Neck and Shoulder Pain with Scapular Dyskinesis in Computer Office Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instructions
2.2. Participants
2.3. Protocol
2.4. SDT
2.5. LSST
2.6. NDI
2.7. SPADI
2.8. VAS
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nejati, P.; Lotfian, S.; Moezy, A.; Nejati, M. The relationship of forward head posture and rounded shoulders with neck pain in Iranian office workers. Med. J. Islam. Repub. Iran 2014, 28, 26. [Google Scholar] [CrossRef] [PubMed]
- Sillanpaa, J.; Huikko, S.; Nyberg, M.; Kivi, P.; Laippala, P.; Uitti, J. Effect of work with visual display units on musculo-skeletal disorders in the office environment. Occup. Med. 2003, 53, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, A.M.; Morse, E.P.; Summers, V.M.; Pagnotto, L.D. Video display terminal use and reported health symptoms among Massachusetts clerical workers. J. Occup. Med. 1987, 29, 112–118. [Google Scholar] [PubMed]
- Prasad, M.A. Study of Prevalence of Health Problems Among Computer Professionals in Selected Information Technology (IT) Company in Nagpur District of Central India. Innov. J. Med. Health Sci. 2014, 4, 96–98. [Google Scholar] [CrossRef]
- Silvian, S.P.; Maiya, A.; Resmi, A.; Page, T. Antecedents of work related musculoskeletal disorders in software professionals. Int. J. Enterp. Netw. Manag. 2011, 4, 247. [Google Scholar] [CrossRef]
- Kashif, M.; Anwar, M.; Noor, H.; Iram, H.; Hassan, H.M.J. Prevalence of Musculoskeletal Complaints of Arm, Neck and Shoulder and Associated Risk Factors in Computer Office Workers. Phys. Med. Rehabil. Kurortmed. 2020, 30, 299–305. [Google Scholar] [CrossRef]
- Aarås, A.; Horgen, G.; Bjørset, H.-H.; Ro, O.; Thoresen, M. Musculoskeletal, visual and psychosocial stress in VDU operators before and after multidisciplinary ergonomic interventions. Appl. Ergon. 1998, 29, 335–354. [Google Scholar] [CrossRef]
- Dahiya, J.; Ravindra, S. A Study of Neck Pain and Role of Scapular Position in Computer Professionals. Indian J. Physiother. Occup. Ther. Int. J. 2014, 8, 236–241. [Google Scholar] [CrossRef]
- Kibler, W.B.; Ludewig, P.M.; McClure, P.; Uhl, T.L.; Sciascia, A. Scapular summit. J. Orthop. Sports Phys. Ther. 2009, 39, a1. [Google Scholar] [CrossRef]
- Kibler, B.W.; Sciascia, A.; Wilkes, T. Scapular Dyskinesis and Its Relation to Shoulder Injury. JAAOS-J. Am. Acad. Orthop. Surg. 2012, 20, 364–372. [Google Scholar] [CrossRef]
- Yildiz, T.I.; Cools, A.; Duzgun, I. Alterations in the 3-dimensional scapular orientation in patients with non-specific neck pain. Clin. Biomech. 2019, 70, 97–106. [Google Scholar] [CrossRef]
- Cagnie, B.; Struyf, F.; Cools, A.; Castelein, B.; Danneels, L.; O’Leary, S. The Relevance of Scapular Dysfunction in Neck Pain: A Brief Commentary. J. Orthop. Sports Phys. Ther. 2014, 44, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.W.; Kim, Y.K. Scapular Dyskinesis in Elite Boxers with Neck Disability and Shoulder Malfunction. Medicina 2021, 57, 1347. [Google Scholar] [CrossRef] [PubMed]
