Differential Association of Glycation Products with Bone Mineral Density and Fat Mass in Healthy and Diabetes Type 2 Subjects from Mexican Southeastern: A Cross Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Demographic, Medical and Biochemistry Data Collection
2.3. Determination of BMD, BMC, and Fat Mass Distribution
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Correlation Analyses between BMD, BMC, Fat Mass, and Biochemical Determinations
3.2.1. Correlations for the Diabetic and Non-Diabetic Categories
3.2.2. Correlations for the Category of Men
3.2.3. Correlations for the Category of Women
3.2.4. Correlations in Post-Menopausal and Non-Post-Menopausal Women in the DM2 Cohort
3.3. Binary Logistic Regression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwartz, A.V.; Backlund, J.-Y.C.; de Boer, I.H.; Rubin, M.R.; Barnie, A.; Farrell, K.; Trapani, V.R.; Gregory, N.S.; Wallia, A.; Bebu, I.; et al. Risk factors for lower bone mineral density in older adults with type 1 diabetes: A cross-sectional study. Lancet Diabetes Endocrinol. 2022, 10, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Ge, W.; Jie, J.; Yao, J.; Li, W.; Cheng, Y.; Lu, W. Advanced glycation end products promote osteoporosis by inducing ferroptosis in osteoblasts. Mol. Med. Rep. 2022, 25, 140. [Google Scholar] [CrossRef] [PubMed]
- Sergi, D.; Boulestin, H.; Campbell, F.M.; Williams, L.M. The Role of Dietary Advanced Glycation End Products in Metabolic Dysfunction. Mol. Nutr. Food Res. 2021, 65, 1900934. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, N.; Thornalley, P.J. Protein glycation—Biomarkers of metabolic dysfunction and early-stage decline in health in the era of precision medicine. Redox Biol. 2021, 42, 101920. [Google Scholar] [CrossRef]
- Simó-Servat, O.; Planas, A.; Ciudin, A.; Simó, R.; Hernández, C. Assessment of advanced glycation end-products as a biomarker of diabetic outcomes. Endocrinol. Diabetes Nutr. 2018, 65, 540–545. [Google Scholar] [CrossRef]
- Furst, J.R.; Bandeira, L.C.; Fan, W.-W.; Agarwal, S.; Nishiyama, K.K.; McMahon, D.J.; Dworakowski, E.; Jiang, H.; Silverberg, S.J.; Rubin, M.R. Advanced Glycation Endproducts and Bone Material Strength in Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2016, 101, 2502–2510. [Google Scholar] [CrossRef] [Green Version]
- Nakano, M.; Nakamura, Y.; Suzuki, T.; Miyazaki, A.; Takahashi, J.; Saito, M.; Shiraki, M. Pentosidine and carboxymethyl-lysine associate differently with prevalent osteoporotic vertebral fracture and various bone markers. Sci. Rep. 2020, 10, 22090. [Google Scholar] [CrossRef]
- Phimphilai, M.; Pothacharoen, P.; Kongtawelert, P. Age-Influenced Receptors of Advanced Glycation End Product Overexpression Associated with Osteogenic Differentiation Impairment in Patients with Type 2 Diabetes. Front. Endocrinol. 2021, 12, 726182. [Google Scholar] [CrossRef]
- Saeki, C.; Saito, M.; Kanai, T.; Nakano, M.; Oikawa, T.; Torisu, Y.; Saruta, M.; Tsubota, A. Plasma pentosidine levels are associated with prevalent fractures in patients with chronic liver disease. PLoS ONE 2021, 16, e0249728. [Google Scholar] [CrossRef]
- Yamamoto, M.; Yamaguchi, T.; Yamauchi, M.; Yano, S.; Sugimoto, T. Serum Pentosidine Levels Are Positively Associated with the Presence of Vertebral Fractures in Postmenopausal Women with Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2008, 93, 1013–1019. [Google Scholar] [CrossRef] [Green Version]
