Impact of Preemptive Postoperative Pressure Support Ventilation and Physiotherapy on Postoperative Pulmonary Complications after Major Cervicofacial Cancer Surgery: A before and after Study
Abstract
:1. Introduction
2. Methods
2.1. Non-Respiratory Care and Data Extraction
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelkar, K.V. Post-operative pulmonary complications after non-cardiothoracic surgery. Indian J. Anaesth. 2015, 59, 599–605. [Google Scholar] [CrossRef]
- Damian, D.; Esquenazi, J.; Duvvuri, U.; Johnson, J.T.; Sakai, T. Incidence, outcome, and risk factors for postoperative pulmonary complications in head and neck cancer surgery patients with free flap reconstructions. J. Clin. Anesth. 2016, 28, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Tanatporn, P.; Ahn, H.J.; Yang, M.; Kim, J.A.; Yeo, H.; Kim, W. Pressure Support versus Spontaneous Ventilation during Anesthetic Emergence—Effect on Postoperative Atelectasis: A Randomized Controlled Trial. Anesthesiology 2021, 135, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Leone, M.; Bouadma, L.; Bouhemad, B.; Brissaud, O.; Dauger, S.; Gibot, S.; Hraiech, S.; Jung, B.; Kipnis, E.; Launey, Y.; et al. Hospital-acquired pneumonia in ICU. Anaesth. Crit. Care Pain Med. 2018, 37, 83–98. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of Surgical Complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Farwell, D.G.; Reilly, D.F.; Weymuller, E.A., Jr.; Greenberg, D.L.; Staiger, T.O.; Futran, N.A. Predictors of Perioperative Complications in Head and Neck Patients. Arch. Otolaryngol. Head Neck Surg. 2002, 128, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Shaw, L.M.; Iseli, T.A.; Wiesenfeld, D.; Ramakrishnan, A.; Granger, C.L. Postoperative pulmonary complications following major head and neck cancer surgery. Int. J. Oral Maxillofac. Surg. 2021, 50, 302–308. [Google Scholar] [CrossRef]
- Wang, J.; Zeng, J.; Zhang, C.; Zheng, W.; Huang, X.; Zhao, N.; Duan, G.; Yu, C. Optimized ventilation strategy for surgery on patients with obesity from the perspective of lung protection: A network meta-analysis. Front. Immunol. 2022, 13, 1032783. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Lai, C.-S.; Lu, C.-T.; Wu, C.-Y.; Shen, C.-H. Effect of Total Intravenous Anesthesia on Postoperative Pulmonary Complications in Patients Undergoing Microvascular Reconstruction for Head and Neck Cancer: A Randomized Clinical Trial. JAMA Otolaryngol. Head Neck Surg. 2022, 148, 1013–1021. [Google Scholar] [CrossRef]
- Futier, E.; Marret, E.; Jaber, S. Perioperative Positive Pressure Ventilation: An integrated approach to improve pulmonary care. Anesthesiology 2014, 121, 400–408. [Google Scholar] [CrossRef] [Green Version]
- Bigatello, L.; Östberg, E. Pursuing the Importance of Postoperative Atelectasis. Anesthesiology 2021, 135, 943–944. [Google Scholar] [CrossRef] [PubMed]
- Boden, I.; Skinner, E.H.; Browning, L.; Reeve, J.; Anderson, L.; Hill, C.; Robertson, I.K.; Story, D.; Denehy, L. Preoperative physiotherapy for the prevention of respiratory complications after upper abdominal surgery: Pragmatic, double blinded, multicentre randomised controlled trial. BMJ 2018, 360, j5916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q.; Zheng, W.; Chen, B. Nursing postoperative lung cancer patients using continuous positive airway pressure treatment. Am. J. Transl. Res. 2021, 13, 2962–2968. [Google Scholar]
