Prognostic Implication of EBV Infection in Gastric Carcinomas: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Published Study Search and Selection Criteria
2.2. Data Extraction
2.3. Statistical Analyses
3. Results
3.1. Selection and Characteristics of the Studies
3.2. Meta-Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.C.; Ng, K.F.; Yeh, T.S.; Cheng, C.T.; Lin, J.S.; Liu, Y.J.; Chuang, H.C.; Chen, T.C. Subtraction of Epstein-Barr virus and microsatellite instability genotypes from the Lauren histotypes: Combined molecular and histologic subtyping with clinicopathological and prognostic significance validated in a cohort of 1248 cases. Int. J. Cancer 2019, 145, 3218–3230. [Google Scholar] [CrossRef]
- Burke, A.P.; Yen, T.S.; Shekitka, K.M.; Sobin, L.H. Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod. Pathol. 1990, 3, 377–380. [Google Scholar] [PubMed]
- Biesma, H.D.; Soeratram, T.T.D.; Sikorska, K.; Caspers, I.A.; van Essen, H.F.; Egthuijsen, J.M.P.; Mookhoek, A.; van Laarhoven, H.W.M.; van Berge Henegouwen, M.I.; Nordsmark, M.; et al. Response to neoadjuvant chemotherapy and survival in molecular subtypes of resectable gastric cancer: A post hoc analysis of the D1/D2 and CRITICS trials. Gastric Cancer 2022, 25, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.; Li, P.; Cheng, H.; Zhao, X.; Dong, M.; Zhang, Y.; Zhao, P.; Chen, J.; Shao, C. Prognostic Value of Tumor-Infiltrating Lymphocytes and Tertiary Lymphoid Structures in Epstein-Barr Virus-Associated and -Negative Gastric Carcinoma. Front. Immunol. 2021, 12, 692859. [Google Scholar] [CrossRef]
- Pinto, M.P.; Córdova-Delgado, M.; Retamal, I.N.; Muñoz-Medel, M.; Bravo, M.L.; Durán, D.; Villanueva, F.; Sanchez, C.; Acevedo, F.; Mondaca, S.; et al. A Molecular Stratification of Chilean Gastric Cancer Patients with Potential Clinical Applicability. Cancers 2020, 12, 1863. [Google Scholar] [CrossRef]
- Ramos, M.F.K.P.; Pereira, M.A.; de Mello, E.S.; Cirqueira, C.D.S.; Zilberstein, B.; Alves, V.A.F.; Ribeiro-Junior, U.; Cecconello, I. Gastric cancer molecular classification based on immunohistochemistry and in situ hybridization: Analysis in western patients after curative-intent surgery. World J. Clin. Oncol. 2021, 12, 688–701. [Google Scholar] [CrossRef]
- Yang, N.; Wu, Y.; Jin, M.; Jia, Z.; Wang, Y.; Cao, D.; Qin, L.; Wang, X.; Zheng, M.; Cao, X.; et al. Microsatellite instability and Epstein-Barr virus combined with PD-L1 could serve as a potential strategy for predicting the prognosis and efficacy of postoperative chemotherapy in gastric cancer. PeerJ 2021, 9, 11481. [Google Scholar] [CrossRef]
- Birkman, E.M.; Mansuri, N.; Kurki, S.; Ålgars, A.; Lintunen, M.; Ristamäki, R.; Sundström, J.; Carpén, O. Gastric cancer: Immunohistochemical classification of molecular subtypes and their association with clinicopathological characteristics. Virchows Arch. 2018, 472, 369–382. [Google Scholar] [CrossRef] [Green Version]