- Shiraki, M.; Kuroda, T.; Tanaka, S.; Saito, M.; Fukunaga, M.; Nakamura, T. Nonenzymatic collagen cross-links induced by glycoxidation (pentosidine) predicts vertebral fractures. J. Bone Miner. Metab. 2008, 26, 93–100. [Google Scholar] [CrossRef]
- López-Prieto, R.S.; Reza-Albarrán, A.A.; Clark, P.; Gómez Díaz, R.A.; Aguilera-Rubalcava, M.S.; Güereca-Olguín, D.C.; Jalife-Velázquez, G.Q.; Soto-Mota, A.; Viveros-Ruiz, T.L.; Juárez-Martínez, L.; et al. Albuminuria, Disease Duration, and Glycated Hemoglobin Are Related with Bone Mineral Density in Type 1 Diabetes: A Cross-sectional Study. Endocr. Pract. 2023, 29, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Daya, N.; Coresh, J.; Christenson, R.H.; Selvin, E. Glycated Albumin for the Diagnosis of Diabetes in US Adults. Clin. Chem. 2022, 68, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; Arab, L.; Sun, K.; Nicklett, E.J.; Ferrucci, L. Fat Mass Is Inversely Associated with Serum Carboxymethyl-Lysine, an Advanced Glycation End Product, in Adults. J. Nutr. 2011, 141, 1726–1730. [Google Scholar] [CrossRef] [Green Version]
- Turki Jalil, A.; Alameri, A.A.; Iqbal Doewes, R.; El-Sehrawy, A.A.; Ahmad, I.; Ramaiah, P.; Kadhim, M.M.; Kzar, H.H.; Sivaraman, R.; Romero-Parra, R.M.; et al. Circulating and dietary advanced glycation end products and obesity in an adult population: A paradox of their detrimental effects in obesity. Front. Endocrinol. 2022, 13, 966590. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Gilani, M.; Aamir, M.; Akram, A.; Haroon, Z.H.; Ijaz, A.; Khadim, M.T. Comparison of Turbidimetric Inhibition Immunoassay, High-Performance Liquid Chromatography, and Capillary Electrophoresis Methods for Glycated Hemoglobin Determination. Lab. Med. 2020, 51, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Sonagra, A.D.; Motiani, A. Hexokinase Method. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Izuhara, Y.; Miyata, T.; Ueda, Y.; Suzuki, D.; Asahi, K.; Inagi, R.; Sakai, H.; Kurokawa, K. A Sensitive and specific ELISA for plasma pentosidine. Nephrol. Dial. Transplant. 1999, 14, 576–580. [Google Scholar] [CrossRef] [Green Version]
- Paleari, R.; Bonetti, G.; Callà, C.; Carta, M.; Ceriotti, F.; Di Gaetano, N.; Ferri, M.; Guerra, E.; Lavalle, G.; Cascio, C.L.; et al. Multicenter evaluation of an enzymatic method for glycated albumin. Clin. Chim. Acta 2017, 469, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Woolcott, O.O.; Bergman, R.N. Relative fat mass (RFM) as a new estimator of whole-body fat percentage—A cross-sectional study in American adult individuals. Sci. Rep. 2018, 20, 10980. [Google Scholar] [CrossRef] [Green Version]
- Ros, F.E.; Cristóbal, R.V.; Marfell-Jones, M. Protocolo Internacional para la Valoración Antropométrica; Publicado por Sociedad Internacional para el Avance de la Cineantropometría: Murcia, Spain, 2019; ISBN 978-84-16045-28-0. [Google Scholar]
- Secretaría de Salud y Asistencia NORMA Oficial Mexicana NOM-008-SSA3-2010, Para el Tratamiento Integral del Sobrepeso y la Obesidad. Mexico city, Mexico. Gobierno de Mexico. 2010. Available online: https://www.dof.gob.mx/normasOficiales/4127/Salud/Salud.htm (accessed on 1 August 2023).
