Hypertrophic Cardiomyopathy: Genetic Foundations, Outcomes, Interconnections, and Their Modifiers
Abstract
:1. Introduction
“Disease of the Sarcomere”
2. Genetic Foundation of HCM
Gene | Nucleotide Change | Amino Acid Change | ClinVar Variant Class | dbSNP | Global Frequency of Alternative Allele | Frequencies of Reference and Alternative Allele in Different Population Groups Summarized by NCBI |
---|---|---|---|---|---|---|
TNNI3† | c.434G>A | p.Arg145Gln | LP/P | rs397516349 [45,46] | T = 0.000019 (TOPMed) | https://tinyurl.com/272hmsky (accessed on 26 July 2023) |
MYH7† | c.1324C>T | p.Arg442Cys | LP/P | rs148808089 [45,46] | A = 0.000023 (TOPMed) | https://tinyurl.com/5ybdf2a2 (accessed on 26 July 2023) |
MYBPC3† | c.1484G>A | p.Arg495Gln | LP/P | rs200411226 [45,46] | T = 0.000030 (TOPMed) | https://tinyurl.com/yx44frjv (accessed on 26 July 2023) |
MYBPC3# | c.2512G>T | p.Glu838* | ND | Novel [45,46] | ND | ND |
MYH7 | c.4130C>T | p.Thr1377Met | VUS/LP | rs397516201 [45,46] | A = 0.000004 (TOPMed) | https://tinyurl.com/3mutu3np (accessed on 26 July 2023) |
MYBPC3 | c.1000G>A | p.Glu334Lys | LP | rs573916965 [45,46] | T = 0.000098 (TOPMed) | https://tinyurl.com/bddrcys4 (accessed on 26 July 2023) |
MYBPC3# | c.86delT | p.Phe29Serfs*10 | ND | Novel [45,46] | ND | ND |
MYBPC3 | c.2459G>A | p.Arg820Gln | LP | rs2856655 [45,46] | T = 0.000015 (TOPMed) | https://tinyurl.com/2kepk5eu (accessed on 26 July 2023) |
MYBPC3† | c.2833_2834del | p.Arg945Glyfs | P | rs397515987 [45,46] | delGC = 0.000004 (GnomAD_exome) | https://tinyurl.com/49br55fx (accessed on 26 July 2023) |
MYBPC3† | c.1505G>A | p.Arg502Gln | P | rs397515907 [45,46] | T = 0.000019 (TOPMed) | https://tinyurl.com/4fhrbw7h (accessed on 26 July 2023) |
MYBPC3 | c.2067+1G>A | ND | ND | ND | ND | ND |
MYH7# | c.599C>T | p.Ala200Val | ND | Novel [45,46] | ND | ND |
TNNI3 | c.485G>C | p.Arg162Pro | LP | rs397516354 [45,46] | T = 0.000011 (TOPMed) | https://tinyurl.com/4uw3zpk7 (accessed on 26 July 2023) |
MYBPC3# | c.2272G>A | p.Gly758Ser | ND | Novel [45,46] | ND | ND |
MYBPC3# | c.3805G>T | p.Glu1269* | ND | Novel [45,46] | ND | ND |
MYH7 | c.2608C>T | p.Arg870Cys | LP | rs138049878 [45,46] | A = 0.000024 (GnomAD_exome) | https://tinyurl.com/2n79tsm2 (accessed on 26 July 2023) |
MYH7# | c.1350G>T | p.Lys450Asn | ND | Novel [45,46] | ND | ND |
MYBPC3 | c.2441_2443del | p.Lys814del | VUS/LP | rs727504288 [45,46] | delCTT = 0.000011 (TOPMed) | https://tinyurl.com/bdd4x5ny (accessed on 26 July 2023) |
TNNC1† | c.23C>T | p.Ala8Val | VUS/LP/P | rs267607125 [45,46] | A = 0.000007 (GnomAD) | https://tinyurl.com/4ycbpvwu (accessed on 26 July 2023) |
MYH7# | c.2606G>C | p.Arg869Pro | ND | Novel [45,46] | ND | ND |
TNNI3† | c.433C>G | p.Arg145Gly | P | rs104894724 [45,46] | A = 0.000004 (TOPMed) | https://tinyurl.com/5z7fbryu (accessed on 26 July 2023) |
MYBPC3 | c.2067+1G>A | ND | ND | ND | ND | ND |
MYBPC3 | c.3490+1G>A | ND | P | rs397516020 [45,46] | A = 0.000007 (GnomAD) | https://tinyurl.com/ysefcrzu (accessed on 26 July 2023) |
MYBPC3# | c.178G>T | p.Glu60* | ND | Novel [45,46] | ND | ND |
MYBPC3 | c.3763delG | p.Ala1255Profs*76 | LP | rs786204362 [45,46] | ND | https://tinyurl.com/2pk6bpzs (accessed on 26 July 2023) |
MYH6# | c.679dupG | p.Ala227Glyfs*24 | ND | Novel [45,46] | ND | ND |
MYBPC3 | c.2067+1G>A | ND | ND | ND | ND | ND |
TNNI3† | c.433C>G | p.Arg145Gly | P | rs104894724 [45,46] | A = 0.000004 (TOPMed) | https://tinyurl.com/5z7fbryu (accessed on 26 July 2023) |
MYL3† | c.170C>G | p.Ala57Gly | P | rs139794067 [45,46] | T = 0.00020 (ALFA) | https://tinyurl.com/fbsuvnwh (accessed on 26 July 2023) |
MYBPC3 | c.1090+1G>A | ND | LP/P | rs727504269 [45,46] | A = 0.000004 (GnomAD_exome) | https://tinyurl.com/26fm8vmy (accessed on 26 July 2023) |
MYH6† | c.2384G>A | p.Arg795Gln | VUS/LP/P | rs267606907 [45,46] | T = 0.000023 (TOPMed) | https://tinyurl.com/53r9um6p (accessed on 26 July 2023) |
MYBPC3 | c.2067+1G>A | ND | P | ND | ND | ND |
MYH7† | c.1988G>A | p.Arg663His | P | rs371898076 [45,46] | T = 0.000042 (TOPMed) | https://tinyurl.com/ynuws63f (accessed on 26 July 2023) |
MYH7# | c.1426C>T | p.Leu476Phe | ND | Novel [45,46] | ND | ND |
MYBPC3 | c.2458C>T | p.Arg820Trp | LP | rs775404728 [45,46] | A = 0.000004 (TOPMed) | https://tinyurl.com/8u3jr2zb (accessed on 26 July 2023) |
MYH7† | c.746G>A | p.Arg249Gln | P | rs3218713 [45,46] | T = 0.000 (ALFA) | https://tinyurl.com/evrhwf8w (accessed on 26 July 2023) |
MYH7 | c.4123T>C | p.Tyr1375His | LP | rs730880790 [45,46] | ND | https://tinyurl.com/3mcajnjk (accessed on 26 July 2023) |
MYBPC3# | c.3313_3314insGG | p.Ala1105Glyfs*85 | ND | Novel [45,46] | ND | ND |
MYBPC3# | c.3034C>T | p.Gln1012* | P | Novel [45,46] | ND | ND |
MYH7 | c.4066G>A | p.Glu1356Lys | LP | rs727503246 [45,46] | T = 0.000008 (TOPMed) | https://tinyurl.com/2uyhubyf (accessed on 26 July 2023) |
MYBPC3† | c.2833_2834delCG | p.Arg945Glyfs*105 | P | rs397515987 [45,46] | delGC = 0.000004 (GnomAD_exome) | https://tinyurl.com/49br55fx (accessed on 26 July 2023) |
MYH7† | c.1615A>G | p.Met539Val | LP/P | rs730880930 [45,46] | ND | https://tinyurl.com/46aptmu3 (accessed on 26 July 2023) |
2.1. Missense and Nonsense Mutations, Allelic Imbalance, and Haploinsufficiency in HCM
2.2. Genetic Testing
3. Outcomes of HCM
3.1. Primary Effects of Mutations in Sarcomeric-Protein-Encoding Genes
3.2. Pathophysiologic Features of HCM
3.3. Clinical Presentations of HCM
4. Interconnections of Genetic Basis and Outcomes in HCM
4.1. Genes
4.1.1. MYH7
4.1.2. MYBPC3
4.1.3. TNNT2
4.1.4. Genetic Negative HCM Patients
4.1.5. Gene Dosage
4.2. Clinical Courses
4.2.1. Patterns of Left Ventricular Hypertrophy
