]
- Cheng, S.P.; Chi, C.W.; Tzen, C.Y.; Yang, T.L.; Lee, J.J.; Liu, T.P.; Liu, C.L. Clinicopathologic significance of leptin and leptin receptor expressions in papillary thyroid carcinoma. Surgery 2010, 147, 847–853. [Google Scholar] [CrossRef]
- Pazaitou-Panayiotou, K. Obesity and thyroid cancer: Epidemiologic associations and underlying mechanisms. Obes. Rev. 2013, 14, 1006–1022. [Google Scholar] [CrossRef]
- Mitsiades, N. Circulating adiponectin is inversely associated with risk of thyroid cancer: In vivo and in vitro studies. J. Clin. Endocrinol. Metab. 2011, 96, E2023–E2028. [Google Scholar] [CrossRef]
- Blanc, E. Association between worse metabolic control and increased thyroid volume and nodular disease in elderly adults with metabolic syndrome. Metab. Syndr. Relat. Disord. 2015, 13, 221–226. [Google Scholar] [CrossRef]
- Anil, C. Impaired glucose metabolism is a risk factor for increased thyroid volume and nodule prevalence in a mild-to-moderate iodine deficient area. Metabolism 2013, 62, 970–975. [Google Scholar] [CrossRef]
- Ittermann, T. Metformin inhibits goitrogenous effects of type 2 diabetes. Eur. J. Endocrinol. 2013, 169, 9–15. [Google Scholar] [CrossRef]
- Han, B.; Cui, H.; Kang, L.; Zhang, X.; Jin, Z.; Lu, L.; Fan, Z. Metformin inhibits thyroid cancer cell growth, migration, and EMT through the mTOR pathway. Tumour Biol. 2015, 36, 6295–6304. [Google Scholar] [CrossRef]
- Klubo-Gwiezdzinska, J. Treatment with Metformin Is Associated with Higher Remission Rate in Diabetic Patients with Thyroid Cancer. J. Clin. Endocrinol. Metab. 2013, 98, 3269–3279. [Google Scholar] [CrossRef]
- Cho, S.W. Therapeutic potential of metformin in papillary thyroid cancer in vitro and in vivo. Mol. Cell Endocrinol. 2014, 393, 24–29. [Google Scholar] [CrossRef]
- Cappelli, C.; Rotondi, M.; Pirola, I.; Agosti, B.; Gandossi, E.; Valentini, U.; De Martino, E.; Cimino, A.; Chiovato, L.; Agabiti-Rosei, E.; et al. TSH-lowering effect of metformin in type 2 diabetic patients: Differences between euthyroid, untreated hypothyroid, and euthyroid on L-T4 therapy patients. Diabetes Care 2009, 32, 1589–1590. [Google Scholar] [CrossRef]
- Lupoli, R.; Di Minno, A.; Tortora, A.; Ambrosino, P.; Lupoli, G.A.; Di Minno, M.N. Effects of treatment with metformin on TSH levels: A meta-analysis of literature studies. J. Clin. Endocrinol. Metab. 2014, 99, E143–E148. [Google Scholar] [CrossRef]
- Diez, J.J.; Iglesias, P. Relationship between serum thyrotropin concentrations and metformin therapy in euthyroid patients with type 2 diabetes. Clin. Endocrinol. 2013, 78, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Cappelli, C.; Rotondi, M.; Pirola, I.; Agosti, B.; Formenti, A.; Zarra, E.; Valentini, U.; Leporati, P.; Chiovato, L.; Castellano, M. Thyrotropin levels in diabetic patients on metformin treatment. Eur. J. Endocrinol. 2012, 167, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Rezzonico, J.; Rezzonico, M.; Pusiol, E.; Pitoia, F.; Niepomniszcze, H. Metformin treatment for small benign thyroid nodules in patients with insulin resistance. Metab. Syndr. Relat. Disord. 2011, 9, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xu, S.; Renko, K.; Derwahl, M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J. Clin. Endocrinol. Metab. 2012, 97, E510–E520. [Google Scholar] [CrossRef]
- Klubo-Gwiezdzinska, J.; Jensen, K.; Costello, J.; Patel, A.; Hoperia, V.; Bauer, A.; Burman, K.D.; Wartofsky, L.; Vasko, V. Metformin inhibits growth and decreases resistance to anoikis in medullary thyroid cancer cells. Endocr. Relat. Cancer 2012, 19, 447–456. [Google Scholar] [CrossRef]
