Effects of High-Intensity Interval Training on Melatonin Function and Cellular Lymphocyte Apoptosis in Sedentary Middle-Aged Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Exercise Training Program
2.3. Assessment of Cardiovascular Fitness
2.4. Assessment of Lymphocyte Count and Apoptosis
2.5. Assessment of Total Antioxidant Capacity (TAC)
2.6. Assessment of Serum Melatonin and Cytochrome C OxidaseX
2.7. Statistical Analysis
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vos, T.; Flaxman, A.D.; Naghavi, M.; Lozano, R.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2163–2196. [Google Scholar] [CrossRef]
- Crimmins, E.M. Lifespan and healthspan: Past, present, and promise. Gerontologist 2015, 55, 901–911. [Google Scholar] [CrossRef] [Green Version]
- Kaeberlein, M. Longevity and aging. F1000Prime Rep. 2013, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kirkwood, T.B.L. Understanding the odd science of aging. Cell 2005, 120, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Gladyshev, V.N. Aging: Progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell 2016, 15, 594–602. [Google Scholar] [CrossRef]
- Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto, R.I.; Pessin, J.E.; et al. Geroscience: Linking aging to chronic disease. Cell 2014, 159, 709–713. [Google Scholar] [CrossRef] [Green Version]
- Kaeberlein, M.; Rabinovitch, P.S.; Martin, G.M. Healthy aging: The ultimate preventative medicine. Science 2015, 350, 1191–1193. [Google Scholar] [CrossRef] [Green Version]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Melzer, D.; Pilling, L.C.; Ferrucci, L. The genetics of human ageing. Nat. Rev. Genet. 2020, 21, 88–101. [Google Scholar] [CrossRef]
- Parker, D.C.; Bartlett, B.N.; Cohen, H.J.; Fillenbaum, G.; Huebner, J.L.; Kraus, V.B.; Pieper, C.; Belsky, D.W. Association of Blood Chemistry Quantifications of Biological Aging With Disability and Mortality in Older Adults. J. Gerontol. A. Biol. Sci. Med. Sci. 2019, 75, 1671–1679. [Google Scholar] [CrossRef]
- Belsky, D.W.; Moffitt, T.E.; Cohen, A.A.; Corcoran, D.L.; Levine, M.E.; Prinz, J.A.; Schaefer, J.; Sugden, K.; Williams, B.; Poulton, R.; et al. Eleven Telomere, Epigenetic Clock, and Biomarker-Composite Quantifications of Biological Aging: Do They Measure the Same Thing? Am. J. Epidemiol. 2018, 187, 1220–1230. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, P.; Thyagarajan, B.; Sun, F.; Schupf, N.; Newman, A.B.; Montano, M.; Perls, T.T. Biomarker signatures of aging. Aging Cell 2017, 16, 329–338. [Google Scholar] [CrossRef]
- Kuo, P.-L.; Schrack, J.A.; Levine, M.E.; Shardell, M.D.; Simonsick, E.M.; Chia, C.W.; Moore, A.Z.; Tanaka, T.; An, Y.; Karikkineth, A.; et al. Longitudinal phenotypic aging metrics in the Baltimore Longitudinal Study of Aging. Nat. Aging 2022, 2, 635–643. [Google Scholar] [CrossRef]
- Elliott, M.L.; Caspi, A.; Houts, R.M.; Ambler, A.; Broadbent, J.M.; Hancox, R.J.; Harrington, H.; Hogan, S.; Keenan, R.; Knodt, A.; et al. Disparities in the pace of biological aging among midlife adults of the same chronological age have implications for future frailty risk and policy. Nat. Aging 2021, 1, 295–308. [Google Scholar] [CrossRef]