4.2.2. Ventricular Arrhythmias and Sudden Cardiac Death
5. Disease Modifiers
5.1. Molecular Disease Modifiers
5.1.1. Modifier Genes
5.1.2. Mitochondrial DNA Variants
5.1.3. Epigenetics
DNA Methylation
Histone Modification
Micro RNAs (miRNAs)
5.1.4. Signal Pathways Involved in Cardiac Hypertrophy
5.2. Non-Molecular Disease Modifiers
5.2.1. Changes in Loading Conditions
5.2.2. Exercise
5.2.3. Hypertension
5.2.4. Obesity
5.2.5. Obstructive Sleep Apnea
5.2.6. Sex
5.2.7. Environmental Factors
6. Scientific Advancements
7. Challenges and Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geske, J.B.; Ommen, S.R.; Gersh, B.J. Hypertrophic cardiomyopathy: Clinical update. JACC Heart Fail. 2018, 6, 364–375. [Google Scholar] [CrossRef]
- Zegkos, T.; Tziomalos, G.; Parcharidou, D.; Ntelios, D.; Papanastasiou, C.A.; Karagiannidis, E.; Gossios, T.; Rouskas, P.; Katranas, S.; Paraskevaidis, S.; et al. Validation of the new American College of Cardiology/American Heart Association Guidelines for the risk stratification of sudden cardiac death in a large Mediterranean cohort with Hypertrophic Cardiomyopathy. Hell. J. Cardiol. 2022, 63, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Sabater-Molina, M.; Pérez-Sánchez, I.; Hernández del Rincón, J.P.; Gimeno, J.R. Genetics of hypertrophic cardiomyopathy: A review of current state. Clin. Genet. 2018, 93, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Medical Masterclass contributors; Firth, J. Cardiology: Hypertrophic cardiomyopathy. Clin. Med. 2019, 19, 61–63. [Google Scholar]
- Cao, Y.; Zhang, P.Y. Review of recent advances in the management of hypertrophic cardiomyopathy. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 5207–5210. [Google Scholar]
- Antunes, M.O.; Scudeler, T.L. Hypertrophic cardiomyopathy. Int. J. Cardiol. Heart Vasc. 2020, 27, 100503. [Google Scholar] [CrossRef]
- Van der Velden, J.; Stienen, G.J.M. Cardiac disorders and pathophysiology of sarcomeric proteins. Physiol. Rev. 2019, 99, 381–426. [Google Scholar] [CrossRef]
- Borsari, W.; Davis, L.; Meiers, E.; Salberg, L.; McDonough, B. Living with hypertrophic cardiomyopathy: A patient’s perspective. Future Cardiol. 2022, 18, 43–50. [Google Scholar] [CrossRef]
- Maron, B.J.; Desai, M.Y.; Nishimura, R.A.; Spirito, P.; Rakowski, H.; Towbin, J.A.; Dearani, J.A.; Rowin, E.J.; Maron, M.S.; Sherrid, M.V. Management of hypertrophic cardiomyopathy: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2022, 79, 390–414. [Google Scholar] [CrossRef]
- Bonaventura, J.; Polakova, E.; Vejtasova, V.; Veselka, J. Genetic testing in patients with hypertrophic cardiomyopathy. Int. J. Mol. Sci. 2021, 22, 10401. [Google Scholar] [CrossRef]
- Semsarian, C.; Ingles, J.; Maron, M.S.; Maron, B.J. New perspectives on the prevalence of hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2015, 65, 1249–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prondzynski, M.; Mearini, G.; Carrier, L. Gene therapy strategies in the treatment of hypertrophic cardiomyopathy. Pflug. Arch. 2019, 471, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Wolf, C.M. Hypertrophic cardiomyopathy: Genetics and clinical perspectives. Cardiovasc. Diagn. Ther. 2019, 9, S388–S415. [Google Scholar] [CrossRef] [PubMed]
- Younger, J.; Lo, A.; McCormack, L.; McGaughran, J.; Prasad, S.; Atherton, J.J. Hypertrophic cardiomyopathy: Challenging the status quo? Heart Lung Circ. 2020, 29, 556–565. [Google Scholar] [CrossRef] [Green Version]
- Maron, B.J.; Rowin, E.J.; Maron, M.S. Global burden of hypertrophic cardiomyopathy. JACC Heart Fail. 2018, 6, 376–378. [Google Scholar] [CrossRef]
- Marian, A.J.; Braunwald, E. Hypertrophic cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ. Res. 2017, 121, 749–770. [Google Scholar] [CrossRef]
- Jordà, P.; Oudit, G.Y.; Tadros, R. Unraveling the genetic substrate and phenotypic variability of hypertrophic cardiomyopathy: A role for desmosome gene variants? Can. J. Cardiol. 2022, 38, 3–5. [Google Scholar] [CrossRef]
- Pai, S.L.; Chadha, R.M.; Logvinov, I.I.; Brigham, T.J.; Watt, K.D.; Li, Z.; Palmer, W.C.; Blackshear, J.L.; Aniskevich, S. Preoperative echocardiography as a prognostic tool for liver transplant in patients with hypertrophic cardiomyopathy. Clin. Transplant. 2022, 36, e14538. [Google Scholar] [CrossRef]
- Elliott, P.M.; Anastasakis, A.; Borger, M.A.; Borggrefe, M.; Cecchi, F.; Charron, P.; Hagege, A.A.; Lafont, A.; Limongelli, G.; Authors/Task Force members; et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2733–2779. [Google Scholar]
- Aguiar Rosa, S.; Rocha Lopes, L.; Fiarresga, A.; Ferreira, R.C.; Mota Carmo, M. Coronary microvascular dysfunction in hypertrophic cardiomyopathy: Pathophysiology, assessment, and clinical impact. Microcirculation 2021, 28, e12656. [Google Scholar] [CrossRef]
- Zampieri, M.; Salvi, S.; Fumagalli, C.; Argirò, A.; Zocchi, C.; Del Franco, A.; Iannaccone, G.; Giovani, S.; Ferrantini, C.; Palinkas, E.D.; et al. Clinical scenarios of hypertrophic cardiomyopathy-related mortality: Relevance of age and stage of disease at presentation. Int. J. Cardiol. 2023, 374, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T. Hypertrophic cardiomyopathy: Diverse pathophysiology revealed by genetic research, toward future therapy. Keio J. Med. 2020, 69, 77–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weissler-Snir, A.; Allan, K.; Cunningham, K.; Connelly, K.A.; Lee, D.S.; Spears, D.A.; Rakowski, H.; Dorian, P. Hypertrophic cardiomyopathy–related sudden cardiac death in young people in Ontario. Circulation 2019, 140, 1706–1716. [Google Scholar] [CrossRef]
