Tixagevimab and Cilgavimab (Evusheld) Boosts Antibody Levels to SARS-CoV-2 in End-Stage Renal Disease Patients on Chronic Hemodialysis: A Single-Center Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Blood Sampling and Laboratory Tests
2.3. COVID-19 Neutralization Antibody Titer Assessment
2.4. End Points
2.4.1. Safety End Point
2.4.2. Efficacy End Point
- Asymptomatic SARS-CoV-2 infection: SARS-CoV-2 infection verified by either a molecular or antigen test.
- Symptomatic COVID-19 disease: SARS-CoV-2 infection confirmed by a molecular or antigen test and at least one of the following symptoms at the time of testing: fever, shortness of breath, difficulty breathing, new-onset confusion (only for participants ≥60 years), loss of appetite or decrease in food intake (only for participants ≥60 years on baseline supplemental oxygen), cough, fatigue, headache, body aches, runny nose, nausea, vomiting, and diarrhea.
- COVID-19-related hospitalization: Patients with a recorded COVID-19 infection who required hospitalization due to the COVID-19 infection.
- ICU admission for COVID-19: An ICU admission or discharge note indicating that COVID-19 was the patient’s primary diagnosis.
- COVID-19-related death: Death certificates indicating that COVID-19 was a contributing factor in the decedent’s passing; hospitalization and subsequent death with COVID-19 indicated as the primary diagnosis; or death within 28 days of a COVID-19 diagnosis and hospitalization.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CKD | chronic kidney disease |
COVID-19 | coronavirus disease 2019 |
ESRD | end-stage renal disease |
HD | hemodialysis |
ICU | intensive care unit |
PROVENT | Preexposure Prophylaxis of COVID-19 in Adults |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
WHO | World Health Organization |
References
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef]
- Yi, Y.; Lagniton, P.N.; Ye, S.; Li, E.; Xu, R.-H. COVID-19: What has been learned and to be learned about the novel coronavirus disease. Int. J. Biol. Sci. 2020, 16, 1753–1766. [Google Scholar] [CrossRef]
- Advice for the Public: Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public?adgroupsurvey={adgroupsurvey}&gclid=CjwKCAiAu9yqBhBmEiwAHTx5pySRwP0S6pdpBq7lZuNV7K1CTLqQXBtrJFAQsrGJpZLnjxkdfoCJdxoCbbsQAvD_BwE (accessed on 17 November 2023).
- Liu, H.; Chen, S.; Liu, M.; Nie, H.; Lu, H. Comorbid Chronic Diseases are Strongly Correlated with Disease Severity among COVID-19 Patients: A Systematic Review and Meta-Analysis. Aging Dis. 2020, 11, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Valeri, A.M.; Robbins-Juarez, S.Y.; Stevens, J.S.; Ahn, W.; Rao, M.K.; Radhakrishnan, J.; Gharavi, A.G.; Mohan, S.; Husain, S.A. Presentation and Outcomes of Patients with ESKD and COVID-19. J. Am. Soc. Nephrol. 2020, 31, 1409–1415. [Google Scholar] [CrossRef]
- Betjes, M.G.H. Immune cell dysfunction and inflammation in end-stage renal disease. Nat. Rev. Nephrol. 2013, 9, 255–265. [Google Scholar] [CrossRef]
- De Meester, J.; De Bacquer, D.; Naesens, M.; Meijers, B.; Couttenye, M.M.; De Vriese, A.S. Incidence, Characteristics, and Outcome of COVID-19 in Adults on Kidney Replacement Therapy: A Regionwide Registry Study. J. Am. Soc. Nephrol. 2021, 32, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Cherif, A.; Willetts, J.L.; Usvyat, L.; Wang, Y.; Kotanko, P. Comparative Analysis of SARS-CoV-2 Reproduction Rates in the Dialysis and General Populations. JASN 2021, 32, 791–794. [Google Scholar] [CrossRef] [PubMed]
- Nasreen, S.; Chung, H.; He, S.; Brown, K.A.; Gubbay, J.B.; Buchan, S.A.; Fell, D.B.; Austin, P.C.; Schwartz, K.L.; Sundaram, M.E.; et al. Effectiveness of COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. Nat. Microbiol. 2022, 7, 379–385. [Google Scholar] [CrossRef]
- Tharwat, S.; Khairallah, M.K.; Nassar, M.K.; Nassar, D.K.; Nagy, E. Acceptance of COVID-19 vaccination among maintenance hemodialysis patients: An Egyptian survey study. Trop. Med. Health 2022, 50, 42. [Google Scholar] [CrossRef]
- Nassar, M.K.; Salem, K.M.; Elgamal, M.; Abdel-Gawad, S.M.; Tharwat, S. COVID-19 Vaccination Trends and Side Effects among Egyptian Hemodialysis Patients: A Multicenter Survey Study. Vaccines 2022, 10, 1771. [Google Scholar] [CrossRef]
