Sex Differences among Overweight/Obese Kidney Transplant Recipients Requiring Oxygen Support Amid the COVID-19 Pandemic
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Design and Setting
2.2. Laboratory Testing
2.3. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Demir, E.; Ucar, Z.A.; Dheir, H.; Danis, R.; Yelken, B.; Uyar, M.; Parmaksiz, E.; Artan, A.S.; Sinangil, A.; Merhametsiz, O.; et al. COVID-19 in Kidney Transplant Recipients: A Multicenter Experience from the First Two Waves of Pandemic. BMC Nephrol. 2022, 23, 183. [Google Scholar] [CrossRef] [PubMed]
- Aguiar-Brito, I.; de Lucena, D.D.; Veronese-Araújo, A.; Cristelli, M.P.; Tedesco-Silva, H.; Medina-Pestana, J.O.; Rangel, É.B. Impact of Hypertension on COVID-19 Burden in Kidney Transplant Recipients: An Observational Cohort Study. Viruses 2022, 14, 2409. [Google Scholar] [CrossRef] [PubMed]
- Rangel, É.B.; de Lucena, D.D.; Aguiar-Brito, I.; de Andrade, L.G.M.; Veronese-Araújo, A.; Cristelli, M.P.; Tedesco-Silva, H.; Medina-Pestana, J.O. COVID-19 in Kidney Transplant Recipients with Diabetes Mellitus: A Pro-pensity Score Matching Analysis. Transpl. Int. 2022, 35, 10375. [Google Scholar] [CrossRef]
- Veronese-Araújo, A.; de Lucena, D.D.; Aguiar-Brito, I.; Modelli de Andrade, L.G.; Cristelli, M.P.; Tedesco-Silva, H.; Medina-Pestana, J.O.; Rangel, É.B. Oxygen Requirement in Overweight/Obese Kidney Transplant Recipients with COVID-19: An Observational Cohort Study. Diagnostics 2023, 13, 2168. [Google Scholar] [CrossRef] [PubMed]
- Aghili, S.M.M.; Ebrahimpur, M.; Arjmand, B.; Shadman, Z.; Sani, M.P.; Qorbani, M.; Larijani, B.; Payab, M. Obesity in COVID-19 era, implications for mechanisms, comorbidities, and prognosis: A review and meta-analysis. Int. J. Obes. 2021, 45, 998–1016. [Google Scholar] [CrossRef]
- Moriconi, D.; Masi, S.; Rebelos, E.; Virdis, A.; Manca, M.L.; De Marco, S.; Taddei, S.; Nannipieri, M. Obesity prolongs the hospital stay in patients affected by COVID-19, and may impact on SARS-COV-2 shedding. Obes. Res. Clin. Pract. 2020, 14, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Kivimäki, M.; Kuosma, E.; Ferrie, J.E.; Luukkonen, R.; Nyberg, S.T.; Alfredsson, L.; Batty, G.D.; Brunner, E.J.; Fransson, E.; Goldberg, M.; et al. Overweight, obesity, and risk of cardiometabolic multimorbidity: Pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe. Lancet Public Health 2017, 2, e277–e285. [Google Scholar] [CrossRef]
- Fuster, J.J.; Ouchi, N.; Gokce, N.; Walsh, K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ. Res. 2016, 118, 1786–1807. [Google Scholar] [CrossRef]
- Iwamoto, S.J.; Abushamat, L.A.; Zaman, A.; Millard, A.J.; Cornier, M.-A. Obesity Management in Cardiometabolic Disease: State of the Art. Curr. Atheroscler. Rep. 2021, 23, 59. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Chinn, J.; De Ferrante, M.; Kirby, K.A.; Hohmann, S.F.; Amin, A. Male gender is a predictor of higher mortality in hospitalized adults with COVID-19. PLoS ONE 2021, 16, e0254066. [Google Scholar] [CrossRef]
