Caries Lesion Assessment Using 3D Virtual Models by Examiners with Different Degrees of Clinical Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Cleaning of Evaluated Teeth
2.4. Diagnostic Methods
2.4.1. Visual Examination (ICDAS)
2.4.2. Intra Oral Scanners
2.5. Missing Data
2.6. Statistical Analysis
- Between examination techniques with the same rater (intra-rater agreement);
- Between raters for the same examination technique (inter-rater agreement).
3. Results
3.1. Agreement Tests between Examination Techniques with the Same Rater
3.1.1. Senior Dentist Intra-Rater Agreement Tests for Medit i500® Compared with Clinical Examination
3.1.2. Senior Dentist Intra-Rater Agreement Tests for Omnicam® Compared with Clinical Examination
4. Inter-Rater Agreement Tests for the Same Examination Technique
4.1. Inter-Rater Agreement Tests for Examiners with the Same Experience Level for Omnicam
4.1.1. Senior Dentists
4.1.2. Dental Students
4.1.3. Inter-Rater Agreement Tests for Examiners with Different Experience Levels
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Oral Health. Available online: https://www.who.int/news-room/fact-sheets/detail/oral-health/ (accessed on 1 November 2023).
- Foros, P.; Oikonomou, E.; Koletsi, D.; Rahiotis, C. Detection Methods for Early Caries Diagnosis: A Systematic Review and Meta-Analysis. Caries Res. 2021, 55, 247–259. [Google Scholar] [CrossRef] [PubMed]
- New Caries Diagnostic Tools in Intraoral Scanners: A Comparative In Vitro Study to Established Methods in Permanent and Primary Teeth—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950989/ (accessed on 30 October 2023).
- Srilatha, A.; Doshi, D.; Kulkarni, S.; Reddy, M.P.; Bharathi, V. Advanced Diagnostic Aids in Dental Caries—A Review. JGOH 2020, 2, 118–127. [Google Scholar] [CrossRef]
- Sandhu, M.; Gupta, N.; Jhingan, P. Comparison of Visual Examination and Magnification with DIAGNOdent for Detection of Smooth Surface Initial Carious Lesion–Dry and Wet Conditions. Int. J. Clin. Pediatr. Dent. 2019, 12, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Braga, M.M.; Mendes, F.M.; Ekstrand, K.R. Detection Activity Assessment and Diagnosis of Dental Caries Lesions. Dent. Clin. N. Am. 2010, 54, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Kühnisch, J.; Dietz, W.; Stösser, L.; Hickel, R.; Heinrich-Weltzien, R. Effects of Dental Probing on Occlusal Surfaces—A Scanning Electron Microscopy Evaluation. Caries Res. 2007, 41, 43–48. [Google Scholar] [CrossRef]
- Baltacioglu, I.H.; Orhan, K. Comparison of Diagnostic Methods for Early Interproximal Caries Detection with Near-Infrared Light Transillumination: An in Vivo Study. BMC Oral Health 2017, 17, 130. [Google Scholar] [CrossRef]
- Muñoz-Sandoval, C.; Gambetta-Tessini, K.; Botelho, J.N.; Giacaman, R.A. Detection of Cavitated Proximal Carious Lesions in Permanent Teeth: A Visual and Radiographic Assessment. Caries Res. 2022, 56, 171–178. [Google Scholar] [CrossRef]
- Govind, S.; Jena, A.; Kamilla, S.K.; Mohanty, N.; Mallikarjuna, R.M.; Nalawade, T.; Saraf, S.; Khaldi, N.A.; Jahdhami, S.A.; Shivagange, V. Diagnosis and Assessment of Dental Caries Using Novel Bioactive Caries Detecting Dye Solution. Biomedicines 2023, 11, 500. [Google Scholar] [CrossRef]
- Shi, X.-Q.; Welander, U.; Angmar-Månsson, B. Occlusal Caries Detection with KaVo DIAGNOdent and Radiography: An in Vitro Comparison. Caries Res. 2000, 34, 151–158. [Google Scholar] [CrossRef]
- Tranaeus, S.; Lindgren, L.-E.; Karlsson, L.; Angmar-Månsson, B. In Vivo Validity and Reliability of IR Fluorescence Measurements for Caries Detection and Quantification. Swed. Dent. J. 2004, 28, 173–182. [Google Scholar]
