The Real-World Clinical Outcomes of Favipiravir Treatment with Telemedicine Monitoring in Preventing Disease Progression in Mild to Moderate COVID-19 Patients; A Retrospective Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Study Subjects
2.2. Measurements
2.3. Treatment
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Treatment Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. 2022. Available online: https://covid19.who.int/ (accessed on 19 November 2022).
- Spinner, C.D.; Gottlieb, R.L.; Criner, G.J.; López, J.R.A.; Cattelan, A.M.; Viladomiu, A.S.; Ogbuagu, O.; Malhotra, P.; Mullane, K.M.; Castagna, A.; et al. Effect of remdesivir vs. standard care on clinical status at 11 days in patients with moderate COVID-19: A randomized clinical trial. JAMA 2020, 324, 1048–1057. [Google Scholar] [CrossRef]
- Beigel, J.; Tomashek, K.; Dodd, L. Remdesivir for the Treatment of COVID-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Gandhi, R.T.; Lynch, J.B.; Del Rio, C. Mild or moderate COVID-19. N. Engl. J. Med. 2020, 383, 1757–1766. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Hill, C.S.; Sarkar, S.; Tse, L.V.; Woodburn, B.M.; Schinazi, R.F.; Sheahan, T.P.; Baric, R.S.; Heise, M.T.; Swanstrom, R. β-d-N4-hydroxycytidine Inhibits SARS-CoV-2 through Lethal Mutagenesis but Is also Mutagenic to Mammalian Cells. J. Infect. Dis. 2021, 224, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Alaball, J.; Acosta-Roja, R.; Hernández, N.P.; Luque, U.S.; Morrison, D.; Pérez, S.N.; Perez-Llano, J.; Vèrges, A.S.; Seguí, F.L. Telemedicine in the face of the COVID-19 pandemic. Aten. Primaria 2020, 52, 418–422. [Google Scholar] [CrossRef]
- Elhennawy, A.; Alsalem, F.A.; Bahri, S.; Alarfaj, N. Telemedicine versus Physical Examination in Patients’ Assessment during COVID-19 Pandemic: The Dubai Experience. Dubai Med. J. 2021, 4, 84–89. [Google Scholar] [CrossRef]
- Du, Y.X.; Chen, X.P. Favipiravir: Pharmacokinetics and concerns about clinical trials for 2019-nCoV infection. Clin. Pharmacol. Ther. 2020, 108, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad. Ser. B 2017, 93, 449–463. [Google Scholar] [CrossRef] [Green Version]
- Driouich, J.S.; Cochin, M.; Lingas, G.; Moureau, G.; Touret, F.; Petit, P.R.; Piorkowski, G.; Barthélémy, K.; Laprie, C.; Coutard, B.; et al. Favipiravir antiviral efficacy against SARS-CoV-2 in a hamster model. Nat. Commun. 2021, 12, 1735. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y.; et al. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering 2020, 6, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Huang, J.; Yin, P.; Zhang, Y.; Cheng, Z.; Wu, J.; Chen, S.; Zhang, Y.; Chen, B.; Lu, M.; et al. Favipiravir versus arbidol for COVID-19: A randomized clinical trial. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Ivashchenko, A.A.; Dmitriev, K.A.; Vostokova, N.V.; Azarova, V.N.; Blinow, A.A.; Egorova, A.N.; Gordeev, I.G.; Ilin, A.P.; Karapetian, R.N.; Kravchenko, D.V.; et al. AVIFAVIR for Treatment of Patients with Moderate Coronavirus Disease 2019 (COVID-19): Interim Results of a Phase II/III Multicenter Randomized Clinical Trial. Clin. Infect. Dis. 2020, 73, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Parkar, J.; Ansari, A.; Vora, A.; Talwar, D.; Tiwaskar, M.; Patil, S.; Barkate, H. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis. 2020, 102, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.K.; Ando, M.; Kuwatsuka, M.; Ishihara, Y.; Favipiravir, T. Favipiravir Observational Study Interim Report 3; Observational Study Group, Fujita Health University: Aichi, Japan, 2021. [Google Scholar]
- Dabbous, H.M.; Abd-Elsalam, S.; El-Sayed, M.H.; Sherief, A.F.; Ebeid, F.F.; El Ghafar, M.S.A.; Soliman, S.; Elbahnasawy, M.; Badawi, R.; Tageldin, M.A. Efficacy of favipiravir in COVID-19 treatment: A multi-center randomized study. Arch. Virol. 2021, 166, 949–954. [Google Scholar] [CrossRef]
- Udwadia, Z.F.; Singh, P.; Barkate, H.; Patil, S.; Rangwala, S.; Pendse, A.; Kadam, J.; Wu, W.; Caracta, C.F.; Tandon, M. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: A randomized, comparative, open-label, multicenter, phase 3 clinical trial. Int. J. Infect. Dis. 2021, 103, 62–71. [Google Scholar] [CrossRef]
- Golan, Y.; Campos, J.A.S.; Woolson, R.; Cilla, D.; Hanabergh, R.; Gonzales-Rojas, Y.; Lopez, R.; Finberg, R.; Balboni, A. Favipiravir in patients with early mild-to-moderate COVID-19: A randomized controlled trial. Clin. Infect. Dis. 2022, 76, e10–e17. [Google Scholar] [CrossRef]
- Irie, K.; Nakagawa, A.; Fujita, H.; Tamura, R.; Eto, M.; Ikesue, H.; Muroi, N.; Fukushima, S.; Tomii, K.; Hashida, T. Population pharmacokinetics of favipiravir in patients with COVID-19. CPT Pharmacomet. Syst Pharm. 2021, 10, 1161–1170. [Google Scholar] [CrossRef]
- Hassanipour, S.; Arab-Zozani, M.; Amani, B.; Heidarzad, F.; Fathalipour, M.; Martinez-de-Hoyo, R. The efficacy and safety of Favipiravir in treatment of COVID-19: A systematic review and meta-analysis of clinical trials. Sci. Rep. 2021, 11, 11022. [Google Scholar] [CrossRef]
- Shrestha, D.B.; Budhathoki, P.; Khadka, S.; Shah, P.B.; Pokharel, N.; Rashmi, P. Favipiravir versus other antiviral or standard of care for COVID-19 treatment: A rapid systematic review and meta-analysis. Virol. J. 2020, 17, 141. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.C.; Thomas, E.; Snoswell, C.L.; Haydon, H.; Mehrotra, A.; Clemensen, J.; Caffery, L.J. Telehealth for global emergencies: Implications for coronavirus disease 2019 (COVID-19). J. Telemed. Telecare 2020, 26, 309–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhimraj, A.; Morgan, R.L.; Shumaker, A.H.; Lavergne, V.; Baden, L.; Cheng, V.C.C.; Edwards, K.M.; Gandhi, R.; Muller, W.J.; O’Horo, J.C.; et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 19 November 2022).