- Ten-Caten, F.; Gonzalez-Dias, P.; Castro, Í.; Ogava, R.L.; Giddaluru, J.; Silva, J.C.S.; Martins, F.; Gonçalves, A.N.; Costa-Martins, A.G.; Araujo, J.D.; et al. In-depth analysis of laboratory parameters reveals the interplay between sex, age, and systemic inflammation in individuals with COVID-19. Int. J. Infect. Dis. 2021, 105, 579–587. [Google Scholar] [CrossRef]
- Kumar, A.; Narayan, R.K.; Kulandhasamy, M.; Prasoon, P.; Kumari, C.; Kumar, S.; Pareek, V.; Sesham, K.; Shekhawat, P.S.; Kant, K.; et al. COVID-19 pandemic: Insights into molecular mechanisms leading to sex-based differences in patient outcomes. Expert Rev. Mol. Med. 2021, 23, e7. [Google Scholar] [CrossRef] [PubMed]
- Kompaniyets, L.; Pennington, A.F.; Goodman, A.B.; Rosenblum, H.G.; Belay, B.; Ko, J.Y.; Chevinsky, J.R.; Schieber, L.Z.; Summers, A.D.; Lavery, A.M.; et al. Underlying Medical Conditions and Severe Illness among 540,667 Adults Hospitalized with COVID-19, March 2020–March 2021. Prev. Chronic Dis. 2021, 18, E66. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.-H.; Choi, J.; Gwon, J.G. Metabolic syndrome and the risk of COVID-19 infection: A nationwide population-based case-control study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2596–2604. [Google Scholar] [CrossRef]
- Cai, Z.; Yang, Y.; Zhang, J. Obesity is associated with severe disease and mortality in patients with coronavirus disease 2019 (COVID-19): A meta-analysis. BMC Public Health 2021, 21, 1505. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Du, S.; Green, W.D.; Beck, M.A.; Algaith, T.; Herbst, C.H.; Alsukait, R.F.; Alluhidan, M.; Alazemi, N.; Shekar, M. Faculty Opinions recommendation of Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes. Rev. 2020, 21, e13128. [Google Scholar] [CrossRef]
- Hirsch, J.S.; Ng, J.H.; Ross, D.W.; Sharma, P.; Shah, H.H.; Barnett, R.L.; Hazzan, A.D.; Fishbane, S.; Jhaveri, K.D.; on behalf of the Northwell COVID-19 Research Consortium and the Northwell Nephrology COVID-19 Research Consortium. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020, 98, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Legrand, M.; Bell, S.; Forni, L.; Joannidis, M.; Koyner, J.L.; Liu, K.; Cantaluppi, V. Pathophysiology of COVID-19-associated acute kidney injury. Nat. Rev. Nephrol. 2021, 17, 751–764. [Google Scholar] [CrossRef]
- Robbins-Juarez, S.Y.; Qian, L.; King, K.L.; Stevens, J.S.; Husain, S.A.; Radhakrishnan, J.; Mohan, S. Outcomes for Patients with COVID-19 and Acute Kidney Injury: A Systematic Review and Meta-Analysis. Kidney Int. Rep. 2020, 5, 1149–1160. [Google Scholar] [CrossRef]
- Tong, L.; Khani, M.; Lu, Q.; Taylor, B.; Osinski, K.; Luo, J. Association between body-mass index, patient characteristics, and obesity-related comorbidities among COVID-19 patients: A prospective cohort study. Obes. Res. Clin. Pract. 2022, 17, 47–57. [Google Scholar] [CrossRef]
- Beyerstedt, S.; Casaro, E.B.; Rangel, E.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Al-Benna, S. Association of high level gene expression of ACE2 in adipose tissue with mortality of COVID-19 infection in obese patients. Obes. Med. 2020, 19, 100283. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Q.; Ma, L.; Wu, D.; Gao, J.; Chen, G.; Li, H. Systematic profiling of ACE2 expression in diverse physiological and pathological conditions for COVID-19/SARS-CoV-2. J. Cell. Mol. Med. 2020, 24, 9478–9482. [Google Scholar] [CrossRef] [PubMed]