- Kuo, P.; Schrack, J.A.; Shardell, M.D.; Levine, M.; Moore, A.Z.; An, Y.; Elango, P.; Karikkineth, A.; Tanaka, T.; Cabo, R.; et al. A roadmap to build a phenotypic metric of ageing: Insights from the Baltimore Longitudinal Study of Aging. J. Intern. Med. 2020, 287, 373–394. [Google Scholar] [CrossRef] [Green Version]
- Ferrucci, L.; Cooper, R.; Shardell, M.; Simonsick, E.M.; Schrack, J.A.; Kuh, D. Age-related change in mobility: Perspectives from life course epidemiology and geroscience. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1184–1194. [Google Scholar] [CrossRef] [Green Version]
- Horvath, S.; Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [CrossRef]
- Allen, P.D.; Bustin, S.A.; Newland, A.C. The role of apoptosis (programmed cell death) in haemopoiesis and the immune system. Blood Rev. 1993, 7, 63–73. [Google Scholar] [CrossRef]
- Granville, D.J.; Carthy, C.M.; Hunt, D.W.; McManus, B.M. Apoptosis: Molecular aspects of cell death and disease. Lab. Investig. 1998, 78, 893–913. [Google Scholar]
- Berridge, M.J. Lymphocyte activation in health and disease. Crit. Rev. Immunol. 1997, 17, 155–178. [Google Scholar] [CrossRef]
- Genestier, L.; Bonnefoy-Berard, N.; Revillard, J.P. Apoptosis of activated peripheral T cells. Transpl. Proc. 1999, 31, 33S–38S. [Google Scholar] [CrossRef]
- Schuster, C.; Gauer, F.; Malan, A.; Recio, J.; Pevet, P.; Masson-Pevet, M. The circadian clock, light/dark cycle and melatonin are differentially involved in the expression of daily and photoperiodic variations in mtl melatonin receptors in Siberian and Syrian hamsters. Neuroendocrinology 2001, 74, 55–68. [Google Scholar] [CrossRef]
- Oxenkrug, G.; Requintina, P.; Bachurin, S. Antioxidant and antiaging activity of N-acetylserotonin and melatonin in the in vivo models. Ann. N. Y. Acad. Sci. 2001, 939, 190–199. [Google Scholar] [CrossRef]
- Li, F.; Li, S.; Li, H.B.; Deng, G.F.; Ling, W.H.; Wu, S.; Xu, X.R.; Chen, F. Antiproliferative activity of peels, pulps and seeds of 61 fruits. J. Funct. Foods 2013, 5, 1298–1309. [Google Scholar] [CrossRef]
- Galano, A.; Tan, D.X.; Reiter, R.J. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J. Pineal Res. 2013, 54, 245–257. [Google Scholar] [CrossRef]
- Galano, A.; Tan, D.X.; Reiter, R.J. Melatonin as a natural ally against oxidative stress: A physicochemical examination. J. Pineal Res. 2012, 51, 1–16. [Google Scholar] [CrossRef]
- Pandi-Perumal, S.R.; Zisapel, N.; Srinivasan, V.; Cardinali, D.P. Melatonin and sleep in aging population. Exp. Gerontol. 2005, 40, 911–925. [Google Scholar] [CrossRef]
- Agil, A.; Elmahallawy, E.K.; Rodriguez-Ferrer, J.M.; Adem, A.; Bastaki, S.M.; Al-Abbadi, I.; Fino Solano, Y.A.; Navarro-Alarcon, M. Melatonin increases intracellular calcium in the liver, muscle, white adipose tissuesand pancreas of diabetic obese rats. Food Funct. 2015, 6, 2671–2678. [Google Scholar] [CrossRef]