- Szeto, G.P.; Straker, L.; Raine, S. A field comparison of neck and shoulder postures in symptomatic and asymptomatic office workers. Appl. Ergon. 2001, 33, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Castelein, B.; Cools, A.; Parlevliet, T.; Cagnie, B. Are chronic neck pain, scapular dyskinesis and altered scapulothoracic muscle activity interrelated? A case-control study with surface and fine-wire EMG. J. Electromyogr. Kinesiol. 2016, 31, 136–143. [Google Scholar] [CrossRef]
- Hickey, D.; Solvig, V.; Cavalheri, V.; Harrold, M.; Mckenna, L. Scapular dyskinesis increases the risk of future shoulder pain by 43% in asymptomatic athletes: A systematic review and meta-analysis. Br. J. Sports Med. 2017, 52, 102–110. [Google Scholar] [CrossRef]
- Vongsirinavarat, M.; Wangbunkhong, S.; Sakulsriprasert, P.; Petviset, H. Prevalence of scapular dyskinesis in office workers with neck and scapular pain. Int. J. Occup. Saf. Ergon. 2022, 29, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Brimmo, O.A.; Li, X.; Colbert, L. Current Concepts in Rehabilitation for Traumatic Anterior Shoulder Instability. Curr. Rev. Musculoskelet. Med. 2017, 10, 499–506. [Google Scholar] [CrossRef]
- Cools, A.M.J.; Struyf, F.; De Mey, K.; Maenhout, A.; Castelein, B.; Cagnie, B. Rehabilitation of scapular dyskinesis: From the office worker to the elite overhead athlete. Br. J. Sports Med. 2013, 48, 692–697. [Google Scholar] [CrossRef]
- Mottram, S. Dynamic stability of the scapula. Man. Ther. 1997, 2, 123–131. [Google Scholar] [CrossRef]
- McClure, P.; Tate, A.R.; Kareha, S.; Irwin, D.; Zlupko, E. A Clinical Method for Identifying Scapular Dyskinesis, Part 1: Reliability. J. Athl. Train. 2009, 44, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Ben Kibler, W. The Role of the Scapula in Athletic Shoulder Function. Am. J. Sports Med. 1998, 26, 325–337. [Google Scholar] [CrossRef]
- Dahiya, J.; Ravindra, S. Effect of scapular position in computer professionals with neck pain. Int. J. Sci. Res. 2013, 4, 2075–2080. [Google Scholar] [CrossRef]
- Depreli, O.; Ender Angın, E.; Yatar, I.G.; Kirmizigil, B.; Malkoc, M. Scapular Dyskinesis and Work-Related Pain in Office Workers-A Pilot Study. Int. J. Phys. Ther. Rehabil. 2016, 2, 2. [Google Scholar] [CrossRef]
- Sree, S.D. To Evaluate Scapulohumeral Rhythm in Scapular Dyskinesia in Software Professionals with Neck Pain. Indian J. Physiother. Occup. Ther. Int. J. 2020, 14, 2017–2212. [Google Scholar] [CrossRef]
- Ozunlu, N.; Tekeli, H.; Baltaci, G. Lateral scapular slide test and scapular mobility in volleyball players. J. Athl. Train. 2011, 46, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.-S.; Huang, H.-Y.; Wang, T.-G.; Tsai, Y.-S.; Lin, J.-J. Comprehensive classification test of scapular dyskinesis: A reliability study. Man. Ther. 2015, 20, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Kibler, W.B.; Sciascia, A. Current concepts: Scapular dyskinesis. Br. J. Sports Med. 2009, 44, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Warner, J.J.P.; Micheli, L.J.; Arslanian, L.E.; Kennedy, J.; Kennedy, R. Scapulothoracic Motion in Normal Shoulders and Shoulders with Glenohumeral Instability and Impingement Syndrome. A study using moiré topographic analysis. Clin. Orthop. Relat. Res. 1992, 285, 191–199. [Google Scholar] [CrossRef]