- Goldberg, E.K.; Fung, E.B. Precision of the Hologic DXA in the Assessment of Visceral Adipose Tissue. J. Clin. Densitom. 2020, 23, 664–672. [Google Scholar] [CrossRef]
- Croux, C.; Dehon, C. Influence functions of the Spearman and Kendall correlation measures. Stat. Methods Appl. 2010, 19, 497–515. [Google Scholar] [CrossRef] [Green Version]
- Brandt, I.A.G.; Jessen, M.H.; Rimestad, D.E.; Højgaard, M.K.F.; Vestergaard, P. Advanced glycation end products and bone—How do we measure them and how do they correlate with bone mineral density and fractures? A systematic review and evaluation of precision of measures. Bone 2022, 165, 116569. [Google Scholar] [CrossRef]
- Jia, S.; Gong, H.; Zhang, Y.; Liu, H.; Cen, H.; Zhang, R.; Fan, Y. Prediction of Femoral Strength Based on Bone Density and Biochemical Markers in Elderly Men with Type 2 Diabetes Mellitus. Front. Bioeng. Biotechnol. 2022, 10, 855364. [Google Scholar] [CrossRef]
- Tamaki, J.; Kouda, K.; Fujita, Y.; Iki, M.; Yura, A.; Miura, M.; Sato, Y.; Okamoto, N.; Kurumatani, N. Ratio of Endogenous Secretory Receptor for Advanced Glycation End Products to Pentosidine Predicts Fractures in Men. J. Clin. Endocrinol. Metab. 2018, 103, 85–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikulíková, K.; Eckhardt, A.; Kuneš, J.; Zicha, J.; Mikšík, I. Advanced glycation end-product pentosidine accumulates in various tissues of rats with high fructose intake. Physiol. Res. 2008, 57, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Balsan, G.A.; Vieira, J.L.D.C.; Oliveira, A.M.D.; Portal, V.L. Relationship between adiponectin, obesity and insulin resistance. Rev. Assoc. Médica Bras. 2015, 61, 72–80. [Google Scholar] [CrossRef]
- Pacheco-Pantoja, E.L.; Fraser, W.D.; Wilson, P.J.M.; Gallagher, J.A. Differential effects of adiponectin in osteoblast-like cells. J. Recept. Signal Transduct. 2014, 34, 351–360. [Google Scholar] [CrossRef]
- Foroumandi, E.; Alizadeh, M.; Kheirouri, S.; Asghari Jafarabadi, M. Exploring the role of body mass index in relationship of serum nitric oxide and advanced glycation end products in apparently healthy subjects. PLoS ONE 2019, 14, e0213307. [Google Scholar] [CrossRef]
- MRI Ancillary Study Group of the Look AHEAD Research Group; Gallagher, D.; Kelley, D.E.; Yim, J.-E.; Spence, N.; Albu, J.; Boxt, L.; Pi-Sunyer, F.X.; Heshka, S. Adipose tissue distribution is different in type 2 diabetes. Am. J. Clin. Nutr. 2009, 89, 807–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Hou, X.; Hu, G.; Wei, L.; Jiao, L.; Wang, H.; Chen, S.; Wu, J.; Bao, Y.; Jia, W. Abdominal subcutaneous adipose tissue: A favorable adipose depot for diabetes? Cardiovasc. Diabetol. 2018, 17, 93. [Google Scholar] [CrossRef] [PubMed]
- Hunt, H.B.; Torres, A.M.; Palomino, P.M.; Marty, E.; Saiyed, R.; Cohn, M.; Jo, J.; Warner, S.; Sroga, G.E.; King, K.B.; et al. Altered Tissue Composition, Microarchitecture, and Mechanical Performance in Cancellous Bone from Men with Type 2 Diabetes Mellitus. J. Bone Miner. Res. 2019, 34, 1191–1206. [Google Scholar] [CrossRef]