- Marshall, J.C.; Murthy, S.; Diaz, J.; Adhikari, N.K.; Angus, D.C.; Arabi, Y.M.; Baillie, K.; Bauer, M.; Berry, S.; Blackwood, B.; et al. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect. Dis. 2020, 20, e192–e197. [Google Scholar] [CrossRef] [PubMed]
- Rattanaumpawan, P.; Jirajariyavej, S.; Lerdlamyong, K.; Palavutitotai, N.; Saiyarin, J. Real-world experience with favipiravir for treatment of COVID-19 in Thailand: Results from a multi-center observational study. medRxiv 2020. [Google Scholar] [CrossRef]
- Guan, X.; Yao, L.; Tan, Y.; Shen, Z.; Zheng, H.; Zhou, H.; Gao, Y.; Li, Y.; Ji, W.; Zhang, H.; et al. Quantitative and semi-quantitative CT assessments of lung lesion burden in COVID-19 pneumonia. Sci. Rep. 2021, 11, 5148. [Google Scholar] [CrossRef]
- Muadchimkaew, M.; Siripongboonsitti, T.; Wongpatcharawarakul, S.; Boonsankaew, C.; Tawinprai, K.; Soonklang, K.; Mahanonda, N. Effect of Inactivated SARS-CoV-2 Vaccines and ChAdOx1 nCoV-19 Vaccination to Prevent COVID-19 in Thai Households (VacPrevent trial). Int. J. Infect. Dis. 2022, 124, 190–198. [Google Scholar] [CrossRef]
- Sirijatuphat, R.; Suputtamongkol, Y.; Angkasekwinai, N.; Horthongkham, N.; Chayakulkeeree, M.; Rattanaumpawan, P.; Koomanachai, P.; Assanasen, S.; Rongrungruang, Y.; Chierakul, N.; et al. Epidemiology, clinical characteristics, and treatment outcomes of patients with COVID-19 at Thailand’s university-based referral hospital. BMC Infect. Dis. 2021, 21, 382. [Google Scholar] [CrossRef]
- Pongpirul, W.A.; Wiboonchutikul, S.; Charoenpong, L.; Panitantum, N.; Vachiraphan, A.; Uttayamakul, S.; Pongpirul, K.; Manosuthi, W.; Prasithsirikul, W. Clinical course and potential predictive factors for pneumonia of adult patients with Coronavirus Disease 2019 (COVID-19): A retrospective observational analysis of 193 confirmed cases in Thailand. PLoS Negl. Trop. Dis. 2020, 14, e0008806. [Google Scholar] [CrossRef]
- Özdemir, Y.E.; Balkan, I.I.; Bayramlar, O.F.; Alkan, S.; Murt, A.; Karaali, R.; Mete, B.; Kuşkucu, M.A.; Aygün, G.; Keskindemirci, Y.; et al. Clinical Characteristics of Mild-Moderate COVID-19 Patients and Risk Factors for the Development of Pneumonia. Mikrobiyol. Bul. 2021, 55, 342–356. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.; et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Goyal, P.; Choi, J.J.; Pinheiro, L.C.; Schenck, E.J.; Chen, R.; Jabri, A.; Satlin, M.J.; Campion, T.R., Jr.; Nahid, M.; Ringel, J.B.; et al. Clinical characteristics of COVID-19 in New York city. N. Engl. J. Med. 2020, 382, 2372–2374. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Guner, R.; Hasanoglu, I.; Kayaaslan, B.; Aypak, A.; Akinci, E.; Bodur, H.; Eser, F.; Kalem, A.K.; Kucuksahin, O.; Ates, I.; et al. Comparing ICU admission rates of mild/moderate COVID-19 patients treated with hydroxychloroquine, favipiravir, and hydroxychloroquine plus favipiravir. J. Infect. Public Health 2021, 14, 365–370. [Google Scholar] [CrossRef]