- Hung, H.V.; Ngoc, V.T.N.; Vu Thi, H.; Chu, D.-T. Early Childhood Caries in Obese Children: The Status and Associated Factors in the Suburban Areas in Hanoi, Vietnam. Int. J. Environ. Res. Public Health 2021, 18, 8844. [Google Scholar] [CrossRef] [PubMed]
- Serban, C.; Lungeanu, D.; Bota, S.D.; Cotca, C.C.; Negrutiu, M.L.; Duma, V.F.; Sinescu, C.; Craciunescu, E.L. Emerging Technologies for Dentin Caries Detection-A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 674. [Google Scholar] [CrossRef] [PubMed]
- Luczaj-Cepowicz, E.; Marczuk-Kolada, G.; Obidzinska, M.; Sidun, J. Diagnostic Validity of the Use of ICDAS II and DIAGNOdent Pen Verified by Micro-Computed Tomography for the Detection of Occlusal Caries Lesions—An in Vitro Evaluation. Lasers Med. Sci. 2019, 34, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Kockanat, A.; Unal, M. In Vivo and in Vitro Comparison of ICDAS II, DIAGNOdent Pen, CarieScan PRO and SoproLife Camera for Occlusal Caries Detection in Primary Molar Teeth. Eur. J. Paediatr. Dent. 2017, 18, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.; Sanz, J.L.; Forner, L.; Rodríguez-Lozano, F.J.; Guerrero-Gironés, J. Current Status and Trends in Research on Caries Diagnosis: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 5011. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.K.; Wah, Y.Y.; Lam, W.Y.-H.; Chu, C.-H.; Yu, O.Y. Use of Digital Diagnostic Aids for Initial Caries Detection: A Review. Dent. J. 2023, 11, 232. [Google Scholar] [CrossRef] [PubMed]
- Witecy, C.; Ganss, C.; Wöstmann, B.; Schlenz, M.B.; Schlenz, M.A. Monitoring of Erosive Tooth Wear with Intraoral Scanners In Vitro. Caries Res. 2021, 55, 215–224. [Google Scholar] [CrossRef]
- Steinmeier, S.; Wiedemeier, D.; Hämmerle, C.H.F.; Mühlemann, S. Accuracy of Remote Diagnoses Using Intraoral Scans Captured in Approximate True Color: A Pilot and Validation Study in Teledentistry. BMC Oral Health 2020, 20, 266. [Google Scholar] [CrossRef]
- Mangano, F.; Gandolfi, A.; Luongo, G.; Logozzo, S. Intraoral Scanners in Dentistry: A Review of the Current Literature. BMC Oral Health 2017, 17, 149. [Google Scholar] [CrossRef]
- Michou, S.; Lambach, M.S.; Ntovas, P.; Benetti, A.R.; Bakhshandeh, A.; Rahiotis, C.; Ekstrand, K.R.; Vannahme, C. Automated Caries Detection in Vivo Using a 3D Intraoral Scanner. Sci. Rep. 2021, 11, 21276. [Google Scholar] [CrossRef]
- Duong, D.L.; Kabir, M.H.; Kuo, R.F. Automated Caries Detection with Smartphone Color Photography Using Machine Learning. Health Inform. J. 2021, 27, 14604582211007530. [Google Scholar] [CrossRef] [PubMed]
- Ntovas, P.; Michou, S.; Benetti, A.; Bakhshandeh, A.; Ekstrand, K.; Rahiotis, C.; Kakaboura, A. Occlusal Caries Detection on 3D Models Obtained with an Intraoral Scanner. A Validation Study. J. Dent. 2023, 131, 104457. [Google Scholar] [CrossRef] [PubMed]
- Dikmen, B. Icdas II Criteria (International Caries Detection and Assessment System). J. Istanbul Univ. Fac. Dent. 2015, 49, 63. [Google Scholar] [CrossRef] [PubMed]
- International Caries Detection and Assessment System (ICDAS) Coordinating Committee. Rationale and Evidence for the International Caries Detection and Assessment System (ICDAS II). In Proceedings of the Workshop, Baltimore, MD, USA, 12–14 March 2005. [Google Scholar]
- International Caries Detection and Assessment System (ICDAS) Coordinating Committee. Criteria Manual-International Caries Detection and Assessment System (ICDAS II). In Proceedings of the Workshop, Baltimore, MD, USA, 12–14 March 2005. [Google Scholar]
- Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement|EQUATOR Network. Available online: https://www.equator-network.org/reporting-guidelines/tripod-statement/ (accessed on 1 July 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; Institute for Statistics and Mathematics Wirtschaftsuniversitat: Wien, Austria, 2023. [Google Scholar]
- Ondine Lucaciu, P.; Mester, A.; Constantin, I.; Orban, N.; Cosma, L.; Candrea, S.; Sava-Rosianu, R.; Mesaros, A.S. A WHO Pathfinder Survey of Dental Caries in 6 and 12-Year Old Transylvanian Children and the Possible Correlation with Their Family Background, Oral-Health Behavior, and the Intake of Sweets. Int. J. Environ. Res. Public Health 2020, 17, 4180. [Google Scholar] [CrossRef] [PubMed]
- Elnawawy, M.S.A.; Gharote, H. Dental Students’ Ability to Detect Only-Enamel Proximal Caries on Bitewing Radiographs. Cureus 2022, 14, e31593. [Google Scholar] [CrossRef] [PubMed]
- Abreu-Placeres, N.; Newton, J.T.; Avila, V.; Garrido, L.E.; Jácome-Liévano, S.; Pitts, N.B.; Ekstrand, K.R.; Ochoa, E.M.; Martignon, S. How Do Dental Practitioners, Educators and Students Diagnose and Manage Caries Risk and Caries Lesions? A COM-B Analysis. Community Dent. Oral Epidemiol. 2023, 51, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Al Dhubayb, S.; Al Sultan, M.; Al Sudairi, S.; Hakami, F.; Al Sweleh, F.S. Ability of Dentists and Students to Detect Caries by Using the International Caries Detection and Assessment System. CCIDE 2021, 13, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Algarni, A.A.; Alwusaydi, R.M.; Alenezi, R.S.; Alharbi, N.A.; Alqadi, S.F. Knowledge and attitude of dentists toward minimally invasive caries management in Almadinah Almunawwarah province, KSA. J. Taibah Univ. Med. Sci. 2023, 19, 10–17. [Google Scholar] [CrossRef]
- Ahmed, E.E.A.; Nesser, S.A.; Schmoeckel, J. Introducing an Innovative Approach for Managing Proximal Non-Cavitated Carious Lesions in Juvenile Permanent Dentition: Combining Orthodontic Separators and Silver Fluoride Application. Medicina 2023, 59, 1892. [Google Scholar] [CrossRef]
- What Is AI Analytics? Available online: https://www.anodot.com/learning-center/ai-analytics/ (accessed on 22 October 2023).
Rater’s Experience Level | Number of Surfaces Rated by Clinical Examinations | Number of Surfaces Rated by Examining with IOS Medit i500® | Number of Surfaces Rated by Examining with IOS Omnicam® |
---|---|---|---|
third-year dental students | 144 | 287 | 288 |
senior dentists (more than 5 years of clinical experience) | 575 | 287 | 576 |
Observations | Number Observations | Cohen’s Weighted Kappa | p-Value | Fleiss Kappa | p-Value | ICC (95% CI) | p-Value |
---|---|---|---|---|---|---|---|
All teeth | 287 | 0.608 | <0.001 | 0.58 | <0.001 | 0.614 (95% CI 0.536–0.681) | <0.001 |
Frontal teeth | 104 | 0.493 | <0.001 | 0.593 | <0.001 | ICC = 0.368 (95% CI 0.191–0.522 | <0.001 |
Lateral teeth | 183 | 0.634 | <0.001 | 0.575 | <0.001 | ICC = 0.663 (95% CI 0.573–0.737) | <0.001 |
Pits and fissures | 63 | 0.586 | <0.001 | 0.548 | <0.001 | ICC = 0.592 (95% CI 0.405–0.732) | <0.001 |
Smooth surface | 224 | 0.568 | <0.001 | 0.597 | <0.001 | ICC = 0.543 (95% CI 0.444–0.629) | <0.001 |
Observations | Number Observations | Cohen’s Weighted Kappa | p-Value | Fleiss Kappa | p-Value | ICC (95% CI) | p-Value |
---|---|---|---|---|---|---|---|
All teeth | 288 | 0.863 | <0.001 | 0.771 | <0.001 | 0.921 (95% CI 0.902–0.937) | <0.001 |
