Evaluation of the Effects of Atorvastatin and N-Acetyl Cysteine on Platelet Counts in Patients with Primary Immune Thrombocytopenia: An Exploratory Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neunert, C.; Terrell, D.R.; Arnold, D.M.; Buchanan, G.; Cines, D.B.; Cooper, N.; Cuker, A.; Despotovic, J.M.; George, J.N.; Grace, R.F.; et al. American Society of Hematology 2019 guidelines for immune thrombocytopenia. Blood Adv. 2019, 3, 3829–3866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteagudo, E.; Astigarraga, I.; Cervera, Á.; Dasí, M.A.; Sastre, A.; Berrueco, R.; Dapena, J.L.; en representación del Grupo de Trabajo de la PTI de la Sociedad Española de Hematología y Oncología Pediátricas (SEHOP). Protocol for the study and treatment of primary immune thrombo-cytopenia: PTI-2018. An. Pediatría 2019, 91, 127.e1–127.e10. (In Spanish) [Google Scholar] [CrossRef] [PubMed]
- Witkowski, M.; Witkowska, M.; Robak, T. Autoimmune thrombocytopenia: Current treatment options in adults with a focus on novel drugs. Eur. J. Haematol. 2019, 103, 531–541. [Google Scholar] [CrossRef]
- Dou, X.; Yang, R. Current and emerging treatments for immune thrombocytopenia. Expert Rev. Hematol. 2019, 12, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Mingot-Castellano, M.E.; Bastida, J.M.; Caballero-Navarro, G.; Entrena Ureña, L.; González-López, T.J.; González-Porras, J.R.; Butta, N.; Canaro, M.; Jiménez-Bárcenas, R.; Gómez del Castillo Solano, M.d.C.; et al. Novel Therapies to Address Unmet Needs in ITP. Pharmaceuticals 2022, 15, 779. [Google Scholar] [CrossRef]
- Poudyal, B.S.; Sapkota, B.; Shrestha, G.S.; Thapalia, S.; Gyawali, B.; Tuladhar, S. Safety and Efficacy of Azathioprine as a Second Line Therapy for Primary Immune Thrombocytopenic Purpura. J. Nepal Med. Assoc. 2016, 55, 16–21. [Google Scholar] [CrossRef]
- Poli, A. Atorvastatin: Pharmacological characteristics and lipid-lowering effects. Drugs. 2007, 67 (Suppl. S1), 3–15. [Google Scholar] [CrossRef]
- Athyros, V.G.; Tziomalos, K.; Karagiannis, A.; Mikhailidis, D.P. Atorvastatin: Safety and tolerability. Expert Opin. Drug Saf. 2010, 9, 667–674. [Google Scholar] [CrossRef]
- Su, H.; Lu, Y.; Ma, C.; Li, H.; Su, X. Impact of atorvastatin on erectile dysfunction: A meta-analysis and systematic review. Andrologia 2022, 54, e14408. [Google Scholar] [CrossRef]
- Shaghaghi, Z.; Alvandi, M.; Farzipour, S.; Dehbanpour, M.R.; Nosrati, S. A review of effects of atorvastatin in cancer therapy. Med. Oncol. 2022, 40, 27. [Google Scholar] [CrossRef]
- Tulbah, A.S. The potential of Atorvastatin for chronic lung diseases therapy. Saudi Pharm. J. 2020, 28, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Berk, M.; Campochiaro, P.A.; Jaeschke, H.; Marenzi, G.; Richeldi, L.; Wen, F.-Q.; Nicoletti, F.; Calverley, P.M.A. The Multifaceted Therapeutic Role of N-Acetylcysteine (NAC) in Disorders Characterized by Oxidative Stress. Curr. Neuropharmacol. 2021, 19, 1202–1224. [Google Scholar] [CrossRef] [PubMed]
- Samuni, Y.; Goldstein, S.; Dean, O.M.; Berk, M. The chemistry and biological activities of N-acetylcysteine. Biochim. Et Biophys. Acta BBA Gen. Subj. 2013, 1830, 4117–4129. [Google Scholar] [CrossRef]