- Khamis, F.; Al Naabi, H.; Al Lawati, A.; Ambusaidi, Z.; Al Sharji, M.; Al Barwani, U.; Pandak, N.; Al Balushi, Z.; Al Bahrani, M.; Al Salmi, I.; et al. Randomized controlled open label trial on the use of favipiravir combined with inhaled interferon beta-1b in hospitalized patients with moderate to severe COVID-19 pneumonia. Int. J. Infect. Dis. 2021, 102, 538–543. [Google Scholar] [CrossRef]
- Fujii, S.; Ibe, Y.; Ishigo, T.; Inamura, H.; Kunimoto, Y.; Fujiya, Y.; Kuronuma, K.; Nakata, H.; Fukudo, M.; Takahashi, S. Early favipiravir treatment was associated with early defervescence in non-severe COVID-19 patients. J. Infect. Chemother. 2021, 27, 1051–1057. [Google Scholar] [CrossRef]
- Chuah, C.H.; Chow, T.S.; Hor, C.P.; Cheng, J.T.; Ker, H.B.; Lee, H.G.; Lee, K.S.; Nordin, N.; Ng, T.K.; Zaid, M.; et al. Efficacy of Early Treatment with Favipiravir on Disease Progression among High-Risk Patients with Coronavirus Disease 2019 (COVID-19): A Randomized, Open-Label Clinical Trial. Clin. Infect. Dis. 2022, 75, e432–e439. [Google Scholar] [CrossRef]
- McMahon, J.H.; Lau, J.S.; Coldham, A.; Roney, J.; Hagenauer, M.; Price, S.; Bryant, M.; Garlick, J.; Paterson, A.; Lee, S.J.; et al. Favipiravir in early symptomatic COVID-19, a randomised placebo-controlled trial. EClinicalMedicine 2022, 54, 101703. [Google Scholar] [CrossRef]
- Bosaeed, M.; Alharbi, A.; Mahmoud, E.; Alrehily, S.; Bahlaq, M.; Gaifer, Z.; Alturkistani, H.; Alhagan, K.; Alshahrani, S.; Tolbah, A.; et al. Efficacy of favipiravir in adults with mild COVID-19: A randomized, double-blind, multicentre, placebo-controlled clinical trial. Clin. Microbiol. Infect. 2022, 28, 602–608. [Google Scholar] [CrossRef]
- Venisse, N.; Peytavin, G.; Bouchet, S.; Gagnieu, M.C.; Garraffo, R.; Guilhaumou, R.; Solas, C.; Monitoring, S.T.D.; ANRS-AC43 Clinical Pharmacology Committee. Concerns about pharmacokinetic (PK) and pharmacokinetic-pharmacodynamic (PK-PD) studies in the new therapeutic area of COVID-19 infection. Antiviral Res. 2020, 181, 104866. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.H.; Gnjidic, D.; Kirkpatrick, C.M.J.; Pirmohamed, M.; Wright, D.F.B.; Zecharia, A.Y. A call for the appropriate application of clinical pharmacological principles in the search for safe and efficacious COVID-19 (SARS-CoV-2) treatments. Br. J. Clin. Pharmacol. 2021, 87, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Gülhan, R.; Eryüksel, E.; Gülçebi İdriz Oğlu, M.; Çulpan, Y.; Toplu, A.; Kocakaya, D.; Tigen, E.; Ertürk Şengel, B.; Sili, U.; Olgun Yıldızeli, Ş.; et al. Pharmacokinetic characterization of favipiravir in patients with COVID-19. Br. J. Clin. Pharmacol. 2022, 88, 3516–3522. [Google Scholar] [CrossRef]