- Kornilov, S.A.; Lucas, I.; Jade, K.; Dai, C.L.; Lovejoy, J.C.; Magis, A.T. Plasma levels of soluble ACE2are associated with sex, Metabolic Syndrome, and its biomarkers in a large cohort, pointing to a possible mechanism for increased severity in COVID-19. Crit. Care 2020, 24, 452. [Google Scholar] [CrossRef] [PubMed]
- De Lucena, D.D.; Rangel, É.B. Glucocorticoids use in kidney transplant setting. Expert Opin. Drug Metab. Toxicol. 2018, 14, 1023–1041. [Google Scholar] [CrossRef]
- Perrotta, F.; Scialò, F.; Mallardo, M.; Signoriello, G.; D’Agnano, V.; Bianco, A.; Daniele, A.; Nigro, E. Adiponectin, Leptin, and Resistin Are Dysregulated in Patients Infected by SARS-CoV-2. Int. J. Mol. Sci. 2023, 24, 1131. [Google Scholar] [CrossRef]
- Salvator, H.; Grassin-Delyle, S.; Naline, E.; Brollo, M.; Fournier, C.; Couderc, L.-J.; Devillier, P. Contrasting Effects of Adipokines on the Cytokine Production by Primary Human Bronchial Epithelial Cells: Inhibitory Effects of Adiponectin. Front. Pharmacol. 2020, 11, 56. [Google Scholar] [CrossRef]
- Wagner, D.D.; Heger, L.A. Thromboinflammation: From Atherosclerosis to COVID-19. Arter. Thromb. Vasc. Biol. 2022, 42, 1103–1112. [Google Scholar] [CrossRef]
- Lasbleiz, A.; Gaborit, B.; Soghomonian, A.; Bartoli, A.; Ancel, P.; Jacquier, A.; Dutour, A. COVID-19 and Obesity: Role of Ectopic Visceral and Epicardial Adipose Tissues in Myocardial Injury. Front. Endocrinol. 2021, 12, 726967. [Google Scholar] [CrossRef]
- Higham, A.; Singh, D. Increased ACE2 Expression in Bronchial Epithelium of COPD Patients who are Overweight. Obesity 2020, 28, 1586–1589. [Google Scholar] [CrossRef]
- Leung, J.M.; Yang, C.X.; Tam, A.; Shaipanich, T.; Hackett, T.-L.; Singhera, G.K.; Dorscheid, D.R.; Sin, D.D. ACE-2 expression in the small airway epithelia of smokers and COPD patients: Implications for COVID-19. Eur. Respir. J. 2020, 55, 2000688. [Google Scholar] [CrossRef]
- Dana, R.; Bannay, A.; Bourst, P.; Ziegler, C.; Losser, M.-R.; Gibot, S.; Levy, B.; Audibert, G.; Ziegler, O. Obesity and mortality in critically ill COVID-19 patients with respiratory failure. Int. J. Obes. 2021, 45, 2028–2037. [Google Scholar] [CrossRef] [PubMed]
- De Jong, A.; Chanques, G.; Jaber, S. Mechanical ventilation in obese ICU patients: From intubation to extubation. Crit. Care 2017, 21, 63. [Google Scholar] [CrossRef] [PubMed]
- Kress, J.P.; Pohlman, A.S.; Alverdy, J.; Hall, J.B. The impact of morbid obesity on oxygen cost of breathing (VO(2RESP)) at rest. Am. J. Respir. Crit. Care Med. 1999, 160, 883–886. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Y.; Qin, J.; Ruan, C.; Zeng, X.; Xu, A.; Yang, R.; Li, J.; Cai, H.; Zhang, Z. Hypertension as an independent risk factor for severity and mortality in patients with COVID-19: A retrospective study. Postgrad. Med. J. 2021, 98, 515–522. [Google Scholar] [CrossRef]