- Bösch, F.; Todorova, R.; Link, H.; Westphalen, C.B.; Boeck, S.; Heinemann, V.; Werner, J.; Kirchner, T.; Angele, M.K.; Neumann, J. Molecular subtyping of gastric cancer with respect to the growth pattern of lymph-node metastases. J. Cancer Res. Clin. Oncol. 2019, 145, 2689–2697. [Google Scholar] [CrossRef]
- Boysen, T.; Friborg, J.; Stribolt, K.; Hamilton-Dutoit, S.; Goertz, S.; Wohlfahrt, J.; Melbye, M. Epstein-Barr virus-associated gastric carcinoma among patients with pernicious anemia. Int. J. Cancer 2011, 129, 2756–2760. [Google Scholar] [CrossRef] [PubMed]
- Chiaravalli, A.M.; Feltri, M.; Bertolini, V.; Bagnoli, E.; Furlan, D.; Cerutti, R.; Novario, R.; Capella, C. Intratumour T cells, their activation status and survival in gastric carcinomas characterised for microsatellite instability and Epstein-Barr virus infection. Virchows Arch. 2006, 448, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.J.; Kang, H.; Ryu, Y.M.; Park, Y.S.; Jeong, H.J.; Park, Y.M.; Lim, H.; Lee, J.H.; Song, H.J.; Jung, H.Y.; et al. Poor prognosis in Epstein-Barr virus-negative gastric cancer with lymphoid stroma is associated with immune phenotype. Gastric Cancer 2018, 21, 925–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, W.H.; Swanson, C.A.; Lissowska, J.; Groves, F.D.; Sobin, L.H.; Nasierowska-Guttmejer, A.; Radziszewski, J.; Regula, J.; Hsing, A.W.; Jagannatha, S.; et al. Risk of stomach cancer in relation to consumption of cigarettes, alcohol, tea and coffee in Warsaw, Poland. Int. J. Cancer 1999, 81, 871–876. [Google Scholar] [CrossRef]
- Corvalan, A.; Koriyama, C.; Akiba, S.; Eizuru, Y.; Backhouse, C.; Palma, M.; Argandoña, J.; Tokunaga, M. Epstein-Barr virus in gastric carcinoma is associated with location in the cardia and with a diffuse histology: A study in one area of Chile. Int. J. Cancer 2001, 94, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.L.; Chen, M.H.; Huang, K.H.; Lin, C.H.; Chao, Y.; Lo, S.S.; Li, A.F.; Wu, C.W.; Shyr, Y.M. The Clinicopathological Features and Genetic Alterations in Epstein-Barr Virus-Associated Gastric Cancer Patients after Curative Surgery. Cancers 2020, 12, 1517. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Hu, N.; Han, X.; Giffen, C.; Ding, T.; Goldstein, A.; Taylor, P. Family history of cancer and risk for esophageal and gastric cancer in Shanxi China. BMC Cancer 2009, 9, 269. [Google Scholar] [CrossRef] [Green Version]
- Gasenko, E.; Isajevs, S.; Camargo, M.C.; Offerhaus, G.J.A.; Polaka, I.; Gulley, M.L.; Skapars, R.; Sivins, A.; Kojalo, I.; Kirsners, A.; et al. Clinicopathological characteristics of Epstein-Barr virus-positive gastric cancer in Latvia. Eur. J. Gastroenterol. Hepatol. 2019, 31, 1328–1333. [Google Scholar] [CrossRef]
- Gonzalez, C.A.; Pera, G.; Agudo, A.; Palli, D.; Krogh, V.; Vineis, P.; Tumino, R.; Panico, S.; Berglund, G.; Simán, H.; et al. Smoking and the risk of gastric cancer in the European Prospective Investigation Into Cancer and Nutrition (EPIC). Int. J. Cancer 2003, 107, 629–634. [Google Scholar] [CrossRef]
