Prognostic Nutritional Index as a Novel Predictor of In-Stent Restenosis: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taniwaki, M.; Stefanini, G.G.; Silber, S.; Richardt, G.; Vranckx, P.; Serruys, P.W.; Buszman, P.E.; Kelbaek, H.; Windecker, S.; RESOLUTE All-Comers Investigators. 4-year clinical outcomes and predictors of repeat revascularization in patients treated with new-generation drug-eluting stents: A report from the RESOLUTE All-Comers trial (A Randomized Comparison of a Zotarolimus-Eluting Stent With an Everolimus-Eluting Stent for Percutaneous Coronary Intervention). J. Am. Coll. Cardiol. 2014, 63, 1617–1625. [Google Scholar] [PubMed] [Green Version]
- Jukema, J.W.; Verschuren, J.J.W.; Ahmed, T.A.N.; Quax, P.H.A. Restenosis after PCI. Part 1: Pathophysiology and risk factors. Nat. Rev. Cardiol. 2011, 9, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Croce, K.; Morooka, T.; Sakuma, M.; Node, K.; Simon, D.I. Vascular inflammation and repair: Implications for re-endothelialization, restenosis, and stent thrombosis. JACC Cardiovasc. Interv. 2011, 4, 1057–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Giosia, P.; Stamerra, C.A.; Giorgini, P.; Jamialahamdi, T.; Butler, A.E.; Sahebkar, A. The role of nutrition in inflammaging. Ageing Res. Rev. 2022, 77, 101596. [Google Scholar] [CrossRef] [PubMed]
- Takada, T.; Jujo, K.; Inagaki, K.; Abe, T.; Kishihara, M.; Shirotani, S.; Endo, N.; Watanabe, S.; Suzuki, K.; Minami, Y.; et al. Nutritional status during hospitalization is associated with the long-term prognosis of patients with heart failure. ESC Hear. Fail. 2021, 8, 5372–5382. [Google Scholar] [CrossRef]
- Wada, H.; Dohi, T.; Miyauchi, K.; Jun, S.; Endo, H.; Doi, S.; Konishi, H.; Naito, R.; Tsuboi, S.; Ogita, M.; et al. Relationship between the prognostic nutritional index and long-term clinical outcomes in patients with stable coronary artery disease. J. Cardiol. 2018, 72, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Boyraz, B.; Ibisoglu, E.; Aslan, B. The prognostic value of the nutritional prognostic index (NPI) and controlling nutritional status (CONUT) scoring systems in non-ST elevated myocardial infarction patients over 65 years of age. Aging Clin. Exp. Res. 2022, 34, 555–562. [Google Scholar] [CrossRef]
- Smith, S.C.; Dove, J.T.; Jacobs, A.K.; Kennedy, J.W.; Kereiakes, D.; Kern, M.J.; Kuntz, R.E.; Popma, J.J.; Schaff, H.V.; Williams, D.O.; et al. ACC/AHA guidelines for percutaneous coronary intervention (revision of the 1993 PTCA guidelines)-Executive summary. J. Am. Coll. Cardiol. 2001, 37, 2215–2238. [Google Scholar] [CrossRef] [Green Version]
- Mehran, R.; Dangas, G.; Abizaid, A.S.; Mintz, G.S.; Lansky, A.J.; Satler, L.F.; Pichard, A.D.; Kent, K.M.; Stone, G.W.; Leon, M.B. Angiographic patterns of in-stent restenosis: Classification and implications for long-term outcome. Circulation 1999, 100, 1872–1878. [Google Scholar] [CrossRef] [Green Version]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Naito, H.; Nezu, T.; Hosomi, N.; Aoki, S.; Kinoshita, N.; Kuga, J.; Shimomura, R.; Araki, M.; Ueno, H.; Ochi, K.; et al. Controlling nutritional status score for predicting 3-mo functional outcome in acute ischemic stroke. Nutrition 2018, 55–56, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ni Lochlainn, M.; Cox, N.; Wilson, T.; Hayhoe, R.; Ramsay, S.; Granic, A.; Isanejad, M.; Roberts, H.; Wilson, D.; Welch, C.; et al. Nutrition and Frailty: Opportunities for Prevention and Treatment. Nutrients 2021, 13, 2349. [Google Scholar] [CrossRef] [PubMed]