- Agil, A.; El-Hammadi, M.; Jimenez-Aranda, A.; Tassi, M.; Abdo, W.; Fernandez-Vazquez, G.; Reiter, R.J. Melatonin reduces hepatic mitochondrial dysfunction in diabetic obese rats. J. Pineal Res. 2015, 59, 70–79. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Castillo-García, A.; Morales, J.S.; de la Villa, P.; Hampel, H.; Emanuele, E.; Lista, S.; Lucia, A. Exercise benefits on Alzheimer’s disease: State-of-the-science. Ageing Res. Rev. 2020, 62, 101108. [Google Scholar] [CrossRef]
- AlAnazi, A.; Alghadir, A.H.; Gabr, S.A. Handgrip Strength Exercises Modulate Shoulder Pain, Function, and Strength of Rotator Cuff Muscles of Patients with Primary Subacromial Impingement Syndrome. Biomed Res. Int. 2022, 2022, 9151831. [Google Scholar] [CrossRef]
- Alghadir, A.H.; Gabr, S.A. Hormonal Function Responses to Moderate Aerobic Exercise in Older Adults with Depression. Clin. Interv. Aging 2020, 15, 1271–1283. [Google Scholar] [CrossRef]
- Alghadir, A.H.; Gabr, S.A.; Al-Momani, M.; Al-Momani, F. Moderate aerobic training modulates cytokines and cortisol profiles in older adults with cognitive abilities. Cytokine 2021, 138, 155373. [Google Scholar] [CrossRef]
- Mota, M.; Pănuş, C.; Mota, E.; Lichiardopol, C.; Vladu, D.; Toma, E. the metabolic syndrome—A multifaced disease. Rom. J. Intern. Med. 2004, 42, 247–255. [Google Scholar]
- Mackinnon, L.T. current challenges and future expectations in exercise immunology: Back to the future. Med. Sci. Sports Exerc. 1994, 26, 191–194. [Google Scholar] [CrossRef]
- Venkatraman, J.T.; Fernandes, G. Exercise, immunity and aging. Aging 1997, 9, 42–56. [Google Scholar] [CrossRef]
- Viswanathan, A.N.; Schernhammer, E.S. Circulating melatonin and the risk of breast and endometrial cancer in women. Cancer Lett. 2009, 281, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Escames, G.; Ozturk, G.; Bano-Otalora, B.; Pozo, M.J.; Madrid, J.A.; Reiter, R.J.; Serrano, E.; Concepción, M.; Acuña-Castroviejo, D. Exercise and melatonin in humans: Reciprocal benefits. J. Pineal Res. 2012, 52, 1–11. [Google Scholar] [CrossRef]
- Mastaloudis, A.; Leonard, S.W.; Traber, M.G. Oxidative stress in athletes during extreme endurance exercise. Free Radic. Biol. Med. 2001, 31, 911–922. [Google Scholar] [CrossRef]
- Hood, D.; Uguccioni, G.; Vainshtein, A.; D’souza, D. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle: Implications for health and disease. Compr. Physiol. 2011, 1, 1119–1134. [Google Scholar]
- Karstoft, K.; Winding, K.; Knudsen, S.H.; James, N.G.; Scheel, M.M.; Olesen, J.; Holst, J.J.; Pedersen, B.K.; Solomon, T.P.J. Mechanisms behind the superior effects of interval vs continuous training on glycaemic control in individuals with type 2 diabetes: A randomised controlled trial. Diabetologia 2014, 57, 2081–2093. [Google Scholar] [CrossRef] [Green Version]
- Youssef, L.; Granet, J.; Marcangeli, V.; Dulac, M.; Hajj-Boutros, G.; Reynaud, O.; Buckinx, F.; Gaudreau, P.; Morais, J.A.; Mauriège, P.; et al. Clinical and Biological Adaptations in Obese Older Adults Following 12-Weeks of High-Intensity Interval Training or Moderate-Intensity Continuous Training. Healthcare 2022, 10, 1346. [Google Scholar] [CrossRef]