- Pertinez, H.; Rajoli, R.K.R.; Khoo, S.H.; Owen, A. Pharmacokinetic modelling to estimate intracellular favipiravir ribofuranosyl-5’-triphosphate exposure to support posology for SARS-CoV-2. J. Antimicrob. Chemother. 2021, 76, 2121–2128. [Google Scholar] [CrossRef] [PubMed]
- Madelain, V.; Nguyen, T.H.T.; Olivo, A.; De Lamballerie, X.; Guedj, J.; Taburet, A.M.; Mentré, F. Ebola Virus Infection: Review of the Pharmacokinetic and Pharmacodynamic Properties of Drugs Considered for Testing in Human Efficacy Trials. Clin. Pharmacokinet. 2016, 55, 907–923. [Google Scholar] [CrossRef] [PubMed]
- Chappell, L.; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Van Paassen, J.; Vos, J.S.; Hoekstra, E.M.; Neumann, K.M.; Boot, P.C.; Arbous, S.M. Corticosteroid use in COVID-19 patients: A systematic review and meta-analysis on clinical outcomes. Crit. Care 2020, 24, 696. [Google Scholar] [CrossRef]
- Doi, Y.; Hibino, M.; Hase, R.; Yamamoto, M.; Kasamatsu, Y.; Hirose, M.; Mutoh, Y.; Homma, Y.; Terada, M.; Ogawa, T.; et al. A prospective, randomized, open-label trial of early versus late favipiravir therapy in hospitalized patients with COVID-19. Antimicrob. Agents Chemother. 2020, 64, e01897-20. [Google Scholar] [CrossRef]
- Ye, J. The Role of Health Technology and Informatics in a Global Public Health Emergency: Practices and Implications From the COVID-19 Pandemic. JMIR Med. Inform. 2020, 8, e19866. [Google Scholar] [CrossRef]
- Monaghesh, E.; Hajizadeh, A. The role of telehealth during COVID-19 outbreak: A systematic review based on current evidence. BMC Public Health 2020, 20, 1193. [Google Scholar] [CrossRef]
Characteristics | N = 88 (%) |
---|---|
Male gender, n (%) | 43 (48.86) |
Age, years, median (IQR) | 32 (26, 52) |
Age > 60, years, n (%) | 8 (9.1) |
Alpha variant (B.1.1.7), n/total (%) | 42/42 (100) |
Comorbidity, n (%) | 31(35.2) |
Diabetes mellitus | 12 (13.64) |
Obesity | 12 (13.64) |
Hypertension | 11 (12.50) |
Asthma | 4 (4.5) |
Chronic lung disease | 1 (1.14) |
End-stage renal disease | 1 (1.14) |
Other | 5 (5.68) |
BMI, n (%) | |
<18.5 kg m−2 | 9 (10.98) |
18.5–24.9 kg m−2 | 31 (37.80) |
25–29.9 kg m−2 | 30 (36.59) |
30–34.9 kg m−2 | 8 (9.76) |
≥35 kg m−2 | 4 (4.88) |
Resting oxygen saturation on day 0 (%), median (IQR) | 98 (97, 99) |
Respiratory rate (per minute), median (IQR) | 20 (20, 20) |
Heart rate (bpm), median (IQR) | 90 (79, 100) |
Symptom at baseline, n (%) | |
Cough | 50 (56.82) |
Dyspnea | 28 (31.82) |
Chest pain/Chest discomfort | 18 (20.45) |
Fever | 34 (38.64) |
Loss of appetite | 62 (71.26) |
Sore throat | 38 (43.18) |
Runny nose | 31 (35.23) |
Myalgia | 34 (38.64) |
Diarrhea | 21 (24.42) |
Anosmia or ageusia | 17 (19.54) |
Skin rash | 4 (4.60) |
Conjunctivitis | 1 (1.16) |
Chest X-ray indicating pneumonia, interpreted by a radiologist, n (%) | 31 (35.23) |
Chest CT indicating pneumonia, n (%) | 57 (64.77) |
Several ground-glass opacities in both lungs | 34/57 (59.6) |