- Grogg, K.L.; Lohse, C.M.; Pankratz, V.S.; Halling, K.C.; Smyrk, T.C. Lymphocyte-rich gastric cancer: Associations with Epstein-Barr virus, microsatellite instability, histology, and survival. Mod. Pathol. 2003, 16, 641–651. [Google Scholar] [CrossRef] [Green Version]
- Gulley, M.L.; Pulitzer, D.R.; Eagan, P.A.; Schneider, B.G. Epstein-Barr virus infection is an early event in gastric carcinogenesis and is independent of bcl-2 expression and p53 accumulation. Hum. Pathol. 1996, 27, 20–27. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhao, X.; Gao, J.; Fan, L.; Yang, G.; Cho, W.C.; Chen, H. Quantum dots-based immunofluorescent imaging of stromal fibroblasts Caveolin-1 and light chain 3B expression and identification of their clinical significance in human gastric cancer. Int. J. Mol. Sci. 2012, 13, 13764–13780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera-Goepfert, R.; Akiba, S.; Koriyama, C.; Ding, S.; Reyes, E.; Itoh, T.; Minakami, Y.; Eizuru, Y. Epstein-Barr virus-associated gastric carcinoma: Evidence of age-dependence among a Mexican population. World J. Gastroenterol. 2005, 11, 6096–6103. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.C.; Ng, K.F.; Chen, K.H.; Hsu, J.T.; Liu, K.H.; Yeh, T.S.; Chen, T.C. Prognostic factors in Epstein-Barr virus-associated stage I-III gastric carcinoma: Implications for a unique type of carcinogenesis. Oncol. Rep. 2014, 32, 530–538. [Google Scholar] [CrossRef] [Green Version]
- Irkkan, C.; Balci, S.; Güler Tezel, G.; Akinci, B.; Yalcin, B.; Güler, G. Comparison of Clinicopathologic Parameters and Survivals Between Epstein-Barr Virus-positive and Her2-positive Gastric Cancers. Appl. Immunohistochem. Mol. Morphol. Aimm. 2017, 25, 609–614. [Google Scholar] [CrossRef]
- Jia, X.; Guo, T.; Li, Z.; Zhang, M.; Feng, Y.; Dong, B.; Li, Z.; Hu, Y.; Li, Z.; Xing, X.; et al. Clinicopathological and Immunomicroenvironment Characteristics of Epstein-Barr Virus-Associated Gastric Cancer in a Chinese Population. Front. Oncol. 2021, 10, 586752. [Google Scholar] [CrossRef]
- Kawazoe, A.; Kuwata, T.; Kuboki, Y.; Shitara, K.; Nagatsuma, A.K.; Aizawa, M.; Yoshino, T.; Doi, T.; Ohtsu, A.; Ochiai, A. Clinicopathological features of programmed death ligand 1 expression with tumor-infiltrating lymphocyte, mismatch repair, and Epstein-Barr virus status in a large cohort of gastric cancer patients. Gastric Cancer 2017, 20, 407–415. [Google Scholar] [CrossRef]
- Kijima, Y.; Ishigami, S.; Hokita, S.; Koriyama, C.; Akiba, S.; Eizuru, Y.; Aikou, T. The comparison of the prognosis between Epstein-Barr virus (EBV)-positive gastric carcinomas and EBV-negative ones. Cancer Lett. 2003, 200, 33–40. [Google Scholar] [CrossRef]
- Kim, R.H.; Chang, M.S.; Kim, H.J.; Song, K.S.; Kim, Y.S.; Choi, B.Y.; Kim, W.H. Medical history and lifestyle factors contributing to Epstein-Barr virus-associated gastric carcinoma and conventional gastric carcinoma in Korea. Anticancer Res. 2010, 30, 2469–2475. [Google Scholar]
- Kim, Y.B.; Ahn, J.M.; Bae, W.J.; Sung, C.O.; Lee, D. Functional loss of ARID1A is tightly associated with high PD-L1 expression in gastric cancer. Int. J. Cancer 2019, 145, 916–926. [Google Scholar] [CrossRef]