- Wong, R.; Hall, M.; Vaddavalli, R.; Anand, A.; Arora, N.; Bramante, C.T.; Garcia, V.; Johnson, S.; Saltz, M.; Tronieri, J.S.; et al. Glycemic Control and Clinical Outcomes in U.S. Patients With COVID-19: Data from the National COVID Cohort Collaborative (N3C) Database. Diabetes Care 2022, 45, 1099–1106. [Google Scholar] [CrossRef]
- Weiss, A.M.; Hendrickx, R.; Stensgaard, E.M.; Jellingsø, M.M.; Sommer, M.O. Kidney Transplant and Dialysis Patients Remain at Increased Risk for Succumbing to COVID-19. Transplantation 2023, 107, 1136–1138. [Google Scholar] [CrossRef]
- Gemmati, D.; Bramanti, B.; Serino, M.L.; Secchiero, P.; Zauli, G.; Tisato, V. COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-Chromosome in Females Be Protective against SARS-CoV-2 Compared to the Single X-Chromosome in Males? Int. J. Mol. Sci. 2020, 21, 3474. [Google Scholar] [CrossRef] [PubMed]
- Mufarrih, S.H.; Qureshi, N.Q.; Yunus, R.; Ngo, D.; Katz, D.; Krakower, D.; Bhambhani, V.; Quadir, J.; Solleveld, P.; Banner-Goodspeed, V.; et al. Influence of Increasing Age and Body Mass Index of Gender in COVID-19 Patients. J. Women’s Health 2022, 31, 779–786. [Google Scholar] [CrossRef]
- Peters, S.A.E.; MacMahon, S.; Woodward, M. Obesity as a risk factor for COVID-19 mortality in women and men in the UK biobank: Comparisons with influenza/pneumonia and coronary heart disease. Diabetes Obes. Metab. 2021, 23, 258–262. [Google Scholar] [CrossRef]
- Li, Y.; Jerkic, M.; Slutsky, A.S.; Zhang, H. Molecular mechanisms of sex bias differences in COVID-19 mortality. Crit. Care 2020, 24, 405. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.S.A.; Moritz, M.J.; Saaed, M.I.; Heifets, M.; Sustento-Reodica, N.; Fyfe, B.; Kumar, A. Avoidance of Chronic Steroid Therapy in African American Kidney Transplant Recipients Monitored by Surveillance Biopsy: 1-Year Results. Am. J. Transplant. 2005, 5, 1976–1985. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Ngwa, C.; Scheihing, D.A.M.; Al Mamun, A.; Ahnstedt, H.W.; Finger, C.E.; Colpo, G.D.; Sharmeen, R.; Kim, Y.; Choi, H.A.; et al. Sex differences in the immune response to acute COVID-19 respiratory tract infection. Biol. Sex Differ. 2021, 12, 66. [Google Scholar] [CrossRef] [PubMed]
- Rendeiro, A.F.; Casano, J.; Vorkas, C.K.; Singh, H.; Morales, A.; A DeSimone, R.; Ellsworth, G.B.; Soave, R.; Kapadia, S.N.; Saito, K.; et al. Profiling of immune dysfunction in COVID-19 patients allows early prediction of disease progression. Life Sci. Alliance 2020, 4, e202000955. [Google Scholar] [CrossRef]
- Harding, A.T.; Heaton, N.S. The Impact of Estrogens and Their Receptors on Immunity and Inflammation during Infection. Cancers 2022, 14, 909. [Google Scholar] [CrossRef] [PubMed]
- Bukowska, A.; Spiller, L.; Wolke, C.; Lendeckel, U.; Weinert, S.; Hoffmann, J.; Bornfleth, P.; Kutschka, I.; Gardemann, A.; Isermann, B.; et al. Protective regulation of the ACE2/ACE gene expression by estrogen in human atrial tissue from elderly men. Exp. Biol. Med. 2017, 242, 1412–1423. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Russ, B.P.; Wong, T.Y.; Horspool, A.M.; Winters, M.T.; Barbier, M.; Bevere, J.R.; Martinez, I.; Damron, F.H.; Cyphert, H.A. Obesity and metabolic dysfunction drive sex-associated differential disease profiles in hACE2-mice challenged with SARS-CoV-2. iScience 2022, 25, 105038. [Google Scholar] [CrossRef]