Multiple consolidations in both lungs | 19/57 (33.33) |
Focal ground-glass opacities | 9/57 (15.79) |
Focal consolidations | 4/57 (7.02) |
Discordance between chest CT and chest X-ray, n (%) | 26 (29.55) |
SARS-CoV-2 PCR Ct value, median (IQR) | 20.85 (18.34, 26.12) |
SARS-CoV-2 PCR Ct value mild illness/pneumonia, median (IQR) | 20.79 (18.3, 26.6)/20.9 (18.3, 26.7) |
Total WBC count (×109 cells/L), median (IQR) | 5.100 (4240, 5950) |
Total lymphocyte count (cells/mm3), median (IQR) | 1556 (1208, 1936) |
Mild illness | 1669.34 (1288.74, 1826.5) |
Moderate illness | 1548.72 (1196.8, 2012.64) |
hsCRP at baseline (mg/L), median (IQR) | 3.63 (1.25, 13.29) |
Mild illness | 1.1 (0.77, 3.16) |
Moderate illness (pneumonia) | 5.96 (2.1, 17) |
Characteristics | N = 88 (%) |
Ferritin (ng/mL), median (IQR) | |
Mild illness | 136 (92.4, 282) |
Moderate illness | 344.75 (137.85, 606.1) |
COVID-19 severity, n (%) | |
-Asymptomatic | 1 (1.13) |
-Mild illness | 24 (27.27) |
-Moderate illness (pneumonia without requiring oxygen) | |
WHO COVID-19 severity score, median (IQR) | 2 (2, 2) |
COVID-19 severity index, median (IQR) | 2 (1, 2) |
CURB-65 score, n (%) | |
CURB 65 = 0 | 55 (87.3) |
CURB 65 = 1 | 8 (12.7) |
The median number of days from symptoms to starting favipiravir (IQR) | 4 (2, 7.5) |
Duration of favipiravir after symptom onset: ≤5 days/>5 days, n (%) | 53 (60.23)/35 (39.77) |
SARS-CoV-2 IgG seroprevalence, n/total n (%) | 9/78 (11.54) |
Clinical Outcome | Total (N = 87) | Moderate Illness (N = 63) | Mild Illness (N = 24) | p-Value |
---|---|---|---|---|
No clinical deterioration on day 5 of favipiravir therapy, n (%) | 62 (71.26) | 42 (66.67) | 20 (83.33) | 0.125 |
Clinical improvement within 5 days of treatment, n (%) | 45 (51.72) | 32 (50.79) | 13 (54.17) | 0.778 |
Clinical improvement within 14 days of treatment, n (%) | 76 (87.36) | 54 (85.71) | 22 (91.66) | 0.720 |
Requiring oxygen after day 2 of treatment, n (%) | 9 (10.34) | 9 (14.29) | 0 | 0.058 |
Requiring oxygen after day 5 of treatment, n (%) | 2 (2.29) | 2 (3.17) | 0 | 1.000 |
WHO clinical progression scale ≤2 on day of initial treatment, n (%) | 81 (93.10) | 57 (90.47) | 24 (100) | 0.181 |
WHO clinical progression scale ≤2 on day 14, n (%) | 86 (98.85) | 62 (98.41) | 24 (100) | 1.000 |
COVID-19 severity index did not deteriorate after: | ||||
48 h, n (%) | 72 (82.75) | 51 (80.95) | 21 (87.5) | 0.545 |
5 days, n (%) | 78 (89.66) | 55 (87.30) | 23 (95.83) | 0.434 |
14 days, n (%) | 82 (94.25) | 58 (92.06) | 24 (100) | 0.555 |
Resolution of pneumonia according to chest CT on day 5, n (%) (n = 16) | 7 (43.75) | 7(43.75) | 0 (0) | - |
SARS-CoV-2 PCR undetected on day 14, n. (%) | 28/76 (36.8) | 20/61 (32.7) | 8/25 (32) | 1.000 |
SARS-CoV-2 PCR Ct value on day 0, median (IQR) | 20.8 (18.3, 26.7) | 20.9 (18.3, 26.7) | 20.8 (18.3, 26.6) | 0.371 |