- Zhao, H.; Qi, C.; Zheng, C.; Gan, K.; Ren, L.; Song, G. Effects of Glycated Hemoglobin Level on Bone Metabolism Biomarkers in Patients with Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 1785–1791. [Google Scholar] [CrossRef] [PubMed]
- Sarnings, W.; Aman, A.M.; Rasyid, H.; Bakri, S.; Sanusi, H.; As Daud, N.; Zainuddin, A.A. Obesity Measurement Index Is Associated with Hemoglobin A1c Level in Young Adult Without Diabetes: A Single-Center Cross-Sectional Study. J. Endocrinol. Metab. 2022, 12, 140–145. [Google Scholar] [CrossRef]
- Miyashita, Y.; Nishimura, R.; Morimoto, A.; Matsudaira, T.; Sano, H.; Tajima, N. Glycated albumin is low in obese, type 2 diabetic patients. Diabetes Res. Clin. Pract. 2007, 78, 51–55. [Google Scholar] [CrossRef]
- Miyawaki, J.; Okuno, S.; Mori, K.; Nishio, E.; Norimine, K.; Kurajoh, M.; Yamakawa, T.; Shoji, S.; Inaba, M. Inverse association of fat mass, but not lean mass, with glycated albumin in hemodialysis patients with or without diabetes mellitus. Ren. Fail. 2019, 41, 808–813. [Google Scholar] [CrossRef]
- Tao, X.; Koguma, R.; Nagai, Y.; Kohzuma, T. Analytical performances of a glycated albumin assay that is traceable to standard reference materials and reference range determination. J. Clin. Lab. Anal. 2022, 36, e24509. [Google Scholar] [CrossRef] [PubMed]
DM2 | noDM | Total | p | |||
---|---|---|---|---|---|---|
Participants, n (%) | 112 (55%) | 92 (45%) | 204 (100%) | |||
Men | Women | Men | Women | |||
Demographics | ||||||
Gender, n (%) | 46 (22.5%) | 66 (32.4%) | 18 (8.9%) | 74 (36.2%) | 204 (100%) | n.s.* |
Age, years, median (i.q.) | 50 year (11) | 55.5 year (13) | 57 year (13.5) | n.s.* | ||
Menopausal age, median (i.q.) n (%) | N.A. | 48 year (10) n = 54 (26.5%) | N.A. | 50 year (5) n = 56 (27.5%) | 50 year (6.3) n = 55 (54%) | n.s. |
DM2 time duration median (i.q.) | 10 (16.3) | N.A. | 10 (16.3) | |||
Body composition parameters | ||||||
BMI mean (s.d.) | 30.9 (5.3) | 27.7 (4.8) | 29.4 (5.3) | 0.005 | ||
W/H ratio mean (s.d.) | 0.93 (0.08) | 0.88 (0.07) | 0.91 (0.8) | 0.004 | ||
W/Ht ratio mean (s.d.) | 0.62 (0.08) | 0.57 (0.07) | 0.60 (0.08) | 0.004 | ||
Total Fat percentage mean (s.d.) | 40.9 (6.8) | 40.8 (8.2) | 40.9 (7.4) | n.s. | ||
BMD categories (WHO criteria) (% from each group) | ||||||
Normal, n (%) | 40 (71.4%) | 34 (73.9%) | 74 (72.5) | n.s. | ||
Osteopenia, n (%) | 15 (26.8%) | 11 (23.9%) | 26 (25.5) | n.s. | ||
Osteoporosis, n (%) | 1 (1.8%) | 1 (2.17%) | 2 (1.9) | n.s. | ||
Biochemical tests | ||||||
Glycemia mean, mg/dL (s.d.) | 161.7 (61.5) | 98.5 (21.9) | 133.5 (57) | <0.001 | ||
HbA1c mean, % (s.d.) | 7.7 (1.94) | 5.4 (0.32) | 6.6 (1.8) | <0.001 | ||
Serum PTD median, ng/mL (i.q.) | 12.7 (24.1) | 6.0 (30.3) | 8.21 (26.4) | n.s. | ||
Serum ALB-g median, mg/mL (i.q.) | 2.5 (2.9) | 2.8 (4.3) | 2.7 (3.3) | n.s. |
PTD | ALB-g | HbA1c | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | |||||