- Suzuki, Y.; Nanno, M.; Gemma, R.; Tanaka, I.; Taminato, T.; Yoshimi, T. The mechanism of thyroid hormone abnormalities in patients with diabetes mellitus. Nippon Naibunpi Gakkai Zasshi 1994, 70, 465–470. (In Japanese) [Google Scholar] [CrossRef]
- Biondi, B. Thyroid Dysfunction and Diabetes Mellitus: Two Closely Associated Disorders. Endocr. Rev. 2019, 40, 789–824. [Google Scholar] [CrossRef]
- Feely, J.; McLaren, S.; Shepherd, A.M.; Maclean, D.; Stevenson, I.H.; Swift, C.G.; Isles, T.E. Antithyroid effect of chlorpropamide? Hum. Toxicol. 1983, 2, 149–153. [Google Scholar] [CrossRef]
- Tranquada, R.E.; Solomon, D.H.; Brown, J.; Greene, R. The effect of oral hypoglycemic agents on thyroid function in the rat. Endocrinology 1960, 67, 293–297. [Google Scholar] [CrossRef]
- England, M.L.; Hartnell, J.M.; Hershman, J.M.; Levin, S.R. Glyburide does not alter thyroid function. Diabetes Res. 1986, 3, 471–474. [Google Scholar]
- Yki-Jarvinen, H. Thiazolidinediones. N. Engl. J. Med. 2004, 351, 1106–1118. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, D.; Pierantoni, G.M.; Fusco, A.; Staibano, S.; Colantuoni, V.; De Bellis, A.; Bellastella, A.; Sinisi, A.A. Fenofibrate increases the expression of high mobility group AT-hook 2 (HMGA2) gene and induces adipocyte differentiation of orbital fibroblasts from Graves’ ophthalmopathy. J. Mol. Endocrinol. 2004, 33, 133–143. [Google Scholar] [CrossRef]
- Dorkhan, M.; Lantz, M.; Frid, A.; Groop, L.; Hallengren, B. Treatment with a thiazolidinedione increases eye protrusion in a subgroup of patients with type 2 diabetes. Clin. Endocrinol. 2006, 65, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Madsen, L.W. GLP-1 receptor agonists and the thyroid: C-cell effects in mice are mediated via the GLP-1 receptor and not associated with RET activation. Endocrinology 2012, 153, 1538–1547. [Google Scholar] [CrossRef]
- Bezin, J. GLP-1 Receptor Agonists and the Risk of Thyroid Cancer. Diabetes Care 2023, 46, 384–390. [Google Scholar] [CrossRef]
- Hegedus, L.; Sherman, S.I.; Tuttle, R.M.; von Scholten, B.J.; Rasmussen, S.; Karsbøl, J.D.; Daniels, G.H. LEADER Publication Committee on behalf of the LEADER Trial Investigators. No evidence of increase in calcitonin concentrations or development of C-Cell malignancy in response to liraglutide for up to 5 years in the LEADER Trial. Diabetes Care 2018, 41, 620–622. [Google Scholar] [CrossRef]
- He, L. The DPP-IV inhibitor saxagliptin promotes the migration and invasion of papillary thyroid carcinoma cells via the NRF2/HO1 pathway. Med. Oncol. 2020, 37, 97. [Google Scholar] [CrossRef]
- Sekizaki, T. Dipeptidyl peptidase-4 inhibitor might exacerbate Graves’ disease: A multicenter observational case-control study. J. Diabetes Investig. 2021, 12, 1978–1982. [Google Scholar] [CrossRef]
- Sola, E.; Morillas, C.; Garzon, S.; Gomez-Balaguer, M.; Hernandez-Mijares, A. Association between diabetic ketoacidosis and thyrotoxicosis. Acta Diabetol. 2002, 39, 235–237. [Google Scholar] [CrossRef]
- Handisurya, A.; Pacini, G.; Tura, A.; Gessl, A.; KautzkyWiller, A. Effects of T4 replacement therapy on glucose metabolism in subjects with subclinical (SH) and overt hypothyroidism (OH). Clin. Endocrinol. 2008, 69, 963–969. [Google Scholar] [CrossRef]
- Koufakis, T.; Maltese, G.; Kotsa, K. Toward a new model for the management of type 2 diabetes: The mountain is there and there is no other option than to climb it. Pharmacol. Res. 2022, 184, 106443. [Google Scholar] [CrossRef] [PubMed]