- Quiroga, B.; Soler, M.J.; Ortiz, A.; Vaquera, S.M.; Mantecón, C.J.J.; Useche, G.; Márquez, M.G.S.; Carnerero, M.; Rodríguez, M.T.J.; Ramos, P.M.; et al. Safety and immediate humoral response of COVID-19 vaccines in chronic kidney disease patients: The SENCOVAC study. Nephrol. Dial. Transplant. 2022, 37, 1868–1878. [Google Scholar] [CrossRef]
- Polewska, K.; Tylicki, P.; Biedunkiewicz, B.; Rucińska, A.; Szydłowska, A.; Kubanek, A.; Rosenberg, I.; Rodak, S.; Ślizień, W.; Renke, M.; et al. Safety and Tolerability of the BNT162b2 mRNA COVID-19 Vaccine in Dialyzed Patients. COViNEPH Project. Medicina 2021, 57, 732. [Google Scholar] [CrossRef] [PubMed]
- Speer, C.; Schaier, M.; Nusshag, C.; Töllner, M.; Buylaert, M.; Kälble, F.; Reichel, P.; Grenz, J.; Süsal, C.; Zeier, M.; et al. Longitudinal Humoral Responses after COVID-19 Vaccination in Peritoneal and Hemodialysis Patients over Twelve Weeks. Vaccines 2021, 9, 1130. [Google Scholar] [CrossRef]
- Angel-Korman, A.; Peres, E.; Bryk, G.; Lustig, Y.; Indenbaum, V.; Amit, S.; Rappoport, V.; Katzir, Z.; Yagil, Y.; Iaina, N.L.; et al. Diminished and waning immunity to COVID-19 vaccination among hemodialysis patients in Israel: The case for a third vaccine dose. Clin. Kidney J. 2022, 15, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Charmetant, X.; Espi, M.; Benotmane, I.; Barateau, V.; Heibel, F.; Buron, F.; Gautier-Vargas, G.; Delafosse, M.; Perrin, P.; Koenig, A.; et al. Infection or a third dose of mRNA vaccine elicits neutralizing antibody responses against SARS-CoV-2 in kidney transplant recipients. Sci. Transl. Med. 2022, 14, eabl6141. [Google Scholar] [CrossRef] [PubMed]
- Regulatory Approval of Evusheld (Tixagevimab/Cilgavimab). GOVUK 2022. Available online: https://www.gov.uk/government/publications/regulatory-approval-of-evusheld-tixagevimabcilgavimab (accessed on 17 November 2023).
- Levin, M.J.; Ustianowski, A.; De Wit, S.; Launay, O.; Avila, M.; Templeton, A.; Yuan, Y.; Seegobin, S.; Ellery, A.; Levinson, D.J.; et al. Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for Prevention of COVID-19. N. Engl. J. Med. 2022, 386, 2188–2200. [Google Scholar] [CrossRef]
- Çopur, S.; Kanbay, A.; Afşar, B.; Elsürer Afşar, R.; Kanbay, M. Pathological features of COVID-19 infection from biopsy and autopsy series. Tuberk. Toraks 2020, 68, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, C.; Vanholder, R.; Massy, Z.A.; Ortiz, A.; Sarafidis, P.; Dekker, F.W.; Fliser, D.; Fouque, D.; Heine, G.H.; Jager, K.J.; et al. The systemic nature of CKD. Nat. Rev. Nephrol. 2017, 13, 344–358. [Google Scholar] [CrossRef]
- Vanholder, R.; Fouque, D.; Glorieux, G.; Heine, G.H.; Kanbay, M.; Mallamaci, F.; A Massy, Z.; Ortiz, A.; Rossignol, P.; Wiecek, A.; et al. Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diabetes Endocrinol. 2016, 4, 360–373. [Google Scholar] [CrossRef]
- Apetrii, M.; Enache, S.; Siriopol, D.; Burlacu, A.; Kanbay, A.; Kanbay, M.; Scripcariu, D.; Covic, A. A brand-new cardiorenal syndrome in the COVID-19 setting. Clin. Kidney J. 2020, 13, 291–296. [Google Scholar] [CrossRef]
- Bertrand, D.; Laurent, C.; Lemée, V.; Lebourg, L.; Hanoy, M.; Le Roy, F.; Nezam, D.; Pruteanu, D.; Grange, S.; de Nattes, T.; et al. Efficacy of anti-SARS-CoV-2 monoclonal antibody prophylaxis and vaccination on the Omicron variant of COVID-19 in kidney transplant recipients. Kidney Int. 2022, 102, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Benotmane, I.; Velay, A.; Vargas, G.-G.; Olagne, J.; Cognard, N.; Heibel, F.; Braun-Parvez, L.; Martzloff, J.; Perrin, P.; Pszczolinski, R.; et al. A rapid decline in the anti-receptor-binding domain of the SARS-CoV-2 spike protein IgG titer in kidney transplant recipients after tixagevimab-cilgavimab administration. Kidney Int. 2022, 102, 1188–1190. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimmons, W.E. COVID-19 vaccine associated transverse myelitis-Evusheld as an option when vaccination is not recommended due to severe adverse events. Hum. Vaccin. Immunother. 2022, 18, 2068338. [Google Scholar] [CrossRef] [PubMed]
- Malani, A.G.; Malani, A.N. Preventive Medication for COVID-19 Infection. JAMA 2022, 328, 1152. [Google Scholar] [CrossRef]
- COVID-19 Morbidity Decreases with Tixagevimab-Cilgavimab Preexposure Prophylaxis in Kidney Transplant Recipient Nonresponders or Low-Vaccine Responders. Available online: https://pubmed.ncbi.nlm.nih.gov/35870641/ (accessed on 18 November 2023).