- Trachsel, L.D.; David, L.P.; Gayda, M.; Henri, C.; Hayami, D.; Thorin-Trescases, N.; Thorin, E.; Blain, M.A.; Cossette, M.; Lalongé, J.; et al. The impact of high-intensity interval training on ventricular remodeling in patients with a recent acute myocardial infarction-A randomized training intervention pilot study. Clin. Cardiol. 2019, 42, 1222–1231. [Google Scholar] [CrossRef] [Green Version]
- Kercher, V.M.M.; Kercher, K.; Levy, P.; Bennion, T.; Alexander, C.; Amaral, P.C.; Batrakoulis, A.; Chávez, L.F.J.G.; Cortés-Almanzar, P.; Haro, J.L.; et al. 2023 Fitness Trends from Around the Globe. ACSM’s Health Fit. J. 2023, 27, 19–30. [Google Scholar] [CrossRef]
- Aekplakorn, W.; Kosulwat, V.; Suriyawongpaisal, P. Obesity indices and cardiovascular risk factors in Thai adults. Int. J. Obes. 2006, 30, 1782–1790. [Google Scholar] [CrossRef] [Green Version]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A better index of body adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef]
- Bull, F.C.; Maslin, T.S.; Armstrong, T. Global physical activity questionnaire (GPAQ): Nine country reliability and validity study. J. Phys. Act. Health 2009, 6, 790–804. [Google Scholar] [CrossRef] [Green Version]
- Trinh, O.T.; Nguyen, N.D.; Van Der Ploeg, H.P.; Dibley, M.J.; Bauman, A. Testretest repeatability and relative validity of the Global Physical Activity Questionnaire in a developing country context. J. Phys. Act. Health 2009, 6 (Suppl. S1), S46–S53. [Google Scholar] [CrossRef]
- Cochran, A.J.; Percival, M.E.; Tricarico, S.; Little, J.P.; Cermak, N.; Gillen, J.B.; Tarnopolsky, M.A.; Gibala, M.J. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Exp. Physiol. 2014, 99, 782–791. [Google Scholar] [CrossRef] [Green Version]
- Kwak, L.; Kremers, S.P.; Bergman, P.; Ruiz, J.R.; Rizzo, N.S.; Sjöström, M. Associations between physical activity, fitness, and academic achievement. J. Pediatr. 2009, 155, 914–918.e1. [Google Scholar] [CrossRef]
- Boyum, M. Isolation of mononuclear cells and granulocytes from human blood. Scand. J. Clin. Lab. Investig. 1968, 21, 77–78. [Google Scholar]
- Mendelsohn, J.; Skinner, A.; Kornfield, S. The rapid induction by phytohemagglutinin of increased alpha-aminoisobutyric acid uptake by lymphocytes. J. Clin. Investig. 1971, 50, 818–826. [Google Scholar] [CrossRef]
- Dolye, A.l.; Griffiths, J.B. (Eds.) Haemocytometer cell count and viability studies. In Cell and Tissue Culture for Medical Research, 2nd ed.; John Willey and Sons, Ltd.: Hoboken, NJ, USA, 2000; Volume 12, p. 6. [Google Scholar]
- Vacca, L.L. (Ed.) Acridine orange. In Laboratory Manual of Histochemistry; Raven Press: New York, NY, USA, 1985; Volume 166, p. 7. [Google Scholar]
- Alghadir, A.H.; Gabr, S.A.; Iqbal, Z.A.; Al-Eisa, E. Association of physical activity, vitamin E levels, and total antioxidant capacity with academic performance and executive functions of adolescents. BMC Pediatr. 2019, 19, 156. [Google Scholar] [CrossRef]