- Ben Kibler, W.; Ludewig, P.M.; McClure, P.W.; Michener, L.A.; Bak, K.; Sciascia, A.D. Clinical implications of scapular dyskinesis in shoulder injury: The 2013 consensus statement from the ‘scapular summit’. Br. J. Sports Med. 2013, 47, 877–885. [Google Scholar] [CrossRef]
- Sasikumar, V.; Binoosh, S.C.A.B. A model for predicting the risk of musculoskeletal disorders among computer professionals. Int. J. Occup. Saf. Ergon. 2018, 26, 384–396. [Google Scholar] [CrossRef]
- Sharan, D.; Ajeesh, P.S. Correlation of ergonomic risk factors with RULA in IT professionals from India. Work 2012, 41 (Suppl. S1), 512–515. [Google Scholar] [CrossRef]
- Griffiths, K.L.; Mackey, M.G.; Adamson, B.J.; Pepper, K.L. Prevalence and risk factors for musculoskeletal symptoms with computer based work across occupations. Work 2012, 42, 533–541. [Google Scholar] [CrossRef]
- Shrivastava, S.; Bobhate, P. Computer related health problems among software professionals in Mumbai: A cross-sectional study. Saf. Sci. Monitor 2012, 1, 74. [Google Scholar] [CrossRef]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13 (Suppl. S1), 31. [Google Scholar] [CrossRef] [PubMed]
- Hasanat, M.R.U.; Ali, S.S.; Rasheed, A.; Khan, M. Frequency and associated risk factors for neck pain among software engineers in Karachi, Pakistan. J. Pak. Med. Assoc. 2017, 67, 1009–1012. [Google Scholar]
- Shadmehr, A.; Bagheri, H.; Ansari, N.N.; Sarafraz, H. The reliability measurements of lateral scapular slide test at three different degrees of shoulder joint abduction. Br. J. Sports Med. 2008, 44, 289–293. [Google Scholar] [CrossRef]
- Pietrobon, R.; Coeytaux, R.R.; Carey, T.S.; Richardson, W.J.; DeVellis, R.F. Standard Scales for Measurement of Functional Outcome for Cervical Pain or Dysfunction. Spine 2002, 27, 515–522. [Google Scholar] [CrossRef]
- Song, K.-J.; Choi, B.-R.; Seo, G.-B. Cross-Cultural Adaptation and Validation of the Korean Version of the Neck Disability Index. Spine 2010, 35, E1045–E1049. [Google Scholar] [CrossRef]
- Howell, E.R. The association between neck pain, the Neck Disability Index and cervical ranges of motion: A narrative review. J. Can. Chiropr. Assoc. 2011, 55, 211–221. [Google Scholar] [CrossRef]
- Pool, J.J.M.; Ostelo, R.W.J.G.; Hoving, J.L.; Bouter, L.M.; de Vet, H.C.W. Minimal Clinically Important Change of the Neck Disability Index and the Numerical Rating Scale for Patients with Neck Pain. Spine 2007, 32, 3047–3051. [Google Scholar] [CrossRef] [PubMed]
- Roach, K.E.; Budiman-Mak, E.; Songsiridej, N.; Lertratanakul, Y. Development of a Shoulder Pain and Disability Index. Arthritis Rheum. 1991, 4, 143–149. [Google Scholar] [CrossRef]
- Paul, A.; Lewis, M.; Shadforth, M.F.; Croft, P.R.; Windt, D.A.W.M.v.d.; Hay, E.M. A comparison of four shoulder-specific questionnaires in primary care. Ann. Rheum. Dis. 2004, 63, 1293–1299. [Google Scholar] [CrossRef]
- Riley, S.P.; Cote, M.P.; Swanson, B.; Tafuto, V.; Sizer, P.S.; Brismée, J.-M. The Shoulder Pain and Disability Index: Is it sensitive and responsive to immediate change? Man. Ther. 2015, 20, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Ekeberg, O.M.; Bautz-Holter, E.; Tveitå, E.K.; Keller, A.; Juel, N.G.; Brox, J.I. Agreement, reliability and validity in 3 shoulder questionnaires in patients with rotator cuff disease. BMC Musculoskelet. Disord. 2008, 9, 68–69. [Google Scholar] [CrossRef]