BMD Spine | −0.216 | 0.049 | Fat Trunk (g) (DXA) | −0.218 | 0.045 | BMI | 0.281 | 0.009 | ||
BMC Spine | −0.269 | 0.014 | RFM | 0.300 | 0.005 | |||||
W/H | 0.265 | 0.014 | ||||||||
W/Ht | 0.322 | 0.003 | ||||||||
Waist girth | 0.268 | 0.013 |
DM2 | noDM | DM2 | noDM | DM2 | noDM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PTD | ALB-g | HbA1c | |||||||||||
r | p | r | p | r | p | r | p | r | p | r | p | ||
BMD (g/cm2) | Total | −0.272 | 0.099 | 0.168 | 0.27 | −0.017 | 0.910 | −0.216 | 0.190 | −0.372 | 0.022 | −0.060 | 0.680 |
Arms | −0.381 | 0.018 | 0.125 | 0.410 | 0.030 | 0.840 | −0.191 | 0.250 | −0.479 | 0.002 | 0.028 | 0.850 | |
Ribs | −0.270 | 0.102 | 0.072 | 0.640 | 0.095 | 0.520 | −0.302 | 0.060 | −0.248 | 0.130 | 0.276 | 0.060 | |
Spine | −0.401 | 0.013 | −0.092 | 0.540 | −0.091 | 0.540 | −0.059 | 0.720 | −0.200 | 0.230 | −0.167 | 0.260 | |
Pelvis | −0.402 | 0.012 | 0.136 | 0.370 | 0.091 | 0.540 | −0.147 | 0.370 | 0.055 | 0.740 | −0.345 | 0.018 | |
Legs | −0.436 | 0.006 | 0.193 | 0.200 | 0.024 | 0.870 | −0.234 | 0.160 | −0.376 | 0.020 | −0.104 | 0.480 | |
BMC (g) | Total | −0.432 | 0.007 | 0.172 | 0.250 | −0.080 | 0.610 | −0.340 | 0.040 | −0.420 | 0.009 | −0.106 | 0.470 |
Arms | −0.441 | 0.006 | 0.134 | 0.380 | −0.150 | 0.320 | −0.307 | 0.060 | −0.418 | 0.009 | −0.152 | 0.310 | |
Ribs | −0.372 | 0.021 | 0.167 | 0.270 | 0.060 | 0.710 | −0.080 | 0.640 | −0.225 | 0.170 | 0.229 | 0.120 | |
Spine | −0.540 | 0.000 | −0.081 | 0.590 | −0.110 | 0.470 | −0.220 | 0.190 | −0.244 | 0.140 | −0.130 | 0.380 | |
Pelvis | −0.379 | 0.019 | 0.152 | 0.310 | −0.020 | 0.900 | −0.190 | 0.250 | −0.291 | 0.080 | −0.303 | 0.038 | |
Legs | −0.499 | 0.001 | 0.213 | 0.150 | −0.020 | 0.880 | −0.310 | 0.060 | −0.417 | 0.009 | −0.115 | 0.440 | |
Fat mass (g) | Total | −0.294 | 0.070 | 0.168 | 0.270 | −0.316 | 0.030 | −0.027 | 0.870 | 0.165 | 0.320 | −0.132 | 0.370 |
Arms | −0.060 | 0.720 | 0.187 | 0.210 | −0.186 | 0.210 | −0.040 | 0.810 | 0.156 | 0.350 | −0.108 | 0.460 | |
Trunk | −0.440 | 0.006 | 0.067 | 0.660 | −0.387 | 0.007 | −0.112 | 0.500 | 0.124 | 0.460 | −0.134 | 0.370 | |
Legs | −0.202 | 0.220 | 0.243 | 0.100 | −0.110 | 0.460 | −0.110 | 0.510 | 0.302 | 0.060 | −0.245 | 0.090 | |
Fat mass (%) | Total | −0.069 | 0.680 | −0.010 | 0.940 | −0.024 | 0.870 | −0.066 | 0.690 | 0.404 | 0.012 | −0.091 | 0.540 |
Arms | 0.154 | 0.350 | 0.024 | 0.870 | −0.050 | 0.730 | −0.076 | 0.640 | 0.342 | 0.036 | −0.056 | 0.710 | |
Trunk | −0.136 | 0.410 | −0.046 | 0.760 | −0.050 | 0.730 | −0.006 | 0.970 | 0.326 | 0.046 | −0.163 | 0.270 | |
Legs | 0.103 | 0.540 | −0.028 | 0.850 | −0.022 | 0.880 | −0.060 | 0.720 | 0.482 | 0.002 | −0.134 | 0.360 | |
Anthropometry Indexes | BMI | −0.368 | 0.023 | 0.248 | 0.100 | −0.324 | 0.030 | −0.029 | 0.860 | 0.122 | 0.460 | 0.004 | 0.970 |
W/Ht | −0.375 | 0.020 | 0.189 | 0.210 | −0.196 | 0.180 | 0.045 | 0.780 | 0.194 | 0.240 | 0.137 | 0.360 | |