- Saraniti, C.; Speciale, R.; Santangelo, M.; Massaro, N.; Maniaci, A.; Gallina, S.; Serra, A.; Cocuzza, S. Functional outcomes after supracricoid modified partial laryngectomy. J. Biol. Regul. Homeost. Agents 2019, 33, 1903–1907. [Google Scholar] [PubMed]
- Cocuzza, S.; Di Luca, M.; Maniaci, A.; Russo, M.; Di Mauro, P.; Migliore, M.; Serra, A.; Spinato, G. Precision treatment of post pneumonectomy unilateral laryngeal paralysis due to cancer. Future Oncol. 2020, 16, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Cramer, J.D.; Graboyes, E.M.; Brenner, M.J. Mortality associated with tracheostomy complications in the United States: 2007–2016. Laryngoscope 2019, 129, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Genther, D.J.; Gourin, C.G. The effect of alcohol abuse and alcohol withdrawal on short-term outcomes and cost of care after head and neck cancer surgery. Laryngoscope 2012, 122, 1739–1747. [Google Scholar] [CrossRef]
- McGurk, M.G.; Fan, K.F.; MacBean, A.D.; Putcha, V. Complications encountered in a prospective series of 182 patients treated surgically for mouth cancer. Oral Oncol. 2007, 43, 471–476. [Google Scholar] [CrossRef]
- Farach, A.; Fernando, R.; Bhattacharjee, M.; Fuentes, F. Baroreflex failure following radiotherapy for head and neck cancer: A case study. Pract. Radiat. Oncol. 2012, 2, 226–232. [Google Scholar] [CrossRef]
- Sharabi, Y.; Dendi, R.; Holmes, C.; Goldstein, D.S. Baroreflex Failure as a Late Sequela of Neck Irradiation. Hypertension 2003, 42, 110–116. [Google Scholar] [CrossRef]
- Teng, A.E.; Noor, B.; Ajijola, O.A.; Yang, E.H. Chemotherapy and Radiation-Associated Cardiac Autonomic Dysfunction. Curr. Oncol. Rep. 2021, 23, 14. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, B.; Copelli, C.; Ferrari, S.; Ferri, A.; Sesenna, E. Free flaps: Outcomes and complications in head and neck reconstructions. J. Cranio-Maxillofac. Surg. 2009, 37, 438–442. [Google Scholar] [CrossRef]
- Lahtinen, S.; Koivunen, P.; Ala-Kokko, T.; Kaarela, O.; Ohtonen, P.; Laurila, P.; Liisanantti, J. Short- and long-term mortality and causes of death after reconstruction of cancers of the head and neck with free flaps. Br. J. Oral Maxillofac. Surg. 2019, 57, 21–28. [Google Scholar] [CrossRef]
- Lodders, J.N.; Parmar, S.; Stienen, N.L.; Martin, T.J.; Karagozoglu, K.H.; Heymans, M.W.; Nandra, B.; Forouzanfar, T. Incidence and types of complications after ablative oral cancer surgery with primary microvascular free flap reconstruction. Med. Oral. Patol. Oral. Cir. Bucal. 2015, 20, e744–e750. [Google Scholar] [CrossRef] [PubMed]
- Özkan, O.; Özgentas, H.E.; Islamoglu, K.; Boztug, N.; Bigat, Z.; Dikici, M.B. Experiences with microsurgical tissue transfers in elderly patients. Microsurgery 2005, 25, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Serletti, J.M.; Higgins, J.P.; Moran, S.; Orlando, G.S. Factors Affecting Outcome in Free-Tissue Transfer in the Elderly. Plast. Reconstr. Surg. 2000, 106, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-H.; Chang, K.-P.; Hung, S.-Y.; Chen, W.F.; Cheng, M.-H.; Kao, H.-K. Postoperative morbidity in head and neck cancer ablative surgery followed by microsurgical free tissue transfer in the elderly. Oral Oncol. 2012, 48, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Ou, M.; Wang, G.; Yan, Y.; Chen, H.; Xu, X. Perioperative symptom burden and its influencing factors in patients with oral cancer: A longitudinal study. Asia-Pac. J. Oncol. Nurs. 2022, 9, 100073. [Google Scholar] [CrossRef]