- Alghadir, A.H.; Gabr, S.A. Efficacy of Rhus coriaria (sumac) juice in reducing muscle pain during aerobic exercise. Physiol. Int. 2016, 103, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Gabr, S.A.; Gabr, N.S.; Elsaed, W.M. Aqueous Green Tea Extract and Prediction of Fibrosis in Lipopolysaccharide Intoxicated Rats. Int. J. Pharmacol. 2019, 15, 403–417. [Google Scholar] [CrossRef]
- Alghadir, A.H.; Gabr, S.A.; Al-Eisa, E.S. Effects of Moderate Aerobic Exercise on Cognitive Abilities and Redox State Biomarkers in Older Adults. Oxidative Med. Cell. Longev. 2016, 2016, 2545168. [Google Scholar] [CrossRef] [Green Version]
- Batrakoulis, A.; Jamurtas, A.Z.; Draganidis, D.; Georgakouli, K.; Tsimeas, P.; Poulios, A.; Syrou, N.; Deli, C.K.; Papanikolaou, K.; Tournis, S.; et al. Hybrid Neuromuscular Training Improves Cardiometabolic Health and Alters Redox Status in Inactive Overweight and Obese Women: A Randomized Controlled Trial. Antioxidants 2021, 10, 1601. [Google Scholar] [CrossRef]
- Hejazi, K.; Wong, A. Effects of exercise training on inflammatory and cardiometabolic health markers in overweight and obese adults: A systematic review and meta-analysis of randomized controlled trials. J. Sports Med. Phys. Fit. 2023, 63, 345–359. [Google Scholar] [CrossRef]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 Aha/Acc/Tos Guideline for the Management of Overweight and Obesity in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Obesity Society. Circulation 2014, 129 (25 Suppl. 2), S102–S138. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhou, H.; Zhao, C.; He, H. Effect of Exercise Training on Body Composition and Inflammatory Cytokine Levels in Overweight and Obese Individuals: A Systematic Review and Network Meta-Analysis. Front. Immunol. 2022, 13, 921085. [Google Scholar] [CrossRef]
- Skrinar, G.S.; Bullen, B.A.; Reppert, S.M.; Peachey, S.E.; Turnbull, B.A.; McArthur, J.W. Melatonin response to exercise training in women. J. Pineal Res. 1989, 7, 185–194. [Google Scholar] [CrossRef]
- Pilaczyńska-Szcześniak, L.; Karolkiewicz, J.; Strzelczyk, A.; Stankiewicz, K.; Osiński, W.; Stemplewski, R.; Szeklicki, R. Melatonin concentrations and other parameters of blood antioxidant defense system in elderly men with various levels of physical activity. Pol. Arch. Intern. Med. 2004, 111, 557–562. [Google Scholar]
- Reiter, R.J. Pineal melatonin: Cell biology of its synthesis and of its physiological interactions. Endocr. Rev. 1991, 12, 151–175. [Google Scholar] [CrossRef] [Green Version]
- Blomstrand, E.; Celsing, F.; Newsholme, E.A. Changes in plasma concentrations of aromatic and branched-chain amino acids during sustained exercise in man and their possible role in fatigue. Acta Physiol. Scand. 1998, 133, 115–121. [Google Scholar] [CrossRef]
- Follenius, M.; Weibel, L.; Brandenberger, G. Distinct modes of melatonin secretion in normal men. J. Pineal Res. 1995, 18, 135–140. [Google Scholar] [CrossRef]
- Knight, J.A.; Thombson, S.; Raboud, J.M.; Hoffman, B.R. Light and Exercise and Melatonin Production in Women. Am. J. Epidemiol. 2005, 162, 1114–1122. [Google Scholar] [CrossRef] [Green Version]