- Scott, J.; Huskisson, E.C. Graphic representation of pain. Pain 1976, 2, 175–184. [Google Scholar] [CrossRef]
- Ozdemir, F.; Toy, S. Evaluation of scapular dyskinesis and ergonomic risk level in office workers. Int. J. Occup. Saf. Ergon. 2020, 27, 1193–1198. [Google Scholar] [CrossRef]
- Burn, M.B.; McCulloch, P.C.; Lintner, D.M.; Liberman, S.R.; Harris, J.D. Prevalence of Scapular Dyskinesis in Overhead and Nonoverhead Athletes: A systematic review. Orthop. J. Sports Med. 2016, 4, 2325967115627608. [Google Scholar] [CrossRef]
- Ebaugh, D.D.; McClure, P.W.; Karduna, A.R. Effects of shoulder muscle fatigue caused by repetitive overhead activities on scapulothoracic and glenohumeral kinematics. J. Electromyogr. Kinesiol. 2006, 16, 224–235. [Google Scholar] [CrossRef]
- Uga, D.; Nakazawa, R.; Sakamoto, M. Strength and muscle activity of shoulder external rotation of subjects with and without scapular dyskinesis. J. Phys. Ther. Sci. 2016, 28, 1100–1105. [Google Scholar] [CrossRef]
- Jeong, J.H.; Kim, Y.K. Association of Scapular Dyskinesis with Neck and Shoulder Function and Training Period in Brazilian Ju-Jitsu Athletes. Medicina 2023, 59, 1481. [Google Scholar] [CrossRef] [PubMed]
- Karaağaç, A.; Arslan, S.A.; Keskin, E.D. Assessment of pain, scapulothoracic muscle strength, endurance and scapular dyskinesis in individuals with and without nonspecific chronic neck pain: A cross-sectional study. J. Bodyw. Mov. Ther. 2023, 35, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Thigpen, C.A.; Padua, D.A.; Michener, L.A.; Guskiewicz, K.; Giuliani, C.; Keener, J.D.; Stergiou, N. Head and shoulder posture affect scapular mechanics and muscle activity in overhead tasks. J. Electromyogr. Kinesiol. 2010, 20, 701–709. [Google Scholar] [CrossRef]
- Vernon, H. The Neck Disability Index: State-of-the-Art, 1991-2008. J. Manip. Physiol. Ther. 2008, 31, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Mun, M.-H. Relationship of neck disability index, shoulder pain and disability index, and visual analogue scale in individuals with chronic neck pain. Phys. Ther. Rehabil. Sci. 2013, 2, 111–114. [Google Scholar] [CrossRef]
- Eltayeb, S.; Staal, J.B.; Kennes, J.; Lamberts, P.H.; de Bie, R.A. Prevalence of complaints of arm, neck and shoulder among computer office workers and psychometric evaluation of a risk factor questionnaire. BMC Musculoskelet. Disord. 2007, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.; Borg, V.; Finsen, L.; Hansen, K.; Juul-Kristensen, B.; Christensen, H. Job demands, muscle activity and musculoskeletal symptoms in relation to work with the computer mouse. Scand. J. Work. Environ. Health 1998, 24, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Kamonseki, D.H.; Haik, M.N.; Ribeiro, L.P.; Almeida, R.F.; Camargo, P.R. Scapular movement training is not superior to standardized exercises in the treatment of individuals with chronic shoulder pain and scapular dyskinesis: Randomized controlled trial. Disabil. Rehabil. 2023, 45, 2925–2935. [Google Scholar] [CrossRef]
- Giuseppe, L.U.; Laura, R.A.; Berton, A.; Candela, V.; Massaroni, C.; Carnevale, A.; Stelitano, G.; Schena, E.; Nazarian, A.; DeAngelis, J.; et al. Scapular Dyskinesis: From Basic Science to Ultimate Treatment. Int. J. Environ. Res. Public Health 2020, 17, 2974. [Google Scholar] [CrossRef]