- Lafont, E.; Pere, H.; Lebeaux, D.; Cheminet, G.; Thervet, E.; Guillemain, R.; Flahault, A. Targeted SARS-CoV-2 treatment is associated with decreased mortality in immunocompromised patients with COVID-19. J. Antimicrob. Chemother. 2022, 77, 2688–2692. [Google Scholar] [CrossRef]
- Benotmane, I.; Velay, A.; Gautier-Vargas, G.; Olagne, J.; Thaunat, O.; Fafi-Kremer, S.; Caillard, S. Pre-exposure prophylaxis with 300 mg Evusheld elicits limited neutralizing activity against the Omicron variant. Kidney Int. 2022, 102, 442–444. [Google Scholar] [CrossRef]
- Najjar-Debbiny, R.; Gronich, N.; Weber, G.; Stein, N.; Saliba, W. Effectiveness of Evusheld in Immunocompromised Patients: Propensity Score-Matched Analysis. Clin. Infect. Dis. 2023, 76, 1067–1073. [Google Scholar] [CrossRef]
- Montgomery, H.; Hobbs, F.D.R.; Padilla, F.; Arbetter, D.; Templeton, A.; Seegobin, S.; Kim, K.; Campos, J.A.S.; Arends, R.H.; Brodek, B.H.; et al. Efficacy and safety of intramuscular administration of tixagevimab-cilgavimab for early outpatient treatment of COVID-19 (TACKLE): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 2022, 10, 985–996. [Google Scholar] [CrossRef]
- Ocon, A.J.; Mustafa, S.S. Real-World Experience of Tixagevimab and Cilgavimab (Evusheld) in Rheumatologic Patients on Rituximab. J. Clin. Rheumatol. 2023, 29, 109–111. [Google Scholar] [CrossRef]
- Stuver, R.; Shah, G.L.; Korde, N.S.; Roeker, L.E.; Mato, A.R.; Batlevi, C.L.; Chung, D.J.; Doddi, S.; Falchi, L.; Gyurkocza, B.; et al. Activity of AZD7442 (tixagevimab-cilgavimab) against Omicron SARS-CoV-2 in patients with hematologic malignancies. Cancer Cell 2022, 40, 590–591. [Google Scholar] [CrossRef]
Variable Mean ± SD, n (%), Median (Q1–Q3) | Received Evusheld (n = 43) | Did Not Receive Evusheld (n = 30) | p |
---|---|---|---|
Demographic Data | |||
Gender: Male Female | 25 (58.1) 18 (41.9) | 21 (70) 9 (30) | 0.541 |
Age (years): | 51.7 ± 15.32 | 35.2 ± 8.43 | 0.002 * |
Smoking habit: Nonsmoker Smoker Ex smoker | 34 (79) 3 (7) 6 (14) | 27 (90) 3 (30) 0 | 0.388 |
Anthropometric measures: | |||
Weight (kg) | 81.02 ± 21.96 | 75.3 ± 19.77 | 0.459 |
Height (m) | 1.66 ± 0.24 | 1.56 ± 0.34 | 0.392 |
BMI (kg/m2) | 27.8 (24.2–32.3) | 26.3 (22.4–31.4) | 0.522 |
Clinical characteristics of hemodialysis | |||
Duration of hemodialysis (years) | 4 (2–7) | 1.5 (1–2.625) | 0.006 |
Therapeutic data | |||
Erythropoietin | 26 (60.4) | 24 (80) | 0.077 |
Iron supplementation | 25 (58.1) | 21 (70) | 0.302 |
Calcium supplementation | 41 (95.3) | 30 (100) | 0.509 |
Alpha Calcidol | 36 (83.7) | 27 (90) | 0.51 |
Calcimimetics | 15 (34.9) | 6 (20) | 0.167 |
Antihypertensive drugs | 14 (32.6) | 9 (30) | 0.817 |
Antidiabetic drugs | 9 (20.9) | 3 (10) | 0.337 |
Immunosuppressive drugs | 1 (2.3) | 0 | NA |
Associated comorbidities | |||
Diabetes | 9 (20.9) | 3 (10) | 0.664 |
Hypertension | 23 (53.5) | 21 (70) | 0.488 |