Grade | Definition |
---|---|
Grade I | Any deviation from the normal postoperative course without the need for pharmacological treatment or surgical, endoscopic, and radiological interventions. The allowed therapeutic regimens are as follows: drugs as antiemetics, antipyretics, analgetics, diuretics, electrolytes, and physiotherapy. This grade also includes wound infections opened at the bedside. |
Grade II | Requiring pharmacological treatment with drugs other than such allowed for Grade I complications. Blood transfusions and total parenteral nutrition are also included. |
Grade III | Requiring surgical, endoscopic, or radiological intervention. |
–IIIa | Intervention not under general anesthesia. |
–IIIb | Intervention under general anesthesia. |
Grade IV | Life-threatening complication (including Central Nervous System complications) requiring IC/ICU-management. |
–IVa | Single-organ dysfunction (including dialysis). |
–IVb | Multiorgan dysfunction. |
Grade V | Death of a patient. |
Group 1 (n = 91) Routine | Group 2 (n = 65) Optimized | p Value | SMD | |
---|---|---|---|---|
Sex male/female, n (%) | 60/31 (66/34) | 39/26 (60/40) | 0.54 | 0.075 |
Age (mean ± SD) | 59 ± 10 | 60 ± 8 | 0.5 | 0.151 |
BMI (mean ± SD) | 28.7 ±12 | 24.1 ± 4 | 0.001 | 0.124 |
Malnutrition, n (%) | 20 (22) | 10 (15.4) | 0.37 | 0.169 |
Tobacco history, yes, n (%) | 56 (61.5) | 37 (57) | 00.2 | 0.122 |
Weaned | 35 | 27 | 0.64 | 0.035 |
Metabolic diseases, yes, n (%) | 0.155 | |||
Non-weaned alcoholism | 28 (30.8) | 10 (15.4) | 0.01 | |
Diabetes | 12 (13.2) | 9 (13.8) | 0.8 | |
Pulmonary disease, yes, n (%) | ||||
COPD (n) | 6 (6.6) | 5 (7.7) | 0.83 | 0.175 |
Respiratory insufficiency, n (%) | 0 | 1 (1.5) | ||
Asthma | 4 (4.4) | 1 (1.5) | ||
Lung cancer | 0 | 2 (3) | ||
SAS | 2 (2.2) | 2 (3) | ||
Others | 2 (2.2) | 1 (1.5) | ||
Cardiovascular disease, yes, n (%) | ||||
Hypertension | 30 (32.3) | 27 (41.5) | 0.2 | 0.169 |
Myocardial ischaemia | 5 (5.5) | 7 (10.8) | ||
Lower limb arteriopathy | 3 (3.3) | 4 (6.1) | ||
Stroke/transient ischemic attack | 2 (2.2) | 4 (6.1) | ||
Carotid stenosis | 1 (1.1) | 5 (7.7) | ||
Heart failure | 0 | 4 (6.1) | ||
Atrial fibrillation | 0 | 3 (4.6) | ||
Tumor localization, n (%) | ||||
Oral cavity | 67 (73.6) | 57 (87.7) | 0.05 | 0.039 |
Oropharynx | 18 (19.7) | 7 (10.7) | ||
Parotid | 2 (2.2) | 1 (1.5) | ||
Sinus | 1 (1,1) | 0 | ||
Hypopharynx | 1 (1.1) | 0 | ||
Larynx | 1 (1.1) | 0 | ||
Nose | 1 (1.1) | 0 | ||
Preliminary oncologic | ||||
treatment | 22% | 33% | 0.17 | 0.272 |
Preoperative morphine | ||||
consumption | 17 (18.9) | 10 (15.4) | 0.57 | 0.184 |
Group 1 (n = 91) Routine | Group 2 (n = 65) Optimized | p Value | SMD | |
---|---|---|---|---|
Duration of surgery (min ± SD) | 557 ± 101 | 607 ± 140 | 0.01 | 0.154 |