- O’Hara, R.P.; Binka, E.; Prakosa, A.; Zimmerman, S.L.; Cartoski, M.J.; Abraham, M.R.; Lu, D.Y.; Boyle, P.M.; Trayanova, N.A. Personalized computational heart models with T1-mapped fibrotic remodeling predict sudden death risk in patients with hypertrophic cardiomyopathy. eLife 2022, 11, e73325. [Google Scholar] [CrossRef]
- Ueda, Y.; Stern, J.A. A one health approach to hypertrophic cardiomyopathy. Yale J. Biol. Med. 2017, 90, 433–448. [Google Scholar]
- Squire, J. Special issue: The actin-myosin interaction in muscle: Background and overview. Int. J. Mol. Sci. 2019, 20, 5715. [Google Scholar] [CrossRef] [Green Version]
- Bassiouni, W.; Ali, M.A.M.; Schulz, R. Multifunctional intracellular matrix metalloproteinases: Implications in disease. FEBS J. 2021, 288, 7162–7182. [Google Scholar] [CrossRef] [PubMed]
- Henderson, C.A.; Gomez, C.G.; Novak, S.M.; Mi-Mi, L.; Gregorio, C.C. Overview of the muscle cytoskeleton. Compr. Physiol. 2017, 7, 891–944. [Google Scholar]
- Cimiotti, D.; Budde, H.; Hassoun, R.; Jaquet, K. Genetic restrictive cardiomyopathy: Causes and consequences—An integrative approach. Int. J. Mol. Sci. 2021, 22, 558. [Google Scholar] [CrossRef]
- Martin, T.G.; Kirk, J.A. Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J. Mol. Cell. Cardiol. 2020, 148, 89–102. [Google Scholar] [CrossRef]
- Teekakirikul, P.; Zhu, W.; Huang, H.C.; Fung, E. Hypertrophic cardiomyopathy: An overview of genetics and management. Biomolecules 2019, 9, 878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, M.; Furtado, M.; Martins, S.; Carvalho, T.; Carmo-Fonseca, M. RNA splicing defects in hypertrophic cardiomyopathy: Implications for diagnosis and therapy. Int. J. Mol. Sci. 2020, 21, 1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, T.; Filipovska, A.; Hool, L.; Viola, H. Preventative therapeutic approaches for hypertrophic cardiomyopathy. J. Physiol. 2021, 599, 3495–3512. [Google Scholar] [CrossRef]
- Akhtar, M.; Elliott, P. The genetics of hypertrophic cardiomyopathy. Glob. Cardiol. Sci. Pract. 2018, 2018, 36. [Google Scholar] [PubMed] [Green Version]
- Wijnker, P.J.M.; Sequeira, V.; Kuster, D.W.D.; Velden, J.V. Hypertrophic cardiomyopathy: A vicious cycle triggered by sarcomere mutations and secondary disease hits. Antioxid. Redox Signal. 2019, 31, 318–358. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, C.; Luo, J.; Liang, J. Dysfunctional network and mutation genes of hypertrophic cardiomyopathy. J. Healthc. Eng. 2022, 2022, 8680178. [Google Scholar] [CrossRef]
- Butt, A.K.; Alkhatib, D.; Pour-Ghaz, I.; Isa, S.; Al-Taweel, O.; Ugonabo, I.; Yedlapati, N.; Jefferies, J.L. Hypertrophic Cardiomyopathy. J. Cardiovasc. Dev. Dis. 2023, 10, 106. [Google Scholar] [CrossRef]
- Hong, Y.; Su, W.W.; Li, X. Risk factors of sudden cardiac death in hypertrophic cardiomyopathy. Curr. Opin. Cardiol. 2022, 37, 15–21. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, X.; Wu, G.; Wang, D.; Wang, L.; Zhang, C.; Zou, Y.; Wang, J.; Song, L. Effect of cis-compound variants in MYH7 on hypertrophic cardiomyopathy with a mild phenotype. Am. J. Cardiol. 2022, 167, 104–110. [Google Scholar] [CrossRef]
- Wu, G.; Liu, J.; Ruan, J.; Yu, S.; Wang, L.; Zhao, S.; Wang, S.; Kang, L.; Wang, J.; Song, L. Deleterious rare desmosomal variants contribute to hypertrophic cardiomyopathy and are associated with distinctive clinical features. Can. J. Cardiol. 2022, 38, 41–48. [Google Scholar] [CrossRef]
- Tower-Rader, A.; Desai, M.Y. Phenotype–genotype correlation in hypertrophic cardiomyopathy: Less signal, more noise? Circ. Cardiovasc. Imaging 2017, 10, e006066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yotti, R.; Seidman, C.E.; Seidman, J.G. Advances in the genetic basis and pathogenesis of sarcomere cardiomyopathies. Annu. Rev. Genom. Hum. Genet. 2019, 20, 129–153. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Nabavizadeh, P.; Song, T.; Desai, D.; Singh, R.; Bazrafshan, S.; Kumar, M.; Wang, Y.; Gilbert, R.J.; Dhandapany, P.S.; et al. Genetic, clinical, molecular, and pathogenic aspects of the South Asian–specific polymorphic MYBPC3 Δ25bp variant. Biophys. Rev. 2020, 12, 1065–1084. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, Y.; Jin, J.; Du, R.; Tang, K.; Fan, L.; Xiang, R. CSRP3, p.Arg122*, is responsible for hypertrophic cardiomyopathy in a Chinese family. J. Gene Med. 2022, 24, e3390. [Google Scholar] [CrossRef]
- Chung, H.; Kim, Y.; Park, C.H.; Kim, I.S.; Kim, J.Y.; Min, P.K.; Yoon, Y.W.; Kim, T.H.; Lee, B.K.; Hong, B.K.; et al. Contribution of sarcomere gene mutations to left atrial function in patients with hypertrophic cardiomyopathy. Cardiovasc. Ultrasound 2021, 19, 4. [Google Scholar] [CrossRef]
- Walsh, R.; Buchan, R.; Wilk, A.; John, S.; Felkin, L.E.; Thomson, K.L.; Chiaw, T.H.; Loong, C.C.W.; Pua, C.J.; Raphael, C.; et al. Defining the genetic architecture of hypertrophic cardiomyopathy: Re-evaluating the role of non-sarcomeric genes. Eur. Heart J. 2017, 38, 3461–3468. [Google Scholar] [CrossRef]
- Borrelli, F.; Losi, M.A.; Canciello, G.; Todde, G.; Perillo, E.F.; Ordine, L.; Frisso, G.; Esposito, G.; Lombardi, R. Sarcomeric versus non-sarcomeric HCM. Cardiogenetics 2023, 13, 92–105. [Google Scholar] [CrossRef]
- Lipari, M.; Wypasek, E.; Karpiński, M.; Tomkiewicz-Pajak, L.; Laino, L.; Binni, F.; Giannarelli, D.; Rubiś, P.; Petkow-Dimitrow, P.; Undas, A.; et al. Identification of a variant hotspot in MYBPC3 and of a novel CSRP3 autosomal recessive alteration in a cohort of Polish patients with hypertrophic cardiomyopathy. Pol. Arch. Intern. Med. 2020, 130, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Janin, A.; Bessière, F.; Chauveau, S.; Chevalier, P.; Millat, G. First identification of homozygous truncating CSRP3 variants in two unrelated cases with hypertrophic cardiomyopathy. Gene 2018, 676, 110–116. [Google Scholar] [CrossRef]