- Jensen, G.L. Inflammation as the key interface of the medical and nutrition universes: A provocative examination of the future of clinical nutrition and medicine. JPEN J. Parenter. Enter. Nutr. 2006, 30, 453–463. [Google Scholar] [CrossRef]
- Sun, G.; Li, Y.; Peng, Y.; Lu, D.; Zhang, F.; Cui, X.; Zhang, Q.; Li, Z. Impact of the preoperative prognostic nutritional index on postoperative and survival outcomes in colorectal cancer patients who underwent primary tumor resection: A systematic review and meta-analysis. Int. J. Color. Dis. 2019, 34, 681–689. [Google Scholar] [CrossRef]
- Barutcu Atas, D.; Tugcu, M.; Asicioglu, E.; Velioglu, A.; Arikan, H.; Koc, M.; Tuglular, S. Prognostic nutritional index is a predictor of mortality in elderly patients with chronic kidney disease. Int. Urol. Nephrol. 2022, 54, 1155–1162. [Google Scholar] [CrossRef]
- Cheng, Y.; Sung, S.; Cheng, H.; Hsu, P.; Guo, C.; Yu, W.; Chen, C. Prognostic Nutritional Index and the Risk of Mortality in Patients with Acute Heart Failure. J. Am. Heart Assoc. 2017, 6, e004876. [Google Scholar] [CrossRef] [PubMed]
- Akbuğa, K.; Ferik, Ö.K.; Yayla, K.G.; Aslan, T.; Eren, M.; Karanfil, M.; Ekici, B.; Erkan, A.F.; Ercan, E.A.; Kervancioğlu, C. Prognostic Nutritional Index as a New Prediction Tool for Coronary Collateral Development. Acta Cardiol. Sin. 2022, 38, 21. [Google Scholar] [PubMed]
- Lam, F.W.; Cruz, M.A.; Leung, H.C.E.; Parikh, K.S.; Smith, C.W.; Rumbaut, R.E. Histone induced platelet aggregation is inhibited by normal albumin. Thromb Res. 2013, 132, 69–76. [Google Scholar] [CrossRef]
- Arques, S. Human serum albumin in cardiovascular diseases. Eur. J. Intern. Med. 2018, 52, 8–12. [Google Scholar] [CrossRef]
- Weber, C.; Zernecke, A.; Libby, P. The multifaceted contributions of leukocyte subsets to atherosclerosis: Lessons from mouse models. Nat. Rev. Immunol. 2008, 8, 802–815. [Google Scholar] [CrossRef] [PubMed]
- Arero, G.; Arero, A.G.; Mohammed, S.H.; Vasheghani-Farahani, A. Prognostic Potential of the Controlling Nutritional Status (CONUT) Score in Predicting All-Cause Mortality and Major Adverse Cardiovascular Events in Patients with Coronary Artery Disease: A Meta-Analysis. Front. Nutr. 2022, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Skålén, K.; Gustafsson, M.; Rydberg, E.K.; Hultén, L.M.; Wiklund, O.; Innerarity, T.L.; Borén, J. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 2002, 417, 750–754. [Google Scholar] [CrossRef] [PubMed]
- Gordon, D.J.; Probstfield, J.L.; Garrison, R.J.; Neaton, J.D.; Castelli, W.P.; Knoke, J.D.; Jacobs, D.R., Jr.; Bangdiwala, S.; Tyroler, H.A. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 1989, 79, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.J.; Gao, F.; Cheng, W.J.; Yang, Q.; Zhou, Y.J. Body Mass Index and Repeat Revascularization After Percutaneous Coronary Intervention: A Meta-analysis. Can. J. Cardiol. 2015, 31, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, H.; Olschewski, M.; Münzel, T.; Gori, T. Coronary In-Stent Restenosis: Predictors and Treatment. Dtsch. Arztebl. Int. 2021, 118, 637–644. [Google Scholar] [CrossRef]
- Yi, M.; Tang, W.H.; Xu, S.; Ke, X.; Liu, Q. Investigation into the Risk Factors Related to In-stent Restenosis in Elderly Patients With Coronary Heart Disease and Type 2 Diabetes Within 2 Years After the First Drug-Eluting Stent Implantation. Front. Cardiovasc. Med. 2022, 9, 1–12. [Google Scholar] [CrossRef]
- Zbinden, R.; Von Felten, S.; Wein, B.; Tueller, D.; Kurz, D.; Reho, I.; Galatius, S.; Alber, H.; Conen, D.; Pfisterer, M.; et al. Impact of stent diameter and length on in-stent restenosis after DES vs BMS implantation in patients needing large coronary stents-A clinical and health-economic evaluation. Cardiovasc. Ther. 2017, 35, 19–25. [Google Scholar] [CrossRef] [Green Version]