- Pei, Y.; Liu, H.; Yang, Y.; Yang, Y.; Jiao, Y.; Tay, F.R.; Chen, J. Biological Activities and Potential Oral Applications of N-Acetylcysteine: Progress and Prospects. Oxid. Med. Cell. Longev. 2018, 2018, 2835787. [Google Scholar] [CrossRef] [PubMed]
- Bass, S.; Zook, N. Intravenous acetylcysteine for indications other than acetaminophen overdose. Am. J. Health Pharm. 2013, 70, 1496–1501. [Google Scholar] [CrossRef]
- van Leuven, S.I.; Kastelein, J.J. Atorvastatin. Expert Opin. Pharmacother. 2005, 6, 1191–1203. [Google Scholar] [CrossRef]
- Sandilands, E.A.; Bateman, D.N. Adverse reactions associated with acetylcysteine. Clin. Toxicol. 2009, 47, 81–88. [Google Scholar] [CrossRef]
- Holdiness, M.R. Clinical pharmacokinetics of N-acetylcysteine. Clin. Pharmacokinet. 1991, 20, 123–134. [Google Scholar] [CrossRef]
- Ershad, M.; Naji, A.; Vearrier, D. N Acetylcysteine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Thompson, C.A. Acetylcysteine’s off-label use presents dosage-form issue. Am. J. Health Syst. Pharm. 2007, 64, 1362–1368. [Google Scholar] [CrossRef]
- Garcia, M.; Reinoso, R.; Navarro, A.S.; Prous, J. Clinical pharmacokinetics of statins. Methods Find. Exp. Clin. Pharmacol. 2003, 25, 455–481. [Google Scholar] [CrossRef]
- Kong, Y.; Cao, X.-N.; Zhang, X.-H.; Shi, M.-M.; Lai, Y.-Y.; Wang, Y.; Xu, L.-P.; Chang, Y.-J.; Huang, X.-J. Atorvastatin enhances bone marrow endothelial cell function in corticosteroid-resistant immune thrombocytopenia patients. Blood 2018, 131, 1219–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, Y.; Wang, Y.; Zhang, Y.Y.; Shi, M.M.; Mo, X.D.; Sun, Y.Q.; Chang, Y.J.; Xu, L.P.; Zhang, X.H.; Liu, K.Y.; et al. Prophylactic oral NAC reduced poor hematopoietic re-constitution by improving endothelial cells after haploidentical transplantation. Blood Adv. 2019, 3, 1303–1317. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.-M.; Kong, Y.; Song, Y.; Sun, Y.-Q.; Wang, Y.; Zhang, X.-H.; Xu, L.-P.; Liu, K.-Y.; Huang, X. Atorvastatin enhances endothelial cell function in posttransplant poor graft function. Blood 2016, 128, 2988–2999. [Google Scholar] [CrossRef]
- Kong, Y.; Song, Y.; Tang, F.-F.; Zhao, H.-Y.; Chen, Y.-H.; Han, W.; Yan, C.-H.; Wang, Y.; Zhang, X.-H.; Xu, L.-P.; et al. N-acetyl-L-cysteine improves mesenchymal stem cell function in prolonged isolated thrombocytopenia post-allotransplant. Br. J. Haematol. 2018, 180, 863–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Provan, D.; Arnold, D.M.; Bussel, J.B.; Chong, B.H.; Cooper, N.; Gernsheimer, T.; Ghanima, W.; Godeau, B.; González-López, T.J.; Grainger, J.; et al. Updated international consensus report on the investigation and management of primary immune thrombocytopenia. Blood Adv. 2019, 3, 3780–3817. [Google Scholar] [CrossRef] [Green Version]
- Palandri, F.; Polverelli, N.; Catani, L.; Sollazzo, D.; Romano, M.; Levorato, M.; Vianelli, N. The choice of second-line therapy in steroid-resistant immune thrombocytopenia: Role of platelet kinetics in a single-centre long-term study. Am. J. Hematol. 2014, 89, 1047–1050. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Saunders, T.L.; Enikolopov, G.; Morrison, S.J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012, 481, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Pelosi, E.; Castelli, G.; Testa, U. Endothelial progenitors. Blood Cells Mol. Dis. 2014, 52, 186–194. [Google Scholar] [CrossRef]