- Gallego-Delgado, M.; Gonzalez-Lopez, E.; Garcia-Guereta, L.; Ortega-Molina, M.; Gonzalez-Vioque, E.; Cobo-Marcos, M.; Alonso-Pulpon, L.; Garcia-Pavia, P. Adverse clinical course and poor prognosis of hypertrophic cardiomyopathy due to mutations in FHL1. Int. J. Cardiol. 2015, 191, 194–197. [Google Scholar] [CrossRef]
- Friedrich, F.W.; Wilding, B.R.; Reischmann, S.; Crocini, C.; Lang, P.; Charron, P.; Müller, O.J.; McGrath, M.J.; Vollert, I.; Hansen, A.; et al. Evidence for FHL1 as a novel disease gene for isolated hypertrophic cardiomyopathy. Hum. Mol. Genet. 2012, 21, 3237–3254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, H.; Wang, J.; Zhang, C.; Wu, G.; Zhu, C.; Tang, B.; Zou, Y.; Huang, X.; Hui, R.; Song, L.; et al. Mutation profile of FLNC gene and its prognostic relevance in patients with hypertrophic cardiomyopathy. Mol. Genet. Genom. Med. 2018, 6, 1104–1113. [Google Scholar] [CrossRef] [Green Version]
- Gómez, J.; Lorca, R.; Reguero, J.R.; Morís, C.; Martín, M.; Tranche, S.; Alonso, B.; Iglesias, S.; Alvarez, V.; Díaz-Molina, B.; et al. Screening of the Filamin C Gene in a large cohort of hypertrophic cardiomyopathy patients. Circ. Cardiovasc. Genet. 2017, 10, e001584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdonschot, J.A.J.; Vanhoutte, E.K.; Claes, G.R.F.; Helderman-van den Enden, A.T.J.M.; Hoeijmakers, J.G.J.; Hellebrekers, D.M.E.I.; de Haan, A.; Christiaans, I.; Lekanne Deprez, R.H.; Boen, H.M.; et al. A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum. Mutat. 2020, 41, 1091–1111. [Google Scholar] [CrossRef] [Green Version]
- Vanninen, S.U.M.; Leivo, K.; Seppälä, E.H.; Aalto-Setälä, K.; Pitkänen, O.; Suursalmi, P.; Annala, A.P.; Anttila, I.; Alastalo, T.P.; Myllykangas, S.; et al. Heterozygous junctophilin-2 (JPH2) p.(Thr161Lys) is a monogenic cause for HCM with heart failure. PLoS ONE 2018, 13, e0203422. [Google Scholar] [CrossRef] [PubMed]
- Parisi, V.; Chiti, C.; Graziosi, M.; Pasquale, F.; Ditaranto, R.; Minnucci, M.; Biffi, M.; Potena, L.; Girolami, F.; Baldovini, C.; et al. Phospholamban cardiomyopathy: Unveiling a distinct phenotype through heart failure stages progression. Circ. Cardiovasc. Imaging 2022, 15, e014232. [Google Scholar] [CrossRef] [PubMed]
- Medin, M.; Hermida-Prieto, M.; Monserrat, L.; Laredo, R.; Rodriguez-Rey, J.C.; Fernandez, X.; Castro-Beiras, A. Mutational screening of phospholamban gene in hypertrophic and idiopathic dilated cardiomyopathy and functional study of the PLN-42 C > G mutation. Eur. J. Heart Fail. 2007, 9, 37–43. [Google Scholar] [CrossRef]
- Salazar-Mendiguchía, J.; Ochoa, J.P.; Palomino-Doza, J.; Domínguez, F.; Díez-López, C.; Akhtar, M.; Ramiro-León, S.; Clemente, M.M.; Pérez-Cejas, A.; Robledo, M.; et al. Mutations in TRIM63 cause an autosomal-recessive form of hypertrophic cardiomyopathy. Heart 2020, 106, 1342–1348. [Google Scholar] [CrossRef]
- Chen, S.N.; Czernuszewicz, G.; Tan, Y.; Lombardi, R.; Jin, J.; Willerson, J.T.; Marian, A.J. Human molecular genetic and functional studies identify TRIM63, encoding Muscle RING Finger Protein 1, as a novel gene for human hypertrophic cardiomyopathy. Circ. Res. 2012, 111, 907–919. [Google Scholar] [CrossRef]
- Alfares, A.A.; Kelly, M.A.; McDermott, G.; Funke, B.H.; Lebo, M.S.; Baxter, S.B.; Shen, J.; McLaughlin, H.M.; Clark, E.H.; Babb, L.J.; et al. Results of clinical genetic testing of 2912 probands with hypertrophic cardiomyopathy: Expanded panels offer limited additional sensitivity. Genet. Med. 2015, 17, 880–888. [Google Scholar] [CrossRef] [Green Version]
- Alders, M.; Jongbloed, R.; Deelen, W.; van den Wijngaard, A.; Doevendans, P.; Ten Cate, F.; Regitz-Zagrosek, V.; Vosberg, H.P.; van Langen, I.; Wilde, A.; et al. The 2373insG mutation in the MYBPC3 gene is a founder mutation, which accounts for nearly one-fourth of the HCM cases in the Netherlands. Eur. Heart J. 2003, 24, 1848–1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jääskeläinen, P.; Kuusisto, J.; Miettinen, R.; Kärkkäinen, P.; Kärkkäinen, S.; Heikkinen, S.; Peltola, P.; Pihlajamäki, J.; Vauhkonen, I.; Laakso, M. Mutations in the cardiac myosin-binding protein C gene are the predominant cause of familial hypertrophic cardiomyopathy in eastern Finland. J. Mol. Med. 2002, 80, 412–422. [Google Scholar] [CrossRef]
- Adalsteinsdottir, B.; Teekakirikul, P.; Maron, B.J.; Burke, M.A.; Gudbjartsson, D.F.; Holm, H.; Stefansson, K.; DePalma, S.R.; Mazaika, E.; McDonough, B.; et al. Nationwide study on hypertrophic cardiomyopathy in iceland evidence of a MYBPC3 founder mutation. Circulation 2014, 130, 1158–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, T.; Kitaoka, H.; Okawa, M.; Matsumura, Y.; Hitomi, N.; Yamasaki, N.; Furuno, T.; Takata, J.; Nishinaga, M.; Kimura, A.; et al. Lifelong left ventricular remodeling of hypertrophic cardiomyopathy caused by a founder frameshift deletion mutation in the cardiac Myosin-binding protein C gene among Japanese. J. Am. Coll. Cardiol. 2005, 46, 1737–1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhandapany, P.S.; Sadayappan, S.; Xue, Y.; Powell, G.T.; Rani, D.S.; Nallari, P.; Rai, T.S.; Khullar, M.; Soares, P.; Bahl, A.; et al. A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia. Nat. Genet. 2009, 41, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.; Chin, M.T. Pathogenic mechanisms of hypertrophic cardiomyopathy beyond sarcomere dysfunction. Int. J. Mol. Sci. 2021, 22, 8933. [Google Scholar] [CrossRef]