- Koh, J.; Ock, C.Y.; Kim, J.W.; Nam, S.K.; Kwak, Y.; Yun, S.; Ahn, S.H.; Park, D.J.; Kim, H.H.; Kim, W.H.; et al. Clinicopathologic implications of immune classification by PD-L1 expression and CD8-positive tumor-infiltrating lymphocytes in stage II and III gastric cancer patients. Oncotarget 2017, 8, 26356–26367. [Google Scholar] [CrossRef] [Green Version]
- Koh, J.; Lee, K.W.; Nam, S.K.; Seo, A.N.; Kim, J.W.; Kim, J.W.; Park, D.J.; Kim, H.H.; Kim, W.H.; Lee, H.S. Development and Validation of an Easy-to-Implement, Practical Algorithm for the Identification of Molecular Subtypes of Gastric Cancer: Prognostic and Therapeutic Implications. Oncologist 2019, 24, e1321–e1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koriyama, C.; Akiba, S.; Itoh, T.; Kijima, Y.; Sueyoshi, K.; Corvalan, A.; Herrera-Goepfer, R.; Eizuru, Y. Prognostic significance of Epstein-Barr virus involvement in gastric carcinoma in Japan. Int. J. Mol. Med. 2002, 10, 635–639. [Google Scholar]
- Koriyama, C.; Akiba, S.; Itoh, T.; Sueyoshi, K.; Minakami, Y.; Corvalan, A.; Yonezawa, S.; Eizuru, Y. E-cadherin and beta-catenin expression in Epstein-Barr virus-associated gastric carcinoma and their prognostic significance. World J. Gastroenterol. 2007, 13, 3925–3931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, M.J.; Kim, K.C.; Nam, E.S.; Cho, S.J.; Park, H.R.; Min, S.K.; Seo, J.; Choe, J.Y.; Lee, H.K.; Kang, H.S.; et al. Programmed death ligand-1 and MET co-expression is a poor prognostic factor in gastric cancers after resection. Oncotarget 2017, 8, 82399–82414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.S.; Chang, M.S.; Yang, H.K.; Lee, B.L.; Kim, W.H. Epstein-barr virus-positive gastric carcinoma has a distinct protein expression profile in comparison with epstein-barr virus-negative carcinoma. Clin. Cancer Res. 2004, 10, 1698–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Lai, Y.; Sun, L.; Zhang, X.; Liu, R.; Feng, G.; Zhou, L.; Jia, L.; Huang, X.; Kang, Q.; et al. PD-L1 expression is associated with massive lymphocyte infiltration and histology in gastric cancer. Hum. Pathol. 2016, 55, 182–189. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, D.; Zhou, Q.; Lin, X.; Lin, J.; Peng, F. The fasting blood glucose and long non-coding RNA SNHG8 predict poor prognosis in patients with gastric carcinoma after radical gastrectomy. Aging 2018, 10, 2646–2656. [Google Scholar] [CrossRef]
- Ma, C.; Patel, K.; Singhi, A.D.; Ren, B.; Zhu, B.; Shaikh, F.; Sun, W. Programmed Death-Ligand 1 Expression Is Common in Gastric Cancer Associated with Epstein-Barr Virus or Microsatellite Instability. Am. J. Surg. Pathol. 2016, 40, 1496–1506. [Google Scholar] [CrossRef]