- Thrift, A.P.; Xiao, L.; Patel, S.R.; Tworoger, S.S.; McTiernan, A.; Duggan, C. Effects of physical activity on melatonin levels in previously sedentary men and women. Cancer Epidem. Biomar. Prev. 2014, 23, 1696–1699. [Google Scholar] [CrossRef] [Green Version]
- Mougios, V. Exercisemetabolism. In Exercise Biochemistry; Bahrke, M.S., Ed.; Human Kinetics Books: Champaign, IL, USA, 2010; p. 122. [Google Scholar]
- Solberg, P.A.; Halvari, H.; Ommundsen, Y.; Hopkins, W.G. A 1-year follow-up on effects of exercise programs on wellbeing in older adults. J. Aging Phys. Act. 2014, 22, 52–64. [Google Scholar] [CrossRef]
- Aly, F.; Alghadir, A.; Gabr, S. Adiponectin response to supervised aerobic training in type II diabetic patients. Asian Biomed. 2014, 8, 597–602. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, H.; Ishikawa, T.; Suto, M.; Kurosawa, H.; Hirowatari, Y.; Ito, K.; Yanai, H.; Tada, N.; Suzuki, M. Effects of supervised aerobic exercise training on serum adiponectin and parameters of lipid and glucose metabolism in subjects with moderate dyslipidemia. J. Atheroscler. Thromb. 2010, 17, 1160–1166. [Google Scholar] [CrossRef] [Green Version]
- Goodyear, L.J.; Kahn, B.B. Exercise, glucose transport, and insulin sensitivity. Ann. Rev. Med. 1998, 49, 235–261. [Google Scholar] [CrossRef]
- Sajad, A.; Amir, H.H.; Mohammad, R.H. Effects of resistance versus endurance training on serum adiponectin and insulin resistance index. Eur. J. Endocrinol. 2007, 157, 625–631. [Google Scholar]
- Cipryan, L. IL-6, Antioxidant Capacity and Muscle Damage Markers Following High-Intensity Interval Training Protocols. J. Hum. Kinet. 2017, 56, 139–148. [Google Scholar] [CrossRef]
- Puchalski, S.S.; Green, J.N.; Rasmussen, D.D. Melatonin effects on metabolism independent of gonad function. Endocrine 2003, 21, 169–173. [Google Scholar] [CrossRef]
- Bartness, T.J.; Demas, G.E.; Song, C.K. Seasonal changes in adiposity: The roles of the photoperiod, melatonin and other hormones, and sympathetic nervous system. Exp. Biol. Med. 2002, 227, 363–376. [Google Scholar] [CrossRef]
- Rasmussen, D.D.; Mitton, D.R.; Larsen, S.A.; Yellon, S.M. Aging-dependent changes in the effect of daily melatonin supplementation on rat metabolic and behavioral responses. J. Pineal Res. 2001, 31, 89–94. [Google Scholar] [CrossRef]
- Wolden-Hanson, T.; Mitton, D.R.; McCants, R.L.; Yellon, S.M.; Wilkinson, C.W.; Matsumoto, A.M.; Rasmussen, D.D. Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology 2000, 141, 487–497. [Google Scholar] [CrossRef]
- Tabata, I.; Irisawa, K.; Kouzaki, M.; Nishimura, K.; Ogita, F.; Miyachi, M. Metabolic profile of high-intensity intermittent exercises. Med. Sci. Sport. Exerc. 1997, 29, 390–395. [Google Scholar] [CrossRef] [Green Version]
- Tabata, I.; Nishimura, K.; Kouzaki, M.; Hirai, Y.; Ogita, F.; Miyachi, M.; Yamamoto, K. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO(2max). Med. Sci. Sports Exerc. 1996, 28, 1327–1330. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, E.; Machida, S.; Higuchi, M.; Tabata, I. Effects of nonexhaustive bouts of high-intensity intermittent swimming training on GLUT-4 expression in rat skeletal muscle. J. Physiol. Sci. 2010, 60, 95–101. [Google Scholar] [CrossRef]