- Sedaghat-Hamedani, F.; Kayvanpour, E.; Tugrul, O.F.; Lai, A.; Amr, A.; Haas, J.; Proctor, T.; Ehlermann, P.; Jensen, K.; Katus, H.A.; et al. Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: A meta-analysis on 7675 individuals. Clin. Res. Cardiol. 2018, 107, 30–41. [Google Scholar] [CrossRef]
- Ogino, S.; Gulley, M.L.; den Dunnen, J.T.; Wilson, R.B.; Association for Molecular Pathology Training and Education Committtee. Standard mutation nomenclature in molecular diagnostics: Practical and educational challenges. J. Mol. Diagn. 2007, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Coppini, R.; Santini, L.; Olivotto, I.; Ackerman, M.J.; Cerbai, E. Abnormalities in sodium current and calcium homoeostasis as drivers of arrhythmogenesis in hypertrophic cardiomyopathy. Cardiovasc. Res. 2020, 116, 1585–1599. [Google Scholar] [CrossRef]
- Glazier, A.A.; Thompson, A.; Day, S.M. Allelic imbalance and haploinsufficiency in MYBPC3-linked hypertrophic cardiomyopathy. Pflug. Arch. 2019, 471, 781–793. [Google Scholar] [CrossRef]
- Carrier, L. Targeting the population for gene therapy with MYBPC3. J. Mol. Cell. Cardiol. 2021, 150, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Spudich, J.A. Three perspectives on the molecular basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Pflug. Arch. 2019, 471, 701–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veselka, J.; Anavekar, N.S.; Charron, P. Hypertrophic obstructive cardiomyopathy. Lancet 2017, 389, 1194. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Desai, M.Y.; Nishimura, R.A.; Spirito, P.; Rakowski, H.; Towbin, J.A.; Dearani, J.A.; Rowin, E.J.; Maron, M.S.; Sherrid, M.V. Diagnosis and evaluation of hypertrophic cardiomyopathy: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2022, 79, 372–389. [Google Scholar] [CrossRef]
- Mazzarotto, F.; Olivotto, I.; Boschi, B.; Girolami, F.; Poggesi, C.; Barton, P.J.R.; Walsh, R. Contemporary insights into the genetics of hypertrophic cardiomyopathy: Toward a new era in clinical testing? J. Am. Heart Assoc. 2020, 9, e015473. [Google Scholar] [CrossRef]
- Repetti, G.G.; Kim, Y.; Pereira, A.C.; Ingles, J.; Russell, M.W.; Lakdawala, N.K.; Ho, C.Y.; Day, S.; Semsarian, C.; McDonough, B.; et al. Discordant clinical features of identical hypertrophic cardiomyopathy twins. Proc. Natl. Acad. Sci. USA 2021, 118, e2021717118. [Google Scholar] [CrossRef]
- Farrell, E.T.; Grimes, A.C.; de Lange, W.J.; Armstrong, A.E.; Ralphe, J.C. Increased postnatal cardiac hyperplasia precedes cardiomyocyte hypertrophy in a model of hypertrophic cardiomyopathy. Front. Physiol. 2017, 8, 414. [Google Scholar] [CrossRef] [Green Version]
- Ramachandra, C.J.A.; Mai Ja, K.P.M.; Lin, Y.H.; Shim, W.; Boisvert, W.A.; Hausenloy, D.J. Induced pluripotent stem cells for modelling energetic alterations in hypertrophic cardiomyopathy. Cond. Med. 2019, 2, 142–151. [Google Scholar]
- Glavaški, M.; Velicki, L. Shared molecular mechanisms of hypertrophic cardiomyopathy and its clinical presentations: Automated molecular mechanisms extraction approach. Life 2021, 11, 785. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Xu, Y.Y.; Qin, Z.; Lu, Y.Z.; Liu, T.D.; Zhang, L.; Shangguan, J.H.; Wang, W.; Tang, J.N.; Zhang, J.Y. N-terminal pro-brain natriuretic peptide and adverse outcomes in Chinese patients with hypertrophic cardiomyopathy. Biosci. Rep. 2022, 42, BSR20212098. [Google Scholar] [CrossRef]
- MacIver, D.H.; Clark, A.L. Contractile dysfunction in sarcomeric hypertrophic cardiomyopathy. J. Card. Fail. 2016, 22, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Sukhacheva, T.V.; Chudinovskikh, Y.A.; Eremeeva, M.V.; Serov, R.A.; Bockeria, L.A. Proliferative potential of cardiomyocytes in hypertrophic cardiomyopathy: Correlation with myocardial remodeling. Bull. Exp. Biol. Med. 2016, 162, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Fernlund, E.; Gyllenhammar, T.; Jablonowski, R.; Carlsson, M.; Larsson, A.; Ärnlöv, J.; Liuba, P. Serum biomarkers of myocardial remodeling and coronary dysfunction in early stages of hypertrophic cardiomyopathy in the young. Pediatr. Cardiol. 2017, 38, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Ramachandra, C.J.A.; Kp, M.M.J.; Chua, J.; Hernandez-Resendiz, S.; Liehn, E.A.; Gan, L.M.; Michaëlsson, E.; Jonsson, M.K.B.; Ryden-Markinhuhta, K.; Bhat, R.V.; et al. Inhibiting cardiac myeloperoxidase alleviates the relaxation defect in hypertrophic cardiomyocytes. Cardiovasc. Res. 2022, 118, 517–530. [Google Scholar] [CrossRef]
- Coppini, R.; Ferrantini, C.; Mugelli, A.; Poggesi, C.; Cerbai, E. Altered Ca2+ and Na+ homeostasis in human hypertrophic cardiomyopathy: Implications for arrhythmogenesis. Front. Physiol. 2018, 9, 1391. [Google Scholar] [CrossRef]
- Volpe, M.; Liuzzo, G. VANISHing the progression of cardiac abnormalities in hypertrophic cardiomyopathy with early use of valsartan? Eur. Heart J. 2022, 43, 181–182. [Google Scholar] [CrossRef]
- Yin, L.; Xu, H.Y.; Zheng, S.S.; Zhu, Y.; Xiao, J.X.; Zhou, W.; Yu, S.S.; Gong, L.G. 3.0 T magnetic resonance myocardial perfusion imaging for semi-quantitative evaluation of coronary microvascular dysfunction in hypertrophic cardiomyopathy. Int. J. Cardiovasc. Imaging 2017, 33, 1949–1959. [Google Scholar] [CrossRef]
- Bakar, S.N.; Hayman, S.; McCarty, D.; Thain, A.P.; McLellan, A.; Wagner, C.; Lavi, S. Invasive assessment of microvascular resistance in hypertrophic cardiomyopathy with echocardiographic correlates. Heart Lung Circ. 2022, 31, 194–198. [Google Scholar] [CrossRef]
- Raphael, C.E.; Cooper, R.; Parker, K.H.; Collinson, J.; Vassiliou, V.; Pennell, D.J.; de Silva, R.; Hsu, L.Y.; Greve, A.M.; Nijjer, S.; et al. Mechanisms of myocardial ischemia in hypertrophic cardiomyopathy: Insights from wave intensity analysis and magnetic resonance. J. Am. Coll. Cardiol. 2016, 68, 1651–1660. [Google Scholar] [CrossRef] [Green Version]