Morphine mean mg/kg ± SD | 0.16 ± 0.06 | 0.11 ± 0.04 | <0.0001 | 0.184 |
Intraoperative fluid | ||||
Volume administered mL/kg/h mean ± SD | 10.2 ± 3.1 | 9.1 ± 2.7 | 0.02 | 0.283 |
Total volume administered mean ± SD | 8.2 ± 2.2 | 8.4 ± 2.4 | 0.34 | 0.315 |
Intraoperative transfusion, yes | ||||
n (%) | 61 (67.8) | 34 (53.1) | 0.09 | 0.303 |
Ventilatory parameters | ||||
Mean FiO2 (%) ± SD | 41 ± 4 | 34 ± 6 | <0.0001 | 0.6 |
Protective ventilation, yes, n (%) | 89 (97) | 62 (95) | 0.03 | 0.35 |
Mean PEEP (mmHg) | 6 ± 1 | 6 ± 1 | 0 |
Group 1 (n = 91) Routine | Group 2 (n = 65) Optimized | p Value | |
---|---|---|---|
Respiratory complications, yes, n % | 0.03 | ||
Hypoxemic atelectasis | 5 | 2 | |
Bronchial superinfection | 6 | 5 | |
Pulmonary infection | 18 | 6 | |
Pleural effusion | 1 | 0 | |
Pulmonary congestion and isolated hypoxemia | 4 | 1 | |
Respiratory complications by Clavien–Dindo grade | |||
Grade I | 7 | 1 | |
Grade II | 24 | 10 | |
Grade III | 0 | 0 | |
Grade IV | 3 | 3 |
Model Construction | Number of Adjusting Variables | AIC | BIC | Number of Patients | Effect of PAV (OR and IC95) | |
---|---|---|---|---|---|---|
Model A | Adjustment on all variables having SMD > 0.1 | 13 | 177.65 | 220.08 | 156 | 0.37 (0.15–0.94) |
Model B | Descending stepwise regression of model A | 5 | 166.24 | 184.43 | 156 | 0.38 (0.16–0.92) |
Model C | Adjustment on all variables having SMD > 0.15 | 10 | 174.34 | 210.70 | 156 | 0.39 (0.16–0.97) |
Model D | Descending stepwise regression of model C | 5 | 166.93 | 185.11 | 156 | 0.40 (0.16–0.96) |
Model E | Adjustment on all variables having SMD > 0.2 | 8 | 171.54 | 198.82 | 156 | 0.40 (0.16–0.98) |
Model F | Descending stepwise regression of model E | 4 | 167.01 | 182.16 | 156 | 0.41 (0.17–0.97) |
Group 1 (n = 91) Routine | Group 2 (n = 65) Optimized | p Value | |
---|---|---|---|
Surgical complications, yes, n (%) | 47 (51.6) | 42 (64.6) | 0.106 |
Re intervention, n (%) | |||
Yes, n (%) | 36 (39.6) | 32 (49.2) | |
Type of surgical complications | |||
Complete necrosis, n (%) | 9 (9.9) | 7 (10.7) | |
Partial necrosis, n (%) | 16 (17.6) | 6 (9.2) | |
Hematoma, n (%) | 11 (12.1) | 10 (15.3) | |
Sepsis, n (%) | 10 (12) | 15 (23) | |
Fstula/leakage, n (%) | 11 (12.1) | 10 (15.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salama, G.; Motamed, C.; Elmawieh, J.; Suria, S. Impact of Preemptive Postoperative Pressure Support Ventilation and Physiotherapy on Postoperative Pulmonary Complications after Major Cervicofacial Cancer Surgery: A before and after Study. Medicina 2023, 59, 722. https://doi.org/10.3390/medicina59040722
Salama G, Motamed C, Elmawieh J, Suria S. Impact of Preemptive Postoperative Pressure Support Ventilation and Physiotherapy on Postoperative Pulmonary Complications after Major Cervicofacial Cancer Surgery: A before and after Study. Medicina. 2023; 59(4):722. https://doi.org/10.3390/medicina59040722
Chicago/Turabian StyleSalama, Guillaume, Cyrus Motamed, Jamie Elmawieh, and Stéphanie Suria. 2023. "Impact of Preemptive Postoperative Pressure Support Ventilation and Physiotherapy on Postoperative Pulmonary Complications after Major Cervicofacial Cancer Surgery: A before and after Study" Medicina 59, no. 4: 722. https://doi.org/10.3390/medicina59040722