ISR − (n = 573) | ISR + (n = 236) | p-Value | |
---|---|---|---|
Age | 61.3 ± 11.1 | 60.2 ± 10.4 | 0.195 |
Sex, Male n (%) | 408 (71.2) | 164 (69.5) | 0.343 |
Smoking, n (%) | 137 (23.9) | 68 (28.8) | 0.086 |
Diabetes mellitus, n (%) | 148 (25.8) | 86 (36.4) | 0.002 |
Uncontrolled hyperglycemia, n (%) | 49 (33.1) | 38 (44.2) | 0.061 |
Hypertension, n (%) | 237 (41.4) | 96 (40.7) | 0.461 |
Body mass index (kg/m2) | 23.2 ± 2.7 | 23.0 ± 2.6 | 0.422 |
Types of stent | |||
Bare metal | 373 (65.1) | 167 (70.8) | 0.070 |
Drug-eluting | 200 (34.9) | 69 (29.2) | |
Technical features of stents | |||
Diameter (mm) | 3.27 ± 0.50 | 3.14 ± 0.48 | 0.001 |
Length (mm) | 18.1 ± 5.8 | 19.0 ± 6.1 | 0.071 |
Number of stent | 1.0 (1.0–1.0) | 1.0 (1.0–1.0) | 0.572 |
Target coronary artery | |||
LMCA | 0 (0.0) | 1 (0.4) | 0.096 |
LAD artery | 291 (50.8) | 105 (44.5) | |
CX artery | 108 (18.8) | 42 (17.8) | |
RCA | 174 (30.4) | 88 (37.3) | |
Period between 2 coronary angiographies, days | 550 (502–690) | 535 (501–678) | 0.757 |
ISR − (n = 573) | ISR + (n = 236) | p-Value | |
---|---|---|---|
White blood cell count (µ/µL) | 10,398 ± 3898 | 10,652 ± 3480 | 0.385 |
Lymphocyte count (µ/µL) | 2179 ± 872 | 2036 ± 730 | 0.026 |
Neutrophil count (µ/µL) | 7178 ± 3677 | 7486 ± 3201 | 0.262 |
Hemoglobin (g/dL) | 14 ± 1.7 | 13.8 ± 1.8 | 0.089 |
Platelet count (×103/µL) | 231.7 ± 80.6 | 243.7 ± 79.1 | 0.053 |
Creatinine (mg/dL) | 0.92 (0.81–1.08) | 0.91 (0.79–1.14) | 0.131 |
Uric acid (mg/dL) | 5.7 ± 1.1 | 5.7 ± 1.1 | 0.741 |
Albumin (g/dL) | 4.1 ± 0.3 | 3.9 ± 0.3 | <0.001 |
HbA1c (%) | 6.6 ± 1.2 | 6.7 ± 1.4 | 0.063 |
Total cholesterol (mg/dL) | 167.5 ± 33.9 | 174.3 ± 38.3 | 0.013 |
High-density lipoprotein (mg/dL) | 42.9 ± 10.9 | 34.5 ± 10.9 | <0.001 |
Low-density lipoprotein (mg/dL) | 110.9 ± 34.4 | 108.9 ± 36.8 | 0.548 |
PNI | 52.3 ± 5.8 | 49.5 ± 5.1 | <0.001 |
CONUT score | 1.0 (0.0–2.0) | 1.0 (0.0–2.0) | 0.759 |
Normal | 357 (62.3) | 134 (56.8) | 0.129 |
Mild | 207 (36.1) | 94 (39.8) | |
Moderate–severe | 9 (1.6) | 8 (3.4) |
Univariate | Multivariate | |
---|---|---|
Dependent: Restenosis | HR (95% CI, p-Value) | HR (95% CI, p-Value) |
Smoking | 1.268 (0.956–1.681, p = 0.110) | |
Hemoglobin | 0.901 (0.838–0.968, p = 0.004) | 0.971 (0.898–1.050, p = 0.466) |
Creatinine | 1.586 (0.911–2.760, p = 0.103) | |
HbA1c | 1.043 (0.947–1.149, p = 0.389) | |
Drug-eluting stent | 0.724 (0.543–0.964, p = 0.027) | 0.622 (0.452–0.855, p = 0.003) |
Stent length | 1.022 (1.000–1.043, p = 0.045) | 1.025 (1.003–1.048, p = 0.028) |
Stent diameter | 0.710 (0.534–0.944, p = 0.019) | 0.744 (0.545–1.016, p = 0.063) |
Diabetes mellitus | 1.487 (1.138–1.942, p = 0.004) | 1.408 (1.068–1.858, p = 0.015) |
PNI | 0.863 (0.830–0.896, p < 0.001) | 0.932 (0.909–0.956, p < 0.001) |
Low-density lipoprotein | 1.002 (0.997–1.007, p = 0.401) | |
High-density lipoprotein | 0.947 (0.934–0.960, p < 0.001) | 0.953 (0.941–0.966, p < 0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balun, A.; Akgümüş, A.; Özbek, K.; Güven Çetin, Z. Prognostic Nutritional Index as a Novel Predictor of In-Stent Restenosis: A Retrospective Study. Medicina 2023, 59, 663. https://doi.org/10.3390/medicina59040663
Balun A, Akgümüş A, Özbek K, Güven Çetin Z. Prognostic Nutritional Index as a Novel Predictor of In-Stent Restenosis: A Retrospective Study. Medicina. 2023; 59(4):663. https://doi.org/10.3390/medicina59040663
Chicago/Turabian StyleBalun, Ahmet, Alkame Akgümüş, Kerem Özbek, and Zehra Güven Çetin. 2023. "Prognostic Nutritional Index as a Novel Predictor of In-Stent Restenosis: A Retrospective Study" Medicina 59, no. 4: 663. https://doi.org/10.3390/medicina59040663