- Ariss, R.W.; Khan Minhas, A.M.; Nazir, S.; Patel, M.M.; Nesheiwat, Z.; Mhanna, M.; Kayani, W.T.; Moukarbel, G.V.; Nasir, K.; Jneid, H. Outcomes and revascularization strategies of ST-elevation myocardial infarction in patients with hypertrophic cardiomyopathy. Curr. Probl. Cardiol. 2022, 47, 101102. [Google Scholar] [CrossRef]
- Argirò, A.; Zampieri, M.; Berteotti, M.; Marchi, A.; Tassetti, L.; Zocchi, C.; Iannone, L.; Bacchi, B.; Cappelli, F.; Stefàno, P.; et al. Emerging medical treatment for hypertrophic cardiomyopathy. J. Clin. Med. 2021, 10, 951. [Google Scholar] [CrossRef] [PubMed]
- Toepfer, C.N.; Wakimoto, H.; Garfinkel, A.C.; McDonough, B.; Liao, D.; Jiang, J.; Tai, A.C.; Gorham, J.M.; Lunde, I.G.; Lun, M.; et al. Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. Sci. Transl. Med. 2019, 11, eaat1199. [Google Scholar] [CrossRef] [PubMed]
- Autore, C.; Ferrazzi, P. Patients with hypertrophic cardiomyopathy are getting older. Int. J. Cardiol. 2022, 353, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Cordts, K.; Seelig, D.; Lund, N.; Carrier, L.; Böger, R.H.; Avanesov, M.; Tahir, E.; Schwedhelm, E.; Patten, M. Association of asymmetric dimethylarginine and diastolic dysfunction in patients with hypertrophic cardiomyopathy. Biomolecules 2019, 9, 277. [Google Scholar] [CrossRef] [Green Version]
- Velicki, L.; Jakovljevic, D.G.; Preveden, A.; Golubovic, M.; Bjelobrk, M.; Ilic, A.; Stojsic, S.; Barlocco, F.; Tafelmeier, M.; Okwose, N.; et al. Genetic determinants of clinical phenotype in hypertrophic cardiomyopathy. BMC Cardiovasc. Disord. 2020, 20, 516. [Google Scholar] [CrossRef]
- Ashkir, Z.; Johnson, S.; Lewandowski, A.J.; Hess, A.; Wicks, E.; Mahmod, M.; Myerson, S.; Ebbers, T.; Watkins, H.; Neubauer, S.; et al. Novel insights into diminished cardiac reserve in non-obstructive hypertrophic cardiomyopathy from four-dimensional flow cardiac magnetic resonance component analysis. Eur. Heart J. Cardiovasc. Imaging 2023, jead074. [Google Scholar] [CrossRef]
- Su, W.; Huo, Q.; Wu, H.; Wang, L.; Ding, X.; Liang, L.; Zhou, L.; Zhao, Y.; Dan, J.; Zhang, H. The function of LncRNA-H19 in cardiac hypertrophy. Cell Biosci. 2021, 11, 153. [Google Scholar] [CrossRef]
- Liang, T.; Gao, F.; Chen, J. Role of PTEN-less in cardiac injury, hypertrophy and regeneration. Cell Regen. 2021, 10, 25. [Google Scholar] [CrossRef]
- Shah, A.K.; Bhullar, S.K.; Elimban, V.; Dhalla, N.S. Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants 2021, 10, 931. [Google Scholar] [CrossRef]
- Ye, J.; Yan, S.; Liu, R.; Weng, L.; Jia, B.; Jia, S.; Xiong, Y.; Zhou, Y.; Leng, M.; Zhao, J.; et al. CMTM3 deficiency induces cardiac hypertrophy by regulating MAPK/ERK signaling. Biochem. Biophys. Res. Commun. 2023, 667, 162–169. [Google Scholar] [CrossRef]
- Matsuura, K. Toward the development of novel therapy for hypertrophic cardiomyopathy. Int. Heart J. 2018, 59, 914–916. [Google Scholar] [CrossRef]
- Schirone, L.; Forte, M.; Palmerio, S.; Yee, D.; Nocella, C.; Angelini, F.; Pagano, F.; Schiavon, S.; Bordin, A.; Carrizzo, A.; et al. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid. Med. Cell. Longev. 2017, 2017, 3920195. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.A.; Blythe, N.M. Cardiac fibroblast p38 MAPK: A critical regulator of myocardial remodeling. J. Cardiovasc. Dev. Dis. 2019, 6, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Wang, B.; Yang, Y.X.; Jia, Q.J.; Zhang, A.; Qi, Z.W.; Zhang, J.P. Long noncoding RNAs in pathological cardiac remodeling: A review of the update literature. Biomed. Res. Int. 2019, 2019, 7159592. [Google Scholar] [CrossRef] [PubMed]
- Carbone, A.; D’Andrea, A.; Sperlongano, S.; Tagliamonte, E.; Mandoli, G.E.; Santoro, C.; Evola, V.; Bandera, F.; Morrone, D.; Malagoli, A.; et al. Echocardiographic assessment of coronary microvascular dysfunction: Basic concepts, technical aspects, and clinical settings. Echocardiography 2021, 38, 993–1001. [Google Scholar] [CrossRef]
- Mamidi, R.; Li, J.; Doh, C.Y.; Verma, S.; Stelzer, J.E. Impact of the myosin modulator mavacamten on force generation and cross-bridge behavior in a murine model of hypercontractility. J. Am. Heart Assoc. 2018, 7, e009627. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Hensley, N.; Brady, M.B.; Gao, W.D. The genetic and molecular bases for hypertrophic cardiomyopathy: The role for calcium sensitization. J. Cardiothorac. Vasc. Anesth. 2018, 32, 478–487. [Google Scholar] [CrossRef]
- Sarkar, S.S.; Trivedi, D.V.; Morck, M.M.; Adhikari, A.S.; Pasha, S.N.; Ruppel, K.M.; Spudich, J.A. The hypertrophic cardiomyopathy mutations R403Q and R663H increase the number of myosin heads available to interact with actin. Sci. Adv. 2020, 6, eaax0069. [Google Scholar] [CrossRef] [Green Version]
- Voigt, J.U. Direct stiffness measurements by echocardiography: Does the search for the holy grail come to an end? JACC Cardiovasc. Imaging 2019, 12, 1146–1148. [Google Scholar] [CrossRef]
- Münch, J.; Abdelilah-Seyfried, S. Sensing and responding of cardiomyocytes to changes of tissue stiffness in the diseased heart. Front. Cell Dev. Biol. 2021, 9, 642840. [Google Scholar] [CrossRef]
- Li, N.; Hang, W.; Shu, H.; Zhou, N. RBM20, a therapeutic target to alleviate myocardial stiffness via titin isoforms switching in HFpEF. Front. Cardiovasc. Med. 2022, 9, 928244. [Google Scholar] [CrossRef] [PubMed]