- Koufakis, T.; Papanas, N.; Zebekakis, P.; Kotsa, K. Treatment options following metformin in primary prevention populations with type 2 diabetes: Which is the right road to take? Expert Rev. Clin. Pharmacol. 2021, 14, 1189–1192. [Google Scholar] [CrossRef] [PubMed]
- Koufakis, T.; Zografou, I.; Doumas, M.; Kotsa, K. The Current Place of DPP4 Inhibitors in the Evolving Landscape of Type 2 Diabetes Management: Is It Time to Bid Adieu? Am. J. Cardiovasc. Drugs 2023, 23, 601–608. [Google Scholar] [CrossRef] [PubMed]
Study [Reference] | Publication Year | Country | Study Setting | Sample Size | Thyroid Disorders (%) |
---|---|---|---|---|---|
Celani et al. [14] | 1994 | Italy | Hospitalized patients | 290 | 31.4 |
Perros et al. [10] | 1995 | Scotland | Hospital clinic | 1310 | 13.4 |
Radaideh et al. [11] | 2004 | Jordan | Hospital clinic | 1212 | 12.5 |
Akbar et al. [12] | 2006 | Saudi Arabia | Community study | 200 | 16 |
Papazafiropoulou et al. [13] | 2010 | Greece | Outpatient clinic | 1092 | 12.3 |
Metformin |
---|
TSH-lowering effect in individuals with T2DM with high normal TSH levels >2.5 mU/L and in individuals with overt or SCH |
The TSH-lowering effect is independent of receiving THs replacement therapy |
Reversible effect after discontinuation of metformin |
A smaller volume of thyroid tissue and a lower risk of incident goiter, thyroid nodules, and TC are observed in patients with T2DM when treated with metformin |
Metformin inhibits the growth and migration of TC cell lines |
Sulfonylureas |
Goitrogenic effect on the thyroid gland of the first-generation SUs |
Higher incidence of hypothyroidism in patients treated with SUs compared to those receiving other agents |
No impact of second-generation SUs on thyroid function |
Insulin |
Downregulation of TRH and TSH secretion |
Increased serum T4 levels and decreased T3 levels |
Incretin mimetics |
Suggestive increased risk of MTC after treatment with GLP-1 receptor agonists |
No adverse effects on the thyroid gland in patients with T2DM treated with liraglutide |
Dipeptidyl peptidase-4 inhibitors |
Promotion of the migration and invasion of human TC cells |
Suggestive association with Graves’ disease exacerbation |
Thiazolidinediones |
Enhanced risk of GO |
Irreversible exacerbations of GO even after discontinuation of thiazolidinediones |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoriadis, G.; Koufakis, T.; Kotsa, K. Epidemiological, Pathophysiological, and Clinical Considerations on the Interplay between Thyroid Disorders and Type 2 Diabetes Mellitus. Medicina 2023, 59, 2013. https://doi.org/10.3390/medicina59112013
Grigoriadis G, Koufakis T, Kotsa K. Epidemiological, Pathophysiological, and Clinical Considerations on the Interplay between Thyroid Disorders and Type 2 Diabetes Mellitus. Medicina. 2023; 59(11):2013. https://doi.org/10.3390/medicina59112013
Chicago/Turabian StyleGrigoriadis, Gregory, Theocharis Koufakis, and Kalliopi Kotsa. 2023. "Epidemiological, Pathophysiological, and Clinical Considerations on the Interplay between Thyroid Disorders and Type 2 Diabetes Mellitus" Medicina 59, no. 11: 2013. https://doi.org/10.3390/medicina59112013
APA StyleGrigoriadis, G., Koufakis, T., & Kotsa, K. (2023). Epidemiological, Pathophysiological, and Clinical Considerations on the Interplay between Thyroid Disorders and Type 2 Diabetes Mellitus. Medicina, 59(11), 2013. https://doi.org/10.3390/medicina59112013