SARS-CoV-2 PCR Ct value on day 5, median (IQR) | 27.6 (23.1, 32.8) | 27.4 (23.1, 32.9) | 27.4 (23.1, 32.8) | 0.223 |
SARS-CoV-2 PCR Ct value on day 14, median (IQR | 32.8 (32.1, 34.4) | 32.8 (32.1, 34.3) | 32.8 (32.1, 34.3) | 0.439 |
Clinical Endpoints | Total (N = 87) n (%) | COVID-19 Severity | p-Value | |
---|---|---|---|---|
Mild Illness (N = 24) n (%) | Pneumonia (N = 63) n (%) | |||
ICU admission within 14 days | 1 (1.14) | 0 (0.00) | 1 (1.59) | 1.000 |
Hospitalization | 11 (12.5) | 0 (0.00) | 11 (100.00) | 0.030 |
Oxygen therapy | 11 (12.50) | 0 (0.00) | 11 (100.00) | 0.030 |
-Oxygen cannula | 7 (7.95) | 0 (0.00) | 7 (11.11) | 0.184 |
-HFNC | 2 (2.27) | 0 (0.00) | 2 (3.17) | 1.000 |
-NIPPV | 1 (1.14) | 0 (0.00) | 1 (1.59) | 1.000 |
-Mechanical ventilation | 1 (1.14) | 0 (0.00) | 1 (1.59) | 1.000 |
14-day all-cause mortality | 1 (1.14 *) | 0 (0.00) | 1 (1.59) | 1.000 |
14-day mortality from severe COVID-19 pneumonia | 0 (0) | 0 (0.00) | 0 (0.00) | 1.000 |
Parameter | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | |
BMI | 1.12 (1.0089–1.2525) | 0.034 | 0.86 (0.6699–1.1110) | 0.253 |
hsCRP | 1.34 (1.0760–1.6708) | 0.009 | 0.98 (0.8649–1.1243) | 0.834 |
Ferritin | 1.00 (1.0004–1.0053) | 0.021 | 1.00 (0.9983–1.0100) | 0.170 |
LDH | 1.01 (1.0002–1.0215) | 0.046 | 1.00 (0.9831–1.0213) | 0.835 |
Ct value from SARS-CoV-2 PCR | 294 (31.0505–2783.724) | <0.001 | 513.75 (18.3511–14382.81) | <0.001 |
Factors Related to Clinical Deterioration | N (%) | Clinical Deterioration | No Clinical Deterioration | OR (95% CI) | p-Value |
---|---|---|---|---|---|
Male gender, n (%) | 43 (48.86) | 7 (63.64) | 36 (46.75) | 1.83 (0.58–5.81) | 0.305 |
Age ≥60 years | 8 (9.20) | 2 (18.18) | 6 (7.89) | 2.19 (0.57–8.54) | 0.253 |
Comorbidity, n (%) | |||||
Diabetes mellitus | 12 (13.64) | 2 (18.18) | 10 (12.99) | 1.41 (0.34, 5.74) | 0.634 |
Hypertension | 11 (12.50) | 3 (27.27) | 8 (10.39) | 2.63 (0.82, 8.43) | 0.105 |
Obesity (BMI ≥ 30 kg/m2) | 12 (14.63) | 2 (22.22) | 10 (13.70) | 1.67 (0.39, 7.09) | 0.489 |
Duration of COVID-19 symptoms | |||||
≥5 days; n (%) | 26 (29.55) | 4 (36.36) | 22 (28.57) | 1.36 (0.44–4.26) | 0.595 |
≥7 days; n (%) | 14 (15.91) | 2 (18.18) | 12 (15.58) | 1.17 (0.28–4.87) | 0.824 |
Respiratory rate ≥ 22 min−1 | 68 (80.00) | 8 (72.73) | 60 (81.08) | 0.67 (0.20–2.25) | 0.513 |
Heart rate ≥ 100 bpm | 23 (27.71) | 4 (36.36) | 19 (26.39) | 1.49 (0.48–4.62) | 0.439 |
Most severe COVID-19 symptom at baseline, no. (%) | |||||
Cough | 50 (56.82) | 9 (81.82) | 41 (53.52) | 3.42 (0.78–14.92) | 0.102 |
Dyspnea | 28 (31.82) | 7 (63.64) | 21 (27.27) | 3.75 (1.19–11.77) | 0.023 |
Chest discomfort | 18 (20.45) | 5 (45.45) | 13 (16.88) | 3.24 (1.11–9.43) | 0.031 |
Fever | 34 (38.64) | 7 (63.64) | 27 (35.06) | 2.78 (0.88–8.79) | 0.082 |
Pneumonia, n (%) | 63 (71.59) | 20 (83.33) | 43 (67.19) | 1.98 (0.75–5.23) | 0.166 |