RFM | −0.384 | 0.017 | 0.013 | 0.930 | −0.172 | 0.240 | −0.066 | 0.690 | 0.144 | 0.380 | −0.064 | 0.670 | |
W/H | −0.331 | 0.043 | 0.180 | 0.230 | −0.005 | 0.970 | 0.190 | 0.250 | 0.084 | 0.620 | 0.135 | 0.360 | |
Waist girth | −0.446 | 0.005 | 0.213 | 0.160 | −0.225 | 0.130 | −0.108 | 0.520 | −0.007 | 0.960 | −0.008 | 0.960 | |
Hip girth | −0.308 | 0.060 | 0.150 | 0.320 | −0.400 | 0.005 | −0.149 | 0.370 | −0.034 | 0.840 | −0.174 | 0.240 | |
Neck girth | −0.459 | 0.004 | 0.119 | 0.430 | −0.257 | 0.080 | −0.096 | 0.570 | −0.118 | 0.480 | −0.107 | 0.470 |
noPMW | PMW | noPMW | PMW | noPMW | PMW | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PTD | ALB-g | HbA1c | |||||||||||
r | p | r | p | r | p | r | p | r | p | r | p | ||
BMD (g/cm2) | Total | 0.322 | 0.243 | −0.602 | 0.002 | 0.041 | 0.884 | −0.089 | 0.687 | −0.469 | 0.078 | −0.002 | 0.994 |
Arms | −0.084 | 0.766 | −0.459 | 0.028 | 0.211 | 0.449 | −0.168 | 0.443 | −0.154 | 0.584 | −0.477 | 0.021 | |
Ribs | −0.180 | 0.521 | −0.442 | 0.035 | 0.181 | 0.519 | −0.275 | 0.204 | −0.254 | 0.360 | 0.082 | 0.710 | |
Spine | −0.213 | 0.446 | −0.516 | 0.012 | 0.458 | 0.086 | −0.228 | 0.295 | −0.061 | 0.830 | 0.156 | 0.476 | |
Pelvis | −0.178 | 0.526 | −0.494 | 0.017 | 0.286 | 0.301 | −0.199 | 0.362 | 0.077 | 0.785 | 0.268 | 0.217 | |
Legs | −0.160 | 0.568 | −0.642 | 0.001 | 0.136 | 0.63 | −0.142 | 0.519 | −0.243 | 0.383 | −0.063 | 0.776 | |
BMC (g) | Total | −0.099 | 0.725 | −0.562 | 0.005 | 0.371 | 0.173 | −0.394 | 0.063 | −0.061 | 0.830 | −0.220 | 0.312 |
Arms | −0.252 | 0.364 | −0.432 | 0.040 | 0.154 | 0.585 | −0.453 | 0.030 | 0.132 | 0.639 | −0.383 | 0.072 | |
Ribs | −0.121 | 0.668 | −0.409 | 0.053 | 0.504 | 0.056 | −0.262 | 0.227 | 0.196 | 0.483 | −0.171 | 0.437 | |
Spine | −0.245 | 0.379 | −0.590 | 0.003 | 0.421 | 0.118 | −0.548 | 0.007 | 0.014 | 0.960 | 0.002 | 0.993 | |
Pelvis | −0.016 | 0.954 | −0.464 | 0.026 | 0.339 | 0.216 | −0.228 | 0.295 | −0.132 | 0.639 | 0.108 | 0.623 | |
Legs | −0.261 | 0.347 | −0.602 | 0.002 | 0.357 | 0.191 | −0.377 | 0.076 | −0.004 | 0.990 | −0.274 | 0.205 | |
Fat mass (g) | Total | −0.258 | 0.354 | −0.275 | 0.205 | 0.336 | 0.221 | −0.279 | 0.198 | 0.332 | 0.226 | 0.323 | 0.133 |
Arms | −0.159 | 0.572 | −0.228 | 0.295 | 0.104 | 0.713 | −0.222 | 0.308 | 0.239 | 0.390 | 0.169 | 0.442 | |
Trunk | −0.441 | 0.099 | −0.439 | 0.036 | 0.321 | 0.243 | −0.343 | 0.109 | 0.214 | 0.443 | 0.202 | 0.356 | |
Legs | −0.135 | 0.631 | −0.393 | 0.063 | 0.271 | 0.328 | −0.385 | 0.070 | 0.289 | 0.296 | 0.407 | 0.048 | |
Fat mass (%) | Total | 0.148 | 0.599 | −0.208 | 0.342 | 0.193 | 0.491 | −0.517 | 0.012 | 0.389 | 0.152 | 0.355 | 0.097 |
Arms | 0.209 | 0.455 | 0.101 | 0.647 | 0.054 | 0.850 | −0.443 | 0.034 | 0.250 | 0.369 | 0.284 | 0.189 | |
Trunk | 0.341 | 0.214 | −0.208 | 0.342 | 0.211 | 0.451 | −0.431 | 0.040 | 0.325 | 0.237 | 0.179 | 0.413 | |
Legs | 0.276 | 0.320 | −0.282 | 0.193 | 0.088 | 0.756 | −0.471 | 0.023 | 0.154 | 0.584 | 0.576 | 0.004 | |