- Terada, S.; Kawanaka, K.; Goto, M.; Shimokawa, T.; Tabata, I. Effects of high-intensity intermittent swimming on PGC protein expression in rat skeletal muscle. Acta Physiol. Scand. 2005, 184, 59–65. [Google Scholar] [CrossRef]
- Terada, S.; Tabata, I.; Higuchi, M. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle. Jpn. J. Physiol. 2004, 54, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Terada, S.; Yokozeki, T.; Kawanaka, K.; Ogawa, K.; Higuchi, M.; Ezaki, O.; Tabata, I. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle. J Appl. Physiol. 2001, 90, 2019–2024. [Google Scholar] [CrossRef]
- Sun, Y.; Qi, Z.; He, Q.; Cui, D.; Qian, S.; Ji, L.; Ding, S. The effect of treadmill training and N-acetyl-l-cysteine intervention on biogenesis of cytochrome c oxidase (COX). Free. Radic. Biol. Med. 2015, 87, 326–335. [Google Scholar] [CrossRef]
- Al-Eisa, E.S.; Alghadir, A.H.; Gabr, S.A. Correlation between vitamin D levels and muscle fatigue risk factors based on physical activity in healthy older adults. Clin. Interv. Aging 2016, 11, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Georgakouli, K.; Manthou, E.; Fatouros, I.G.; Georgoulias, P.; Deli, C.K.; Koutedakis, Y.; Theodorakis, Y.; Jamurtas, A.Z. Enhanced erythrocyte antioxidant status following an 8-week aerobic exercise training program in heavy drinkers. Alcohol 2017, 69, 57–62. [Google Scholar] [CrossRef]
- Israa, F.; Al-Samaraee, F.; Al-Ani; Inaam, A.R. Experimental model for lymphocyte apoptosis In Vitro. J. Fac. Med. 2002, 44, 507–513. [Google Scholar]
- Navalta, J.W.; Sedlock, D.A.; Park, K.S. Effect of exercise intensity on exercise-induced lymphocyte apoptosis. Int. J. Sports Med. 2007, 28, 539–542. [Google Scholar] [CrossRef]
- Mars, M.; Govender, S.; Weston, A.; Naicker, V.; Chuturgoon, A. High intensity exercise: A cause of lymphocyte apoptosis? Biochem. Biophys. Res. Comm. 1998, 249, 366–370. [Google Scholar] [CrossRef]
- Curtin, J.F.; Cotter, T.G. Live and let die: Regulatory mechanisms in Fas-mediated apoptosis. Cell. Signal. 2003, 15, 983–992. [Google Scholar] [CrossRef] [Green Version]
- Simpson, R.J.; Florida-James, G.D.; Cosgrove, C.; Whyte, G.P.; Macrae, S.; Pircher, H.; Guy, K. High-intensity exercise elicits the mobilization of senescent T lymphocytes into the peripheral blood compartment in human subjects. J. Appl. Physiol. 2007, 103, 396–401. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Ng, T.; Fung, M. Pineal indoles stimulate the gene expression of immunomodulating cytokines. J. Neural Transm. 2001, 108, 397–405. [Google Scholar] [CrossRef]
- Sáinz, R.M.; Mayo, J.C.; Kotler, M.; Uría, H.; Antolín, I.; Rodríguez, C. Melatonin decreases mRNA for histone H4 in thymus of young rats. Life Sci. 1998, 63, 1109–1117. [Google Scholar] [CrossRef]
Parameters | Subjects (N = 80) |
---|---|
Mean age (years) | 42.5 ± 3.1 |
BMI (kg/m2) | 24.6 ± 2.3 |
Waist (cm) | 92 ± 1.2 |
Hips (cm) | 105 ± 0.65 |
WHR | 0.87 ± 0.54 |
C-index | 8.45 ± 0.24 |
BAI | 29.1 ± 3.7 |
Fasting glucose (FG; mg/dL) | 85.9 ± 7.3 |
Serum C-peptide (ng/mL) | 3.95 ± 1.7 |