- Wijnker, P.J.M.; van der Velden, J. Mutation-specific pathology and treatment of hypertrophic cardiomyopathy in patients, mouse models and human engineered heart tissue. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165774. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, V.; Bertero, E.; Maack, C. Energetic drain driving hypertrophic cardiomyopathy. FEBS Lett. 2019, 593, 1616–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenzl, F.A.; Ambrosini, S.; Paneni, F. Molecular underpinnings of myocardial stiffness in patients with hypertrophic cardiomyopathy. Int. J. Cardiol. 2021, 343, 80–82. [Google Scholar] [CrossRef]
- Tuohy, C.V.; Kaul, S.; Song, H.K.; Nazer, B.; Heitner, S.B. Hypertrophic cardiomyopathy: The future of treatment. Eur. J. Heart Fail. 2020, 22, 228–240. [Google Scholar] [CrossRef]
- Chiang, Y.P.; Shimada, Y.J.; Ginns, J.; Weiner, S.D.; Takayama, H. Septal myectomy for hypertrophic cardiomyopathy: Important surgical knowledge and technical tips in the era of increasing alcohol septal ablation. Gen. Thorac. Cardiovasc. Surg. 2018, 66, 192–200. [Google Scholar] [CrossRef]
- Smole, T.; Žunkovič, B.; Pičulin, M.; Kokalj, E.; Robnik-Šikonja, M.; Kukar, M.; Fotiadis, D.I.; Pezoulas, V.C.; Tachos, N.S.; Barlocco, F.; et al. A machine learning-based risk stratification model for ventricular tachycardia and heart failure in hypertrophic cardiomyopathy. Comput. Biol. Med. 2021, 135, 104648. [Google Scholar] [CrossRef]
- Savariya, U.; Aponte, M.M.P.; Nathan, S.; Zhao, B.; Radovancevic, R.; de Armas, I.A.S.; Kar, B.; Gregoric, I.D.; Buja, L.M. Hypertrophic cardiomyopathy with a complex clinical course leading to heart transplantation. Cardiovasc. Pathol. 2022, 58, 107406. [Google Scholar] [CrossRef]
- Goff, Z.D.; Calkins, H. Sudden death related cardiomyopathies—Hypertrophic cardiomyopathy. Prog. Cardiovasc. Dis. 2019, 62, 212–216. [Google Scholar] [CrossRef]
- Mateo, J.J.S.; Gimeno, J.R. Alcohol septal ablation in hypertrophic cardiomyopathy. Glob. Cardiol. Sci. Pract. 2018, 2018, 30. [Google Scholar] [CrossRef] [Green Version]
- Kogut, J.; Popjes, E.D. Hypertrophic cardiomyopathy 2020. Curr. Cardiol. Rep. 2020, 22, 154. [Google Scholar] [CrossRef]
- Brieler, J.; Breeden, M.A.; Tucker, J. Cardiomyopathy: An overview. Am. Fam. Physician 2017, 96, 640–646. [Google Scholar] [PubMed]
- Vaidya, K.; Semsarian, C.; Chan, K.H. Atrial fibrillation in hypertrophic cardiomyopathy. Heart Lung Circ. 2017, 26, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Yeung, C.; Enriquez, A.; Suarez-Fuster, L.; Baranchuk, A. Atrial fibrillation in patients with inherited cardiomyopathies. Europace 2019, 21, 22–32. [Google Scholar] [CrossRef]
- Garg, L.; Gupta, M.; Sabzwari, S.R.A.; Agrawal, S.; Agarwal, M.; Nazir, T.; Gordon, J.; Bozorgnia, B.; Martinez, M.W. Atrial fibrillation in hypertrophic cardiomyopathy: Prevalence, clinical impact, and management. Heart Fail. Rev. 2019, 24, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Falasconi, G.; Pannone, L.; Slavich, M.; Margonato, A.; Fragasso, G.; Spoladore, R. Atrial fibrillation in hypertrophic cardiomyopathy: Pathophysiology, diagnosis and management. Am. J. Cardiovasc. Dis. 2020, 10, 409–418. [Google Scholar]
- Patten, M.; Pecha, S.; Aydin, A. Atrial fibrillation in hypertrophic cardiomyopathy: Diagnosis and considerations for management. J. Atr. Fibrillation 2018, 10, 1556. [Google Scholar]
- Weissler-Snir, A.; Adler, A.; Williams, L.; Gruner, C.; Rakowski, H. Prevention of sudden death in hypertrophic cardiomyopathy: Bridging the gaps in knowledge. Eur. Heart J. 2017, 38, 1728–1737. [Google Scholar] [CrossRef] [Green Version]
- Hindieh, W.; Adler, A.; Weissler-Snir, A.; Fourey, D.; Harris, S.; Rakowski, H. Exercise in patients with hypertrophic cardiomyopathy: A review of current evidence, national guideline recommendations and a proposal for a new direction to fitness. J. Sci. Med. Sport. 2017, 20, 333–338. [Google Scholar] [CrossRef]
- Marrakchi, S.; Kammoun, I.; Bennour, E.; Laroussi, L.; Kachboura, S. Risk stratification in hypertrophic cardiomyopathy. Herz 2020, 45, 50–64. [Google Scholar] [CrossRef]
- Jordà, P.; García-Álvarez, A. Hypertrophic cardiomyopathy: Sudden cardiac death risk stratification in adults. Glob. Cardiol. Sci. Pract. 2018, 2018, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.M.; Park, H.B.; Song, J.E.; Kim, I.C.; Song, J.H.; Kim, H.; Oh, J.; Youn, J.C.; Hong, G.R.; Kang, S.M. The impact of cardiopulmonary exercise-derived scoring on prediction of cardio-cerebral outcome in hypertrophic cardiomyopathy. PLoS ONE 2022, 17, e0259638. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Wang, Y.L.; Liu, F.Y.; Yang, Y.; Xia, L.M.; Ding, W.J.; Lai, H.; Wang, C. Hypertrophic cardiomyopathy with latent obstruction: Clinical characteristics and surgical results. J. Cardiol. 2022, 79, 42–49. [Google Scholar] [CrossRef]
- Butters, A.; Lakdawala, N.K.; Ingles, J. Sex differences in hypertrophic cardiomyopathy: Interaction with genetics and environment. Curr. Heart Fail. Rep. 2021, 18, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Norrish, G.; Field, E.; Kaski, J.P. Childhood hypertrophic cardiomyopathy: A disease of the cardiac sarcomere. Front. Pediatr. 2021, 9, 708679. [Google Scholar] [CrossRef]
- Kitaoka, H.; Kubo, T.; Doi, Y.L. Hypertrophic cardiomyopathy ― A heterogeneous and lifelong disease in the real world. Circ. J. 2020, 84, 1218–1226. [Google Scholar] [CrossRef]
- Popa-Fotea, N.M.; Micheu, M.M.; Bataila, V.; Scafa-Udriste, A.; Dorobantu, L.; Scarlatescu, A.I.; Zamfir, D.; Stoian, M.; Onciul, S.; Dorobantu, M. Exploring the continuum of hypertrophic cardiomyopathy—From DNA to clinical expression. Medicina 2019, 55, 299. [Google Scholar] [CrossRef] [Green Version]