- Ma, J.; Li, J.; Hao, Y.; Nie, Y.; Li, Z.; Qian, M.; Liang, Q.; Yu, J.; Zeng, M.; Wu, K. Differentiated tumor immune microenvironment of Epstein-Barr virus-associated and negative gastric cancer: Implication in prognosis and immunotherapy. Oncotarget 2017, 8, 67094–67103. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Ciarpaglini, C.; Fleitas-Kanonnikoff, T.; Gambardella, V.; Llorca, M.; Mongort, C.; Mengual, R.; Nieto, G.; Navarro, L.; Huerta, M.; Rosello, S.; et al. Assessing molecular subtypes of gastric cancer: Microsatellite unstable and Epstein-Barr virus subtypes. Methods for detection and clinical and pathological implications. ESMO Open 2019, 4, e000470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinson, H.A.; Mallari, D.; Richter, C.; Wu, T.T.; Tiesinga, J.; Alberts, S.R.; Olnes, M.J. Molecular Classification of Gastric Cancer among Alaska Native People. Cancers 2020, 12, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, B.H.; Tae, C.H.; Ahn, S.M.; Kang, S.Y.; Woo, S.Y.; Kim, S.; Kim, K.M. Epstein-Barr virus infection serves as an independent predictor of survival in patients with lymphoepithelioma-like gastric carcinoma. Gastric Cancer 2016, 19, 852–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakao, M.; Matsuo, K.; Ito, H.; Shitara, K.; Hosono, S.; Watanabe, M.; Ito, S.; Sawaki, A.; Iida, S.; Sato, S.; et al. ABO genotype and the risk of gastric cancer, atrophic gastritis, and Helicobacter pylori infection. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1665–1672. [Google Scholar] [CrossRef] [Green Version]
- Noh, J.H.; Shin, J.Y.; Lee, J.H.; Park, Y.S.; Lee, I.S.; Kim, G.H.; Na, H.K.; Ahn, J.Y.; Jung, K.W.; Kim, D.H.; et al. Clinical Significance of Epstein-Barr Virus and Helicobacter pylori Infection in Gastric Carcinoma. Gut Liver 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Osumi, H.; Kawachi, H.; Yoshio, T.; Ida, S.; Yamamoto, N.; Horiuchi, Y.; Ishiyama, A.; Hirasawa, T.; Tsuchida, T.; Hiki, N.; et al. Epstein-Barr virus status is a promising biomarker for endoscopic resection in early gastric cancer: Proposal of a novel therapeutic strategy. J. Gastroenterol. 2019, 54, 774–783. [Google Scholar] [CrossRef]
- Park, E.S.; Do, I.G.; Park, C.K.; Kang, W.K.; Noh, J.H.; Sohn, T.S.; Kim, S.; Kim, M.J.; Kim, K.M. Cyclooxygenase-2 is an independent prognostic factor in gastric carcinoma patients receiving adjuvant chemotherapy and is not associated with EBV infection. Clin. Cancer Res. 2009, 15, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.A.; Ramos, M.; Faraj, S.F.; Dias, A.R.; Yagi, O.K.; Zilberstein, B.; Cecconello, I.; Alves, V.A.F.; de Mello, E.S.; Ribeiro, U., Jr. Clinicopathological and prognostic features of Epstein-Barr virus infection, microsatellite instability, and PD-L1 expression in gastric cancer. J. Surg. Oncol. 2018, 117, 829–839. [Google Scholar] [CrossRef]
- Ribeiro, J.; Oliveira, A.; Malta, M.; Oliveira, C.; Silva, F.; Galaghar, A.; Afonso, L.P.; Neves, M.C.; Medeiros, R.; Pimentel-Nunes, P.; et al. Clinical and pathological characterization of Epstein-Barr virus-associated gastric carcinomas in Portugal. World J. Gastroenterol. 2017, 23, 7292–7302. [Google Scholar] [CrossRef]
- Shen, H.; Zhong, M.; Wang, W.; Liao, P.; Yin, X.; Rotroff, D.; Knepper, T.C.; McLeod, H.L.; Zhou, C.; Xie, S.; et al. EBV infection and MSI status significantly influence the clinical outcomes of gastric cancer patients. Clin. Chim. Acta 2017, 471, 216–221. [Google Scholar] [CrossRef]