Heart disease | 7 (16.3) | 0 | NA |
Liver disease | 1 (2.3) | 0 | NA |
Chronic respiratory disease | 1 (2.3) | 0 | NA |
Autoimmune disease | 1 (2.3) | 3 (10) | 0.351 |
Variable | Received Evusheld (n = 43) | Did not Receive Evusheld (n = 30) | p |
---|---|---|---|
Prior COVID-19 infection | 13 (30.2) | 6 (20) | 0.706 |
COVID-19 vaccination | 43 (100) | 30 (100) | 1 |
Type of COVID-19 vaccine: Sinopharm Sinovac Oxford AstraZeneca | 6 (14) 33 (76.7) 4 (9.3) | 6 (20) 24 (80) 0 | 0.566 |
Interval between COVID-19 vaccination and Evusheld (days) | 170.8 ± 44.44 | - | NA |
Evusheld | Timing | |||||
---|---|---|---|---|---|---|
Baseline | After One Month | After Six Months | ||||
Median | Q1–Q3 | Median | Q1–Q3 | Median | Q1–Q3 | |
Received | 2 | 2–3 | 3 | 3–3 | 3 | 3–3 |
Not received | 3 | 1–3 | 2 | 1–2 | 1.5 | 1–2 |
Variable | Received Evusheld (n = 43) | Did Not Receive Evusheld (n = 30) | p |
---|---|---|---|
Total COVID infections (asymptomatic and symptomatic) | 10 (23.3) | 6 (20) | 0.59 |
1. Asymptomatic SARS-CoV-2 infection | 4 (9.3) | 0 | 0.42 |
2. Symptomatic COVID-19 disease | 6 (14) | 6 (20) | 0.63 |
3. COVID-19 related hospitalization | 6 (14) | 6 (20) | 0.63 |
4. ICU admission for COVID-19 | 0 | 6 (20) | 0.033 * |
5. COVID-19 related death | 0 | 3 (10) | 0.036 * |
Adverse Effects | Received Evusheld (n = 43) n (%) |
---|---|
Local pain and tenderness | 2 (4.7) |
Fever | 1 (2.3) |
Fatigue | 1 (2.3) |
Drowsiness | 1 (2.3) |
Fatigue, drowsiness, and dizziness | 2 (4.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nassar, M.K.; Sabry, A.; Elgamal, M.; Zeid, Z.; Abdellateif Abdelghany, D.; Tharwat, S. Tixagevimab and Cilgavimab (Evusheld) Boosts Antibody Levels to SARS-CoV-2 in End-Stage Renal Disease Patients on Chronic Hemodialysis: A Single-Center Study. Medicina 2023, 59, 2109. https://doi.org/10.3390/medicina59122109
Nassar MK, Sabry A, Elgamal M, Zeid Z, Abdellateif Abdelghany D, Tharwat S. Tixagevimab and Cilgavimab (Evusheld) Boosts Antibody Levels to SARS-CoV-2 in End-Stage Renal Disease Patients on Chronic Hemodialysis: A Single-Center Study. Medicina. 2023; 59(12):2109. https://doi.org/10.3390/medicina59122109
Chicago/Turabian StyleNassar, Mohammed Kamal, Alaa Sabry, Mohamed Elgamal, Zeinab Zeid, Dalia Abdellateif Abdelghany, and Samar Tharwat. 2023. "Tixagevimab and Cilgavimab (Evusheld) Boosts Antibody Levels to SARS-CoV-2 in End-Stage Renal Disease Patients on Chronic Hemodialysis: A Single-Center Study" Medicina 59, no. 12: 2109. https://doi.org/10.3390/medicina59122109
APA StyleNassar, M. K., Sabry, A., Elgamal, M., Zeid, Z., Abdellateif Abdelghany, D., & Tharwat, S. (2023). Tixagevimab and Cilgavimab (Evusheld) Boosts Antibody Levels to SARS-CoV-2 in End-Stage Renal Disease Patients on Chronic Hemodialysis: A Single-Center Study. Medicina, 59(12), 2109. https://doi.org/10.3390/medicina59122109