- Serra, W.; Vitetta, G.; Uliana, V.; Barocelli, F.; Barili, V.; Allegri, I.; Ardissino, D.; Gualandi, F.; Percesepe, A. Severe hypertrophic cardiomyopathy in a patient with a homozygous MYH7 gene variant. Heliyon 2022, 8, e12373. [Google Scholar] [CrossRef]
- Musumeci, B.; Tini, G.; Russo, D.; Sclafani, M.; Cava, F.; Tropea, A.; Adduci, C.; Palano, F.; Francia, P.; Autore, C. Left ventricular remodeling in hypertrophic cardiomyopathy: An overview of current knowledge. J. Clin. Med. 2021, 10, 1547. [Google Scholar] [CrossRef]
- Marian, A.J. Modifier genes for hypertrophic cardiomyopathy. Curr. Opin. Cardiol. 2002, 17, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Orenes-Piñero, E.; Hernández-Romero, D.; Jover, E.; Valdés, M.; Lip, G.Y.; Marín, F. Impact of polymorphisms in the renin-angiotensin-aldosterone system on hypertrophic cardiomyopathy. J. Renin Angiotensin Aldosterone Syst. 2011, 12, 521–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradeep, R.; Akram, A.; Proute, M.C.; Kothur, N.R.; Georgiou, P.; Serhiyenia, T.; Shi, W.; Kerolos, M.E.; Mostafa, J.A. Understanding the genetic and molecular basis of familial hypertrophic cardiomyopathy and the current trends in gene therapy for its management. Cureus 2021, 13, e17548. [Google Scholar] [CrossRef] [PubMed]
- Glavaški, M.; Stankov, K. Epigenetics in disease etiopathogenesis. Genetika 2019, 51, 975–994. [Google Scholar] [CrossRef] [Green Version]
- Dias, K.A.; Link, M.S.; Levine, B.D. Exercise training for patients with hypertrophic cardiomyopathy: JACC review topic of the week. J. Am. Coll. Cardiol. 2018, 72, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Nollet, E.E.; Westenbrink, B.D.; de Boer, R.A.; Kuster, D.W.D.; van der Velden, J. Unraveling the genotype-phenotype relationship in hypertrophic cardiomyopathy: Obesity-related cardiac defects as a major disease modifier. J. Am. Heart Assoc. 2020, 9, e018641. [Google Scholar] [CrossRef]
- Ren, J.; Wu, N.N.; Wang, S.; Sowers, J.R.; Zhang, Y. Obesity cardiomyopathy: Evidence, mechanisms, and therapeutic implications. Physiol. Rev. 2021, 101, 1745–1807. [Google Scholar] [CrossRef]
- Sun, D.; Schaff, H.V.; McKenzie, T.J.; Nishimura, R.A.; Geske, J.B.; Dearani, J.A.; Ommen, S.R. Safety of bariatric surgery in obese patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 2022, 167, 93–97. [Google Scholar] [CrossRef]
- Jansweijer, J.A.; van Spaendonck-Zwarts, K.Y.; Tanck, M.W.T.; van Tintelen, J.P.; Christiaans, I.; van der Smagt, J.; Vermeer, A.M.C.; Bos, J.M.; Moss, A.J.; Swan, H.; et al. Heritability in genetic heart disease: The role of genetic background. Open Heart 2019, 6, 929. [Google Scholar] [CrossRef]
- Maron, B.J.; Rowin, E.J.; Arkun, K.; Rastegar, H.; Larson, A.M.; Maron, M.S.; Chin, M.T. Adult monozygotic twins with hypertrophic cardiomyopathy and identical disease expression and clinical course. Am. J. Cardiol. 2020, 127, 135–138. [Google Scholar] [CrossRef]
- Cashman, T.J.; Josowitz, R.; Johnson, B.V.; Gelb, B.D.; Costa, K.D. Human engineered cardiac tissues created using induced pluripotent stem cells reveal functional characteristics of BRAF-mediated hypertrophic cardiomyopathy. PLoS ONE 2016, 11, e0146697. [Google Scholar] [CrossRef]
- Mosqueira, D.; Mannhardt, I.; Bhagwan, J.R.; Lis-Slimak, K.; Katili, P.; Scott, E.; Hassan, M.; Prondzynski, M.; Harmer, S.C.; Tinker, A.; et al. CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur. Heart J. 2018, 39, 3879–3892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, S.; Yuan, C.C.; Kazmierczak, K.; Liang, J.; Huang, W.; Takeuchi, L.M.; Kanashiro-Takeuchi, R.M.; Szczesna-Cordary, D. Therapeutic potential of AAV9-S15D-RLC gene delivery in humanized MYL2 mouse model of HCM. J. Mol. Med. 2019, 97, 1033–1047. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.; Lim, K.R.Q.; Yokota, T. Genome editing for the understanding and treatment of inherited cardiomyopathies. Int. J. Mol. Sci. 2020, 21, 733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Function of the Encoded Protein | Mode of Inheritance | References |
---|---|---|---|
CSRP3 | Regulation of myogenesis; maintenance of myocyte cytoskeleton; mechano-signaling and transduction | AD and AR | [48,49] |
FHL1 | Biomechanical sensing; regulation of sarcomere stiffness, hypertrophy, ion channels | X-linked | [50,51] |
FLNC | Crosslinking of actin filaments and interaction with Z-disc and sarcolemma | AD | [52,53,54] |
JPH2 | Coupling of transverse-tubule-associated L-type Ca2+ channels with RYR2 | AD | [55] |
PLN | Regulation of sarco/endoplasmic reticulum Ca2+ ATPase activity | AD and AR | [56,57] |
TRIM63 | Regulation of sarcomeric protein degradation | AD and AR | [58,59] |
Mutation in Gene | Frequency | Impact on Clinical Outcomes |
---|---|---|
MYH7 | 14% |
|
MYBPC3 | 20% |
|
TNNT2 | 2% |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glavaški, M.; Velicki, L.; Vučinić, N. Hypertrophic Cardiomyopathy: Genetic Foundations, Outcomes, Interconnections, and Their Modifiers. Medicina 2023, 59, 1424. https://doi.org/10.3390/medicina59081424
Glavaški M, Velicki L, Vučinić N. Hypertrophic Cardiomyopathy: Genetic Foundations, Outcomes, Interconnections, and Their Modifiers. Medicina. 2023; 59(8):1424. https://doi.org/10.3390/medicina59081424
Chicago/Turabian StyleGlavaški, Mila, Lazar Velicki, and Nataša Vučinić. 2023. "Hypertrophic Cardiomyopathy: Genetic Foundations, Outcomes, Interconnections, and Their Modifiers" Medicina 59, no. 8: 1424. https://doi.org/10.3390/medicina59081424
APA StyleGlavaški, M., Velicki, L., & Vučinić, N. (2023). Hypertrophic Cardiomyopathy: Genetic Foundations, Outcomes, Interconnections, and Their Modifiers. Medicina, 59(8), 1424. https://doi.org/10.3390/medicina59081424