- Song, H.J.; Srivastava, A.; Lee, J.; Kim, Y.S.; Kim, K.M.; Kang, W.K.; Kim, M.; Kim, S.; Park, C.K.; Kim, S. Host inflammatory response predicts survival of patients with Epstein-Barr virus-associated gastric carcinoma. Gastroenterology 2010, 139, 84–92.e2. [Google Scholar] [CrossRef] [PubMed]
- Sukawa, Y.; Yamamoto, H.; Nosho, K.; Kunimoto, H.; Suzuki, H.; Adachi, Y.; Nakazawa, M.; Nobuoka, T.; Kawayama, M.; Mikami, M.; et al. Alterations in the human epidermal growth factor receptor 2-phosphatidylinositol 3-kinase-v-Akt pathway in gastric cancer. World J. Gastroenterol. 2012, 18, 6577–6586. [Google Scholar] [CrossRef]
- Truong, C.D.; Feng, W.; Li, W.; Khoury, T.; Li, Q.; Alrawi, S.; Yu, Y.; Xie, K.; Yao, J.; Tan, D. Characteristics of Epstein-Barr virus-associated gastric cancer: A study of 235 cases at a comprehensive cancer center in USA. J. Exp. Clin. Cancer Res. 2009, 28, 14. [Google Scholar] [CrossRef] [Green Version]
- van Beek, J.; zur Hausen, A.; Klein Kranenbarg, E.; van de Velde, C.J.; Middeldorp, J.M.; van den Brule, A.J.; Meijer, C.J.; Bloemena, E. EBV-positive gastric adenocarcinomas: A distinct clinicopathologic entity with a low frequency of lymph node involvement. J. Clin. Oncol. 2004, 22, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, K.; Chen, Z.; Chen, L.; Guo, W.; Liao, P.; Rotroff, D.; Knepper, T.C.; Liu, Z.; Zhang, W.; et al. Immunoclassification characterized by CD8 and PD-L1 expression is associated with the clinical outcome of gastric cancer patients. Oncotarget 2018, 9, 12164–12173. [Google Scholar] [CrossRef] [Green Version]
- Xing, X.; Guo, J.; Ding, G.; Li, B.; Dong, B.; Feng, Q.; Li, S.; Zhang, J.; Ying, X.; Cheng, X.; et al. Analysis of PD1, PDL1, PDL2 expression and T cells infiltration in 1014 gastric cancer patients. Oncoimmunology 2017, 7, e1356144. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.Y.; Sy, K.; Brezden-Masley, C.; Streutker, C.J. Histo- and immunohistochemistry-based estimation of the TCGA and ACRG molecular subtypes for gastric carcinoma and their prognostic significance: A single-institution study. PLoS ONE 2019, 14, e0224812. [Google Scholar] [CrossRef]
- Zhang, Y.W.; He, D.; Tan, C.; Dong, M.; Zhou, L.; Shao, C.K. Differential expression of HER2 and downstream proteins in prediction of advanced tumor phenotypes and overall survival of patients with Epstein-Barr virus-positive vs. negative gastric cancers. Pathol. Res. Pract. 2019, 215, 152675. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jin, H.; Cheung, K.F.; Tong, J.H.; Zhang, S.; Go, M.Y.; Tian, L.; Kang, W.; Leung, P.P.; Zeng, Z.; et al. Zinc finger E-box binding factor 1 plays a central role in regulating Epstein-Barr virus (EBV) latent-lytic switch and acts as a therapeutic target in EBV-associated gastric cancer. Cancer 2012, 118, 924–936. [Google Scholar] [CrossRef]
- Parmar, M.K.; Torri, V.; Stewart, L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat. Med. 1998, 17, 2815–2834. [Google Scholar] [CrossRef]