Frontal teeth | 104 | 0.829 | <0.001 | 0.659 | <0.001 | 0.922 (95% CI 0.887–0.946) | <0.001 |
Lateral teeth | 184 | 0.872 | <0.001 | 0.802 | <0.001 | 0.921 (95% CI 0.896–0.941) | <0.001 |
Pits and fissures | 64 | 0.895 | <0.001 | 0.795 | <0.001 | 0.955 (95% CI 0.926–0.972) | <0.001 |
Smooth surface | 224 | 0.663 | <0.001 | 0.596 | <0.001 | 0.704 (95% CI 0.631–0.764) | <0.001 |
Observations | Number Observations | Cohen’s Weighted Kappa | p-Value | Fleiss Kappa | p-Value | ICC (95% CI) | p-Value |
---|---|---|---|---|---|---|---|
All teeth | 288 | 0.902 | <0.001 | 0.809 | <0.001 | 0.959 (95% CI 0.948–0.967) | <0.001 |
Frontal teeth | 104 | 0.829 | <0.001 | 0.659 | <0.001 | 0.922 (95% CI 0.887–0.946) | <0.001 |
Lateral teeth | 184 | 0.924 | <0.001 | 0.852 | <0.001 | 0.968 (95% CI 0.958–0.976 | <0.001 |
Pits and fissures | 64 | 0.923 | <0.001 | 0.846 | <0.001 | 0.969 (95% CI 0.949–0.981) | <0.001 |
Smooth surface | 224 | 0.748 | <0.001 | 0.597 | <0.001 | 0.856 (95% CI 0.817–0.888) | <0.001 |
Observations | Number Observations | Cohen’s Weighted Kappa | p-Value | Fleiss Kappa | p-Value | ICC (95% CI) | p-Value |
---|---|---|---|---|---|---|---|
All teeth | 144 | 0.106 | 0.084 | 0.179 | 0.004 | 0.04 (95% CI −0.124–0.201) | 0.317 |
Frontal teeth | 52 | 0 | 1 | −0.02 | 0.888 | 0 (95% CI −0.264–0.267) | 0.5 |
Lateral teeth | 92 | 0.171 | 0.051 | 0.223 | 0.011 | 0.054 (95% CI −0.154–0.256) | 0.306 |
Pits and fissures | 32 | 0.223 | 0.135 | 0.275 | 0.078 | 0.084 (95% CI −0.276–0.419) | 0.325 |
Smooth surface | 112 | 0 | 1 | −0.012 | 0.856 | 0 (95% CI −0.18–0.181) | 0.5 |
Observations | Number Observations | Cohen’s Weighted Kappa | p-Value | Fleiss Kappa | p-Value | ICC (95% CI) | p-Value |
---|---|---|---|---|---|---|---|
All teeth | 144 | 0.114 | 0.114 | 0.077 | 0.23 | 0.126 (95% CI −0.037–0.284) | 0.065 |
Frontal teeth | 52 | 0 | 1 | −0.02 | 0.888 | 0 (95% CI −0.264–0.267) | 0.5 |
Lateral teeth | 92 | 0.155 | 0.051 | 0.094 | 0.279 | 0.184 (95% CI −0.022–0.375) | 0.04 |
Pits and fissures | 32 | 0.1 | 0.449 | 0.028 | 0.845 | 0.128 (95% CI −0.238–0.456) | 0.245 |
Smooth surface | 112 | 0 | 1 | −0.009 | 0.924 | 0 (95% CI −0.183–0.183) | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porumb, I.; Leucuta, D.-C.; Nigoghossian, M.; Culic, B.; Lucaciu, P.O.; Culic, C.; Badea, I.C.; Leghezeu, A.-N.; Nicoara, A.G.; Simu, M.-R. Caries Lesion Assessment Using 3D Virtual Models by Examiners with Different Degrees of Clinical Experience. Medicina 2023, 59, 2157. https://doi.org/10.3390/medicina59122157
Porumb I, Leucuta D-C, Nigoghossian M, Culic B, Lucaciu PO, Culic C, Badea IC, Leghezeu A-N, Nicoara AG, Simu M-R. Caries Lesion Assessment Using 3D Virtual Models by Examiners with Different Degrees of Clinical Experience. Medicina. 2023; 59(12):2157. https://doi.org/10.3390/medicina59122157
Chicago/Turabian StylePorumb (Chifor), Ioana, Daniel-Corneliu Leucuta, Marion Nigoghossian, Bogdan Culic, Patricia Ondine Lucaciu, Carina Culic, Iulia Clara Badea, Alexa-Nicole Leghezeu, Andra Gabriela Nicoara, and Meda-Romana Simu. 2023. "Caries Lesion Assessment Using 3D Virtual Models by Examiners with Different Degrees of Clinical Experience" Medicina 59, no. 12: 2157. https://doi.org/10.3390/medicina59122157
APA StylePorumb, I., Leucuta, D. -C., Nigoghossian, M., Culic, B., Lucaciu, P. O., Culic, C., Badea, I. C., Leghezeu, A. -N., Nicoara, A. G., & Simu, M. -R. (2023). Caries Lesion Assessment Using 3D Virtual Models by Examiners with Different Degrees of Clinical Experience. Medicina, 59(12), 2157. https://doi.org/10.3390/medicina59122157