WHO COVID-19 severity score, median (IQR) | 2 (2, 2) | 2 (2, 2) | 2 (2, 2) | - | - |
COVID-19 severity index, median (IQR) | 2 (1, 2) | 2 (2, 5) | 2 (1, 2) | - | - |
Ct value for COVID-19, median (IQR) | 20.85 (18.34, 26.12) | 21.80 (18.55, 27.26) | 20.72 (18.23, 25.58) | 1.02 (0.92–1.13) | 0.688 |
hsCRP at baseline (mg/L), median (IQR) | 3.63 (1.25, 13.29) | 34.19 (4.22, 54.45) | 3.36 (1.09, 10.42) | 1.01 (1.00–1.02) | 0.004 |
Ferritin (ng/ml), median (IQR) | 282 (113.2, 546.2) | 333.95 (189, 557.7) | 255.8 (101.2,546.2) | 1.00 (1.00–1.00) | 0.592 |
Total lymphocyte count (cells/mm3), median (IQR) | 1560.2 (1239.2, 1961.7) | 1239.52 (799.4, 1461.2) | 1669.34 (1269.3, 2018.4) | 1.00 (1.00–1.00) | 0.004 |
Time from symptom onset to favipiravir, days, median (IQR) | 4 (2, 7.5) | 4 (3, 8) | 4 (2, 7) | 1.00 (0.85–1.17) | 0.953 |
Favipiravir initiation from symptom onset (early vs. late) | |||||
≥3 days, n (%) | 54 (61.36) | 8 (72.73) | 46 (59.74) | 1.68 (0.48–5.00) | 0.419 |
≥5 days, n (%) | 35 (39.77) | 4 (36.36) | 31 (40.26) | 0.87 (0.27–2.74) | 0.184 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siripongboonsitti, T.; Tawinprai, K.; Cheirsilpa, K.; Ungtrakul, T.; Krisorakun, W.; Chotipanich, C.; Wimolsiri, N.; Noitun, P.; Srirattana, N.; Mahanonda, N. The Real-World Clinical Outcomes of Favipiravir Treatment with Telemedicine Monitoring in Preventing Disease Progression in Mild to Moderate COVID-19 Patients; A Retrospective Cohort Study. Medicina 2023, 59, 1098. https://doi.org/10.3390/medicina59061098
Siripongboonsitti T, Tawinprai K, Cheirsilpa K, Ungtrakul T, Krisorakun W, Chotipanich C, Wimolsiri N, Noitun P, Srirattana N, Mahanonda N. The Real-World Clinical Outcomes of Favipiravir Treatment with Telemedicine Monitoring in Preventing Disease Progression in Mild to Moderate COVID-19 Patients; A Retrospective Cohort Study. Medicina. 2023; 59(6):1098. https://doi.org/10.3390/medicina59061098
Chicago/Turabian StyleSiripongboonsitti, Taweegrit, Kriangkrai Tawinprai, Kunsuda Cheirsilpa, Teerapat Ungtrakul, Wasanai Krisorakun, Chanisa Chotipanich, Nat Wimolsiri, Permpen Noitun, Netnapis Srirattana, and Nithi Mahanonda. 2023. "The Real-World Clinical Outcomes of Favipiravir Treatment with Telemedicine Monitoring in Preventing Disease Progression in Mild to Moderate COVID-19 Patients; A Retrospective Cohort Study" Medicina 59, no. 6: 1098. https://doi.org/10.3390/medicina59061098
APA StyleSiripongboonsitti, T., Tawinprai, K., Cheirsilpa, K., Ungtrakul, T., Krisorakun, W., Chotipanich, C., Wimolsiri, N., Noitun, P., Srirattana, N., & Mahanonda, N. (2023). The Real-World Clinical Outcomes of Favipiravir Treatment with Telemedicine Monitoring in Preventing Disease Progression in Mild to Moderate COVID-19 Patients; A Retrospective Cohort Study. Medicina, 59(6), 1098. https://doi.org/10.3390/medicina59061098