- Yusuf, S.; Peto, R.; Lewis, J.; Collins, R.; Sleight, P. Beta blockade during and after myocardial infarction: An overview of the randomized trials. Prog. Cardiovasc. Dis. 1985, 27, 335–371. [Google Scholar] [CrossRef]
- Pyo, J.S.; Kim, N.Y.; Kang, D.W. Clinicopathological Significance of EBV-Infected Gastric Carcinomas: A Meta-Analysis. Medicina 2020, 56, 345. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Qiu, H.; Kong, P.; Chen, S.; Li, W.; Zhan, Y.; Li, Y.; Chen, Y.; Zhou, Z.; et al. Prognostic significance of Epstein-Barr virus infection in gastric cancer: A meta-analysis. BMC Cancer 2015, 15, 782. [Google Scholar] [CrossRef]
- Chen, Y.C.; Fang, W.L.; Wang, R.F.; Liu, C.A.; Yang, M.H.; Lo, S.S.; Wu, V.; Li, A.F.; Shyr, Y.; Huang, K. Clinicopathological variation of Lauren classification in gastric cancer. Pathol. Oncol. Res. 2016, 22, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Lauren, P. The two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 1965, 64, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [Google Scholar] [CrossRef]
- Kohlruss, M.; Grosser, B.; Krenauer, M.; Slotta-Huspenina, J.; Jesinghaus, M.; Blank, S.; Novotny, A.; Reiche, M.; Schmidt, T.; Ismani, L.; et al. Prognostic implication of molecular subtypes and response to neoadjuvant chemotherapy in 760 gastric carcinomas: Role of Epstein–Barr virus infection and high- and low-microsatellite instability. J. Pathol. Clin. Res. 2019, 5, 227–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
First Author, Year | Location | No. of Patients | No. of EBV+ | First Author, Year | Location | No. of Patients | No. of EBV+ |
---|---|---|---|---|---|---|---|
Biesma 2022 [4] | Netherlands | Koriyama 2007 [34] | Japan | 149 | 49 | ||
(CRITICS Trial) (D1/D2 Trial) | 454 447 | 25 47 | Kwon 2017 [35] | Korea | 394 | 26 | |
Birkman 2018 [9] | Finland | 186 | 17 | Lee 2004 [36] | Korea | 1114 | 63 |
Bösch 2019 [10] | Germany | 189 | 11 | Li 2016 [37] | China | 137 | 30 |
Boysen 2011 [11] | Denmark | 186 | 18 | Lin 2018 [38] | China | 217 | 87 |
Cheng 2021 [5] | China | 846 | 42 | Ma 2016 [39] | USA | 44 | 7 |
Chiaravalli 2006 [12] | Italy | 113 | 17 | Ma 2017 [40] | China | 571 | 31 |
Cho 2018 [13] | Korea | 58 | 29 | Martinez-Ciarpaglini 2019 [41] | Spain | 209 | 13 |
Chow 1999 [14] | Poland | 87 | 11 | Martinson 2020 [42] | USA | 82 | 19 |
Corvalan 2001 [15] | Chile | 145 | 27 | Min 2016 [43] | Korea | 145 | 124 |
Fang 2020 [16] | Taiwan | 460 | 43 | Nakao 2011 [44] | Korea | 371 | 20 |
Gao 2009 [17] | China | 1039 | 21 | Noh 2022 [45] | Korea | 956 | 65 |
Gasenko 2019 [18] | Latvia | 302 | 26 | Osumi 2019 [46] | Japan | 898 | 71 |
Gonzalex 2003 [19] | Various, Europe | 87 | 4 | Park 2009 [47] | Korea | 457 | 50 |
Grogg 2003 [20] | USA | 110 | 7 | Pereira 2018 [48] | Brazil | 286 | 30 |
Gulley 1996 [21] | USA | 95 | 11 | Pinto 2020 [6] | Chile | 91 | 12 |
He 2012 [22] | China | 118 | 21 | Ramos 2021 [7] | Brazil | 287 | 30 |