- Narayanan, D.; Kilpatrick, E.S. Atorvastatin-related thrombocytopenic purpura. BMJ Case Rep. 2010, 2010, bcr01.2010.2614. [Google Scholar] [CrossRef] [PubMed]
- Iasella, C.J.; Johnson, H.J.; Dunn, M.A. Adverse Drug Reactions: Type A (Intrinsic) or Type B (Idiosyncratic). Clin. Liver Dis. 2017, 21, 73–87. [Google Scholar] [CrossRef]
- Uetrecht, J. Idiosyncratic drug reactions: Current understanding. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 513–539. [Google Scholar] [CrossRef]
- Ghuman, J.; Manasewitsch, N.T.; Ghuman, J.; Antwi-Amoabeng, D.; Chahal, G. Atorvastatin-Induced Refractory Thrombocytopenia. Cureus 2021, 13, e12502. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhao, Y.; Yu, T.; Yu, Y.; Ni, X.; Wang, H.; Sun, L.; Han, P.; Wang, L.; Sun, T.; et al. Atorvastatin restores imbalance of cluster of differentiation 4 (CD4)+ T cells in immune thrombocytopenia in vivo and in vitro. Br. J. Haematol. 2021, 201, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Y.; He, Y.; Ruan, C.-G. Reaserch Advances in the Treatment of Primary Immune Thrombocytopenia—Review. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2021, 29, 983–987. (In Chinese) [Google Scholar] [PubMed]
- Liu, W.; Gu, X.; Fu, R.; Li, Y.; Lv, M.; Sun, T.; Lv, C.; Liu, X.; Xue, F.; Zhang, L.; et al. The Effect of Danazol in Primary Immune Thrombocytopenia: An Analysis of a Large Cohort from a Single Center in China. Clin. Appl. Thromb. Hemost. 2016, 22, 727–733. [Google Scholar] [CrossRef] [Green Version]
Total Patients (n) | 15 |
---|---|
Sex | |
Female, n (%) | 13 (86.6) |
Male, n (%) | 2 (13.3) |
Mean age at inclusion, years (range) | 48.06 (16.67) |
Follow-up duration, days (range) | 157.53 (90.60) |
Global mean platelet count, ×109/L (range) | |
Initial, n = 15 | 45.91 (17.58) |
1 month, n = 15 | 82 (67.04) |
3 months, n = 13 | 66.74 (39.64) |
6 months, n = 7 | 104.88 (63.75) |
1 year, n = 4 | 108.38 (27.65) |
Previous treatment line, n (%) | |
Methylprednisolone | 6 (40) |
Prednisone | 13 (86.6) |
Dexamethasone | 10 (66.6) |
Azathioprine | 15 (100) |
Danazol | 3 (20) |
Romiplostim | 3 (20) |
Medications during the protocol, n (%) | |
Prednisone | 10 (66.6) |
Dexamethasone | 1 (6.6) |
Azathioprine | 15 (100) |
Danazol | 2 (13.3) |
Comorbidities, n (%) | |
Diabetes mellitus | 4 (26) |
Systemic arterial hypertension | 6 (40) |
Dyslipidemia | 1 (6) |
Iron-deficiency anemia | 3 (20) |
Uterine myomatosis | 2 (13) |
Responder Group | |||
---|---|---|---|
Treatment Evaluation | Mean Platelet Counts before the Intervention, ×109/L | Mean Platelet Counts after the Intervention, ×109/L | p |
GLOBAL (range), n = 6 | 46 (19–65) | 149 (42–251) | 0.0009 * |
1 month (range), n = 4 | 46 (34–65.5) | 168 (65–251) | 0.0295 * |
3 months (range), n = 4 | 41 (19–65) | 98 (42–142) | 0.0424 * |
6 months (range), n = 4 | 47 (35–65) | 143 (57–221) | 0.0295 * |
12 months (range), n = 4 | 58 (45–65) | 106 (70–133) | 0.0276 * |
Non-responder Group | |||
Treatment evaluation | Mean platelet counts before the intervention, ×109/L | Mean platelet counts after the intervention, ×109/L | p |
GLOBAL, n = 6 | 46 (7–62) | 45 (8–57) | 0.9472 |
1 month (range), n = 4 | 45 (19–65) | 46 (12–72) | 0.6072 |