- Oyama, S.; Myers, J.B.; Wassinger, C.A.; Ricci, R.D.; Lephart, S.M. Asymmetric Resting Scapular Posture in Healthy Overhead Athletes. J. Athl. Train. 2008, 43, 565–570. [Google Scholar] [CrossRef]
- Odom, C.J.; Taylor, A.B.; Hurd, C.E.; Denegar, C.R. Measurement of Scapular Asymmetry and Assessment of Shoulder Dysfunction Using the Lateral Scapular Slide Test: A Reliability and Validity Study. Phys. Ther. 2001, 81, 799–809. [Google Scholar] [CrossRef]
- Curtis, T.; Roush, J.R. The Lateral Scapular Slide Test: A Reliability Study of Males with and without Shoulder Pathology. N. Am. J. Sports Phys. Ther. NAJSPT 2006, 1, 140–146. [Google Scholar] [PubMed]
- Cho, C.-Y.; Hwang, Y.-S.; Cherng, R.-J. Musculoskeletal Symptoms and Associated Risk Factors Among Office Workers with High Workload Computer Use. J. Manip. Physiol. Ther. 2012, 35, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Andres, J.; Painter, P.J.; McIlvain, G.; Timmons, M.K. The Effect of Repeated Shoulder Motion on Scapular Dyskinesis in Army ROTC Cadets. Mil. Med. 2020, 185, e811–e817. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.M.; Pedroni, C.R.; Martins, J.; de Oliveira, A.S. Intrarater and interrater reliability of three classifications for scapular dyskinesis in athletes. PLoS ONE 2017, 12, e0181518. [Google Scholar] [CrossRef] [PubMed]
Scapular Dyskinesis Test | Normal Mean (95% CI) | Median (95% CI) | Subtle Mean (95% CI) | Median (95% CI) | Obvious Mean (95% CI) | Median (95% CI) | F | p |
---|---|---|---|---|---|---|---|---|
Age | 32.5 ± 4.42 (28.08–36.92) | 33 (28.0–38.0) | 33.27 ± 2.1 (31.18–35.37) | 33 (30.5–35.5) | 31.36 ± 1.17 (30.19–32.53) | 33 (30.5–33.0) | 1.464 | 0.236 |
Gender (M = 1, F = 2) | 1.36 ± 0.34 (1.02–1.7) | 1 (1.0–1.5) | 1.36 ± 0.17 (1.19–1.54) | 1 (1.0–1.5) | 1.43 ± 0.12 (1.31–1.55) | 1 (1.5–1.5) | 0.24 | 0.787 |
Total IT experience | 4.23 ± 1.09 (3.14–5.31) | 5.5 (3.5–5.5) | 4.14 ± 0.59 (3.55–4.72) | 5.5 (3.5–5.0) | 4.02 ± 0.42 (3.6–4.44) | 5.5 (3.5–4.5) | 0.098 | 0.906 |
Working hours per day | 8.59 ± 0.63 (7.96–9.23) | 8.5 (8.0–9.5) | 8.62 ± 0.34 (8.28–8.96) | 8.5 (8.0–9.0) | 8.7 ± 0.24 (8.46–8.94) | 8.5 (8.5–9.0) | 0.109 | 0.897 |
Working hours per week | 45.82 ± 4.01 (41.81–49.82) | 44 (44.0–50.0) | 46.24 ± 2.04 (44.2–48.29) | 44 (44.0–47.0) | 45.32 ± 1.9 (43.43–47.22) | 44 (44.0–47.0) | 0.193 | 0.824 |
Working days per month | 22.32 ± 1.22 (21.1–23.54) | 21.5 (21.5–21.5) | 21.91 ± 0.47 (21.44–22.37) | 21.5 (21.5–21.5) | 22.47 ± 0.54 (21.93–23.01) | 21.5 (21.5–23.75) | 0.931 | 0.397 |
Break hour per day | 0.73 ± 0.22 (0.51–0.95) | 0.75 (0.5–0.75) | 1 ± 0.28 (0.72–1.28) | 0.75 (0.75–1.125) | 0.81 ± 0.13 (0.68–0.94) | 0.75 (0.5–0.875) | 1.361 | 0.261 |
Scapular Dyskinesis | Normal | Subtle | Obvious |
---|---|---|---|
Total (n = 109) | 11 (10.09%) | 33 (30.28%) | 65 (59.63%) |
Dominant arm (n = 109) | 16 (14.68%) | 42 (38.53%) | 51 (46.79%) |
Non-dominant arm (n = 109) | 25 (22.94%) | 40 (36.70%) | 44 (40.37%) |
SDT Normal | SDT Subtle | SDT Obvious | |
---|---|---|---|
Neck pain (n = 104, 95.4%) | 9 (8.65%) | 31 (29.81%) | 64 (61.54%) |