Herrera-Goepfert 2005 [23] | Mexico | 135 | 8 | Ribeiro 2017 [49] | Turkey | 179 | 15 |
Huang 2014 [24] | Taiwan | 1020 | 52 | Shen 2017 [50] | China | 202 | 42 |
Huang 2019 [2] | Taiwan | 1248 | 65 | Song 2010 [51] | Korea | 528 | 123 |
Irkkan 2017 [25] | Turkey | 105 | 8 | Sukawa 2012 [52] | Japan | 222 | 18 |
Jia 2021 [26] | China | 1328 | 55 | Truong 2009 [53] | USA | 235 | 12 |
Kawazoe 2017 [27] | Japan | 487 | 25 | van Beek 2004 [54] | Netherlands | 566 | 41 |
Kijima 2003 [28] | Korea | 420 | 28 | Wang 2018 [55] | China | 147 | 35 |
Kim 2010 [29] | Korea | 247 | 18 | Xing 2017 [56] | Portugal | 966 | 33 |
Kim 2019 [30] | USA | 43 | 6 | Yang 2021 [8] | China | 226 | 13 |
Koh 2017 [31] | Korea | 392 | 25 | Yoon 2019 [57] | USA | 107 | 3 |
Koh 2019 [32] | Korea | 894 | 79 | Zhang 2019 [58] | China | 1013 | 58 |
Koriyama 2002 [33] | Japan | 192 | 64 | Zhao 2012 [59] | China | 711 | 80 |
Number of Subsets | Fixed Effect (95% CI) | Heterogeneity Test (p-Value) | Random Effect (95% CI) | Egger’s Test (p-Value) | |
---|---|---|---|---|---|
Overall | 55 | 0.103 (0.099, 0.108) | <0.001 | 0.104 (0.082, 0.131) | 0.860 |
Location | |||||
Asia | 31 | 0.106 (0.101, 0.111) | <0.001 | 0.114 (0.080, 0.158) | 0.484 |
America | 12 | 0.115 (0.100, 0.132) | <0.001 | 0.107 (0.079, 0.142) | 0.256 |
Europe | 12 | 0.084 (0.075, 0.095) | 0.026 | 0.084 (0.070, 0.100) | 0.667 |
Number of Subsets | Fixed Effect (95% CI) | Heterogeneity Test (p-Value) | Random Effect (95% CI) | Egger’s Test (p-Value) | |
---|---|---|---|---|---|
Overall | 59 | 0.901 (0.861, 0.944) | <0.001 | 0.882 (0.813, 0.957) | 0.297 |
GCLS | 2 | 0.178 (0.059, 0.537) | 0.799 | 0.178 (0.059, 0.537) | NA |
Non-GCLS | 1 | 0.870 (0.620, 1.222) | 1.000 | 0.870 (0.620, 1.222) | NA |
Lauren’s classification | |||||
Intestinal type | 2 | 1.274 (0.829, 1.960) | 0.007 | 1.364 (0.425, 4.379) | NA |
Diffuse type | 1 | 0.400 (0.300, 0.534) | 1.000 | 0.400 (0.300, 0.534) | NA |
Molecular classification | |||||
EBV+ vs. MSI high | 12 | 1.099 (0.885, 1.364) | 0.932 | 1.099 (0.885, 1.364) | 0.426 |
EBV+ vs. MSS/EBV− | 12 | 0.954 (0.872, 1.044) | 0.967 | 0.954 (0.872, 1.044) | 0.107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyo, J.-S.; Kim, N.-Y.; Kang, D.-W. Prognostic Implication of EBV Infection in Gastric Carcinomas: A Systematic Review and Meta-Analysis. Medicina 2023, 59, 834. https://doi.org/10.3390/medicina59050834
Pyo J-S, Kim N-Y, Kang D-W. Prognostic Implication of EBV Infection in Gastric Carcinomas: A Systematic Review and Meta-Analysis. Medicina. 2023; 59(5):834. https://doi.org/10.3390/medicina59050834
Chicago/Turabian StylePyo, Jung-Soo, Nae-Yu Kim, and Dong-Wook Kang. 2023. "Prognostic Implication of EBV Infection in Gastric Carcinomas: A Systematic Review and Meta-Analysis" Medicina 59, no. 5: 834. https://doi.org/10.3390/medicina59050834
APA StylePyo, J. -S., Kim, N. -Y., & Kang, D. -W. (2023). Prognostic Implication of EBV Infection in Gastric Carcinomas: A Systematic Review and Meta-Analysis. Medicina, 59(5), 834. https://doi.org/10.3390/medicina59050834