3 months (range), n = 4 | 49 (7–65) | 53 (5–86) | 0.5915 |
6 months (range), n = 4 | 60 (45–72) | 52 (38–62) | 0.1519 |
With a Response | With No Response | p | |
---|---|---|---|
Number of patients | 9 | 6 | |
Sex, n | |||
Female | 7 | 6 | 0.2148 |
Age, years, mean (SD) | 46.11 (15.02) | 51 (20.02) | 0.597 |
Previous lines of treatment, median (range) | 3.44 (2–5) | 3.66 (2–6) | 0.7982 |
Follow-up time, mean days (SD) | 177.4 (104) | 127.7 (62.37) | 0.3146 |
Previous relapses, median (range) | 0 (0–3) | 2.5 (0–3) | 0.0573 |
Mean response time, median days (range) | 41 (20–310) | 13.5 (0–92) | 0.1514 |
Response duration, mean months (range) | 3.2 (1.8–6) | N/A | |
Adverse effects, total | 0 | 0 | |
Mean platelet counts (×109/L) after treatment, n = 15 (range) | 149 (42–251) | 45 (5–85) | 0.002 * |
Platelet count (×109/L) subanalysis by treatment time | |||
Baseline, median (range), n = 15 | 45 (19–475) | 51.25 (7–62.50) | 0.8641 |
1 month, mean (SD), n = 15 | 103.9 (73.11) | 35.78 (32.50) | 0.0533 |
3 months, mean (SD), n = 13 | 69.31 (46.03) | 49.28 (36.52) | 0.4292 |
6 months, mean (SD), n = 7 | 115.9 (62.09) | 38.70 (N/A ♦) | 0.3017 |
12 months, mean (SD), n = 4 | 108.37 (27.65) | N/A ϕ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervantes-Pérez, L.A.; Cervantes-Guevara, G.; Cervantes-Pérez, E.; Cervantes-Cardona, G.A.; Nápoles-Echauri, A.; González-Ojeda, A.; Fuentes-Orozco, C.; Cervantes-Pérez, G.; Reyes-Torres, C.A.; Hernández-Mora, F.J.; et al. Evaluation of the Effects of Atorvastatin and N-Acetyl Cysteine on Platelet Counts in Patients with Primary Immune Thrombocytopenia: An Exploratory Clinical Trial. Medicina 2023, 59, 1122. https://doi.org/10.3390/medicina59061122
Cervantes-Pérez LA, Cervantes-Guevara G, Cervantes-Pérez E, Cervantes-Cardona GA, Nápoles-Echauri A, González-Ojeda A, Fuentes-Orozco C, Cervantes-Pérez G, Reyes-Torres CA, Hernández-Mora FJ, et al. Evaluation of the Effects of Atorvastatin and N-Acetyl Cysteine on Platelet Counts in Patients with Primary Immune Thrombocytopenia: An Exploratory Clinical Trial. Medicina. 2023; 59(6):1122. https://doi.org/10.3390/medicina59061122
Chicago/Turabian StyleCervantes-Pérez, Lorena A, Gabino Cervantes-Guevara, Enrique Cervantes-Pérez, Guillermo Alonso Cervantes-Cardona, Adriana Nápoles-Echauri, Alejandro González-Ojeda, Clotilde Fuentes-Orozco, Gabino Cervantes-Pérez, Carlos A Reyes-Torres, Francisco Javier Hernández-Mora, and et al. 2023. "Evaluation of the Effects of Atorvastatin and N-Acetyl Cysteine on Platelet Counts in Patients with Primary Immune Thrombocytopenia: An Exploratory Clinical Trial" Medicina 59, no. 6: 1122. https://doi.org/10.3390/medicina59061122
APA StyleCervantes-Pérez, L. A., Cervantes-Guevara, G., Cervantes-Pérez, E., Cervantes-Cardona, G. A., Nápoles-Echauri, A., González-Ojeda, A., Fuentes-Orozco, C., Cervantes-Pérez, G., Reyes-Torres, C. A., Hernández-Mora, F. J., Ron-Magaña, A. L., Vázquez-Beltrán, J. C., Hernández-Rivas, M. I., & Ramírez-Ochoa, S. (2023). Evaluation of the Effects of Atorvastatin and N-Acetyl Cysteine on Platelet Counts in Patients with Primary Immune Thrombocytopenia: An Exploratory Clinical Trial. Medicina, 59(6), 1122. https://doi.org/10.3390/medicina59061122