Anthropometry Indexes | BMI | −0.496 | 0.060 | −0.299 | 0.165 | 0.182 | 0.516 | −0.125 | 0.571 | 0.089 | 0.752 | 0.272 | 0.209 |
W/Ht | −0.563 | 0.029 | −0.313 | 0.146 | 0.052 | 0.854 | −0.014 | 0.948 | 0.132 | 0.638 | 0.289 | 0.181 | |
RFM | −0.465 | 0.081 | −0.262 | 0.227 | 0.196 | 0.483 | −0.178 | 0.417 | 0.461 | 0.084 | 0.290 | 0.180 | |
W/H | −0.454 | 0.089 | −0.156 | 0.477 | 0.284 | 0.304 | 0.337 | 0.115 | 0.270 | 0.330 | 0.075 | 0.733 | |
Waist girth | −0.482 | 0.069 | −0.367 | 0.085 | 0.177 | 0.528 | −0.200 | 0.360 | 0.093 | 0.742 | 0.126 | 0.566 | |
Hip girth | −0.395 | 0.146 | −0.283 | 0.191 | 0.111 | 0.694 | −0.352 | 0.100 | 0.046 | 0.869 | 0.093 | 0.671 | |
Neck girth | −0.487 | 0.066 | −0.309 | 0.152 | 0.043 | 0.879 | 0.009 | 0.966 | −0.007 | 0.98 | 0.082 | 0.709 |
Model | Variables | Odds Ratio | 95% CI | p |
---|---|---|---|---|
Entire sample Omnibus test of model coefficients: 0.031 Hosmer-Lemeshow test: 0.113 | PTD | 1.001 | 0.949–1.057 | 0.963 |
ALB-g | 0.847 | 0.592–1.211 | 0.362 | |
HbA1c | 1.443 | 1.005–2.093 | 0.048 | |
Total fat mass (g) | 1.011 | 1.001–1.021 | 0.023 | |
Diabetic post-menopausal women Omnibus test of model coefficients: 0.018 Hosmer-Lemeshow test: 0.775 | PTD | 1.104 | 1.010–1.223 | 0.047 |
ALB-g | 0.526 | 0.246–1.125 | 0.098 | |
HbA1c | 1.416 | 0.790–2.540 | 0.243 | |
Total fat mass (g) | 1.000 | 0.999–1.000 | 0.082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreyro-Bravo, F.; Ceballos-Cruz, Á.; Urruchua-Rodríguez, M.J.; Martínez-Reyes, G.; Cortés-Pastrana, C.; Pacheco-Pantoja, E.L. Differential Association of Glycation Products with Bone Mineral Density and Fat Mass in Healthy and Diabetes Type 2 Subjects from Mexican Southeastern: A Cross Sectional Study. Medicina 2023, 59, 1451. https://doi.org/10.3390/medicina59081451
Ferreyro-Bravo F, Ceballos-Cruz Á, Urruchua-Rodríguez MJ, Martínez-Reyes G, Cortés-Pastrana C, Pacheco-Pantoja EL. Differential Association of Glycation Products with Bone Mineral Density and Fat Mass in Healthy and Diabetes Type 2 Subjects from Mexican Southeastern: A Cross Sectional Study. Medicina. 2023; 59(8):1451. https://doi.org/10.3390/medicina59081451
Chicago/Turabian StyleFerreyro-Bravo, Fernando, Ángel Ceballos-Cruz, Mary Jose Urruchua-Rodríguez, Gabriela Martínez-Reyes, Carolina Cortés-Pastrana, and Elda Leonor Pacheco-Pantoja. 2023. "Differential Association of Glycation Products with Bone Mineral Density and Fat Mass in Healthy and Diabetes Type 2 Subjects from Mexican Southeastern: A Cross Sectional Study" Medicina 59, no. 8: 1451. https://doi.org/10.3390/medicina59081451
APA StyleFerreyro-Bravo, F., Ceballos-Cruz, Á., Urruchua-Rodríguez, M. J., Martínez-Reyes, G., Cortés-Pastrana, C., & Pacheco-Pantoja, E. L. (2023). Differential Association of Glycation Products with Bone Mineral Density and Fat Mass in Healthy and Diabetes Type 2 Subjects from Mexican Southeastern: A Cross Sectional Study. Medicina, 59(8), 1451. https://doi.org/10.3390/medicina59081451