HbA1c (%) | 4.7 ± 0.25 |
Fasting insulin (FI; μU/mL) | 23.3 ± 3.1 |
Parameters | Subjects (n = 80) | ||
---|---|---|---|
Pre- | Post- | p-Value | |
BMI (kg/m2) | 24.6 ± 2.3 | 22.7 ± 1.9 * | 0.001 |
WHtR | 0.87 ± 0.54 | 0.84 ± 0.58 * | 0.001 |
C-index | 8.45 ± 0.24 | 3.48 ± 0.12 ** | 0.001 |
BAI | 29.1 ± 3.7 | 17.9 ± 2.7 ** | 0.001 |
Fitness (W) | 178.4 ± 2.8 | 196.5 ± 4.6 ** | 0.001 |
VO2max (mL/kg/min) | 48.2 ± 1.3 | 58.9 ± 2.5 ** | 0.001 |
Fasting glucose (mg/dL) | 85.9 ± 7.3 | 82.3 ± 5.1 * | 0.01 |
Serum C-peptide (ng/mL) | 3.95 ± 1.7 | 4.1 ± 1.2 ** | 0.01 |
HbA1c (%) | 4.7 ± 0.25 | 4.3 ± 0.65 ** | 0.01 |
Fasting insulin (FI; μU/mL) | 23.3 ± 3.1 | 28.1 ± 2.7 ** | 0.001 |
Serum melatonin (pg/mL) | 3.18 ± 0.98 | 11.2 ± 2.3 ** | 0.001 |
Cytochrome c oxidase (ng/mL) | 2.8 ± 0.86 | 3.7 ± 0.75 ** | 0.001 |
TAC (nmol/μL) | 21.5 ± 3.1 | 48.7 ± 7.1 ** | 0.002 |
% of Lymphocyte Apoptosis | 3.15 ± 0.47 | 5.2 ± 0.31 ** | 0.003 |
Serum Melatonin | Lymphocyte Apoptosis (%) | |||||||
---|---|---|---|---|---|---|---|---|
β | r | OR (95% CI) | p-Value | β | r | OR (95% CI) | p-Value | |
BMI (kg/m2) | 0.12 | 0.15 | 1.9 (1.3–2.6) | 0.01 | 0.34 | 0.87 | 2.7 (1.5–3.1) | 0.11 |
WHtR | 0.21 | 0.31 | 2.4 (1.8–3.1) | 0.01 | 0.25 | 0.36 | 1.2 (0.96–1.8) | 0.14 |
C-index | 0.24 | 0.48 | 1.9 (1.5–3.2) | 0.01 | 0.31 | 0.47 | 1.5 (0.96–2.3) | 0.05 |
BAI | 0.19 | 0.21 | 3.1 (1.8–5.7) | 0.001 | 0.27 | 0.41 | 1.7 (0.96–2.6) | 0.01 |
Fitness (W) | 0.54 | 0.23 | 4.5 (3.2–6.7) | 0.001 | 0.15 | 0.87 | 10.2 (5.6–14.8) | 0.001 |
TAC (nmol/µL) | 0.45 | 0.68 | 6.4 (4.8–11.4) | 0.001 | 0.45 | 0.89 | 5.1 (3.5–7.3) | 0.001 |
HbA1c (%) | 0.32 | 0.28 | 2.7 (1.8–3.8) | 0.002 | 0.43 | 0.941 | 3.7 (2.1–4.8) | 0.001 |
Cytochrome C (COX) (ng/mL) | 0.76 | 0.47 | 5.1 (2.8–4.3) | 0.001 | 0.381 | 0.518 | 7.9 (4.7–10.9) | 0.001 |
Exercise duration | 0.15 | 0.52 | 2.8 (1.5–3.8) | 0.001 | 0.75 | 0.78 | 8.6 (5.1–10.4) | 0.001 |
Serum melatonin (pg/mL) | - | - | - | - | 0.48 | 0.37 | 2.9 (1.5–4.3) | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rawaf, H.A.; Gabr, S.A.; Iqbal, A.; Alghadir, A.H. Effects of High-Intensity Interval Training on Melatonin Function and Cellular Lymphocyte Apoptosis in Sedentary Middle-Aged Men. Medicina 2023, 59, 1201. https://doi.org/10.3390/medicina59071201
Al-Rawaf HA, Gabr SA, Iqbal A, Alghadir AH. Effects of High-Intensity Interval Training on Melatonin Function and Cellular Lymphocyte Apoptosis in Sedentary Middle-Aged Men. Medicina. 2023; 59(7):1201. https://doi.org/10.3390/medicina59071201
Chicago/Turabian StyleAl-Rawaf, Hadeel A., Sami A. Gabr, Amir Iqbal, and Ahmad H. Alghadir. 2023. "Effects of High-Intensity Interval Training on Melatonin Function and Cellular Lymphocyte Apoptosis in Sedentary Middle-Aged Men" Medicina 59, no. 7: 1201. https://doi.org/10.3390/medicina59071201
APA StyleAl-Rawaf, H. A., Gabr, S. A., Iqbal, A., & Alghadir, A. H. (2023). Effects of High-Intensity Interval Training on Melatonin Function and Cellular Lymphocyte Apoptosis in Sedentary Middle-Aged Men. Medicina, 59(7), 1201. https://doi.org/10.3390/medicina59071201