No neck pain (n = 5, 4.6%) | 2 (40%) | 2 (40%) | 1 (20%) |
D shoulder pain (n = 23, 21.1%) | 2 (8.7%) | 7 (30.43%) | 14 (60.87%) |
ND shoulder pain (n = 3, 2.8%) | 2 (66.67%) | 1 (33.34%) | 0 (0%) |
Both shoulder pain (n = 66, 60.6%) | 4 (6.06%) | 20 (30.30%) | 42 (63.64%) |
No shoulder pain (n = 17, 15.6%) | 3 (17.65%) | 5 (29.41%) | 9 (52.94%) |
Neck and shoulder pain (n = 90) | 7 (7.78%) | 27 (30.0%) | 56 (62.22%) |
Scapular Dyskinesis Test | Normal (n = 11) Mean (95% CI) | Median (95% CI) | Subtle (n = 33) Mean (95% CI) | Median (95% CI) | Obvious (n = 65) Mean (95% CI) | Median (95% CI) | F | p | LSD |
---|---|---|---|---|---|---|---|---|---|
Neck NDI score | 5.82 ± 3.05 (2.77–8.86) | 5 (4.0–10.5) | 11.76 ± 2.54 (9.21–14.3) | 10 (9.5–15.0) | 10.14 ± 1.36 (8.78–11.5) | 9 (8.5–11) | 4.094 | 0.019 * | Normal < Subtle Normal < Obvious |
Neck VAS score | 2.4 ± 1.09 (1.28–3.47) | 2.4 (1.9–4.0) | 3.92 ± 0.67 (3.25–4.59) | 3.6 (3.5–4.8) | 3.61 ± 0.41 (3.2–4.03) | 3.4 (3.2–4.0) | 3.29 | 0.041 * | Normal < Subtle Normal < Obvious |
D shoulder SPADI score | 4.91 ± 4.67 (0.24–9.58) | 2 (4.0–15.0) | 11.39 ± 3.85 (7.54–15.25) | 9 (9.5–16.0) | 10.72 ± 3.01 (7.72–13.73) | 8 (8.0–13.0) | 1.435 | 0.243 | |
ND shoulder SPADI score | 2.45 ± 2.07 (0.39–4.52) | 2 (2.0–7.0) | 7.58 ± 3.42 (4.16–10.99) | 5 (7.0–15.5) | 7.06 ± 2.42 (4.64–9.49) | 4 (7.0–11.5) | 1.337 | 0.267 | |
D shoulder VAS score | 1.52 ± 1.22 (0.3–2.74) | 1.3 (1.8–4.2) | 3.21 ± 0.81 (2.4–4.02) | 2.7 (3.05–4.75) | 2.85 ± 0.42 (2.43–3.28) | 2.7 (2.85–3.7) | 3.243 | 0.043 * | Normal < Subtle Normal < Obvious |
ND shoulder VAS score | 1.25 ± 0.98 (0.27–2.23) | 1.2 (1.45–3.2) | 2.38 ± 0.79 (1.59–3.16) | 2.2 (2.9–4.5) | 2.06 ±0.46 (1.6–2.52) | 2.3 (2.7–3.4) | 1.375 | 0.257 |
Scapular Dyskinesis Test | Normal (n = 11) Mean (95% CI) | Median (95% CI) | Subtle (n = 33) Mean (95% CI) | Median (95%CI) | Obvious (n = 65) Mean (95% CI) | Median (95% CI) | F | p | LSD |
---|---|---|---|---|---|---|---|---|---|
LSST 1, mm | 3.65 ± 2.33 (1.31–5.98) | 2 (0.85–6.3) | 5.87 ± 1.83 (4.04–7.69) | 5 (3.75–6.95) | 6.61 ± 1.09 (5.52–7.71) | 6 (5.15–7.7) | 2.042 | 0.135 | |
LSST 2, mm | 2.88 ± 1.31 (1.57–4.2) | 2.2 (1.3–4.05) | 6.1 ± 1.49 (4.62–7.6) | 5.7 (4.42–7.45) | 7.38 ± 1.34 (6.03–8.72) | 5.5 (5.3–8.55) | 4.25 | 0.0168 * | Normal < Subtle Normal < Obvious |
LSST 3, mm | 3.14 ± 1.61 (1.53–4.74) | 3 (1.3–4.9) | 7.78 ± 2.26 (5.52–10.04) | 6.8 (4.8–9.9) | 6.98 ± 1.33 (5.66–8.31) | 6.1 (5.2–7.85) | 3.016 | 0.0532 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, S.E.; Kim, Y.K. Neck and Shoulder Pain with Scapular Dyskinesis in Computer Office Workers. Medicina 2023, 59, 2159. https://doi.org/10.3390/medicina59122159
Moon SE, Kim YK. Neck and Shoulder Pain with Scapular Dyskinesis in Computer Office Workers. Medicina. 2023; 59(12):2159. https://doi.org/10.3390/medicina59122159
Chicago/Turabian StyleMoon, Seong Eun, and Young Kyun Kim. 2023. "Neck and Shoulder Pain with Scapular Dyskinesis in Computer Office Workers" Medicina 59, no. 12: 2159. https://doi.org/10.3390/medicina59122159
APA StyleMoon, S. E., & Kim, Y. K. (2023). Neck and Shoulder Pain with Scapular Dyskinesis in Computer Office Workers. Medicina, 59(12), 2159. https://doi.org/10.3390/medicina59122159