- Notarte, K.I.; de Oliveira, M.H.S.; Peligro, P.J.; Velasco, J.V.; Macaranas, I.; Ver, A.T.; Pangilinan, F.C.; Pastrana, A.; Goldrich, N.; Kavteladze, D.; et al. Age, Sex and Previous Comorbidities as Risk Factors Not Associated with SARS-CoV-2 Infection for Long COVID-19: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 7314. [Google Scholar] [CrossRef]
- Daitch, V.; Yelin, D.; Awwad, M.; Guaraldi, G.; Milić, J.; Mussini, C.; Falcone, M.; Tiseo, G.; Carrozzi, L.; Pistelli, F.; et al. Characteristics of long-COVID among older adults: A cross-sectional study. Int. J. Infect. Dis. 2022, 125, 287–293. [Google Scholar] [CrossRef]
- Moura, E.C.; Claro, R.M. Estimates of obesity trends in Brazil, 2006–2009. Int. J. Public Health 2011, 57, 127–133. [Google Scholar] [CrossRef]
- Xavier, P.B.; Garcez, A.; Silva, J.C.D.; Cibeira, G.H.; Germano, A.; Olinto, M.T.A. Obesity among Industrial Workers in Brazil: A Cross-Sectional Study on Prevalence and Associated Factors. J. Occup. Environ. Med. 2022, 64, e231–e236. [Google Scholar] [CrossRef] [PubMed]
- McMinn, J.; Black, H.; Harrison, L.L.; Geddes, C. SARS-CoV-2 and Tacrolimus Blood Concentration in Kidney Transplant Recip-ients. Kidney Int. Rep. 2021, 6, 2694–2697. [Google Scholar] [CrossRef] [PubMed]
Variables | BMI ≥ 25, Male (n = 97, 60.6%) | BMI < 25, Male (n = 63, 39.4%) | TOTAL, Male (n = 160, 100%) | Univariate Analysis OR (95% CI) |
---|---|---|---|---|
Age (years) | 53.8 ± 10.9 | 52.2 ± 14.5 | 53.2 ± 12.4 | 1.01 (0.98–1.04, p = 0.43) |
Race (n, %) White Black/brown | 62 (63.9) 35 (36.1) | 34 (54.0) 29 (46.0) | 96 (60.0) 64 (40.0) | 1.51 (0.79–2.88, p = 0.21) |
Transplant time (months) | 94.1 [31.0;145.0] | 95.6 [39.0;129.0] | 94.7 [33.8;142.3] | 1.00 (0.99–1.00, p = 0.90) |
Donor type (n, %) Live Deceased | 35 (36.1) 62 (63.9) | 15 (23.8) 48 (76.2) | 50 (31.3) 110 (68.7) | 1.81 (0.89–3.68, p = 0.10) |
Hypertension (n, %) | 84 (86.6) | 46 (73.0) | 130 (81.3) | 2.39 (1.07–5.35, p = 0.03) |
Diabetes mellitus (n, %) | 39 (40.2) | 21 (33.3) | 60 (37.5) | 1.35 (0.69–2.61, p = 0.38) |
COPD (n, %) | 3 (3.1) | 2 (3.2) | 5 (3.1) | 0.97 (0.16–6.00, p = 0.10) |
Heart disease (n, %) | 13 (13.4) | 7 (11.1) | 20 (12.5) | 1.24 (0.46–3.30, p = 0.67) |
Neoplasia (n, %) | 8 (8.2) | 6 (9.5) | 14 (8.8) | 0.85 (0.28–2.59, p = 0.78) |
Liver disease (n, %) | 4 (4.1) | 3 (4.8) | 7 (4.4) | 0.86 (0.190–3.98, p = 0.85) |
Autoimmune disease (n, %) | 0 (0) | 1 (1.6) | 1 (0.1) | 0.00 (0.0001, p = 1.00) |
Smoking (n, %) | 22 (22.7) | 13 (20.6) | 35 (21.9) | 1.29 (0.58–2.85, p = 0.54) |
Laboratory data | ||||
Basal eGFR | 49.7 ± 22.9 | 50.4 ± 17.3 | 50.0 ± 24.6 | 0.99 (1.00–1.01, p = 0.87) |
Admission eGFR | 38.2 ± 19.8 | 37.3 ± 23.2 | 37.8 ± 21.1 | 1.00 (1.00–1.02, p = 0.78) |
Previous glucose (mg/dL) | 127.9 ± 65.5 | 106.4 ± 36.7 | 119.4 ± 56.7 | 1.01 (1.00–1.01, p = 0.02) |
Admission glucose (mg/dL) | 199.7 ± 112.9 | 147.2 ± 88.7 | 180.9 ± 107.3 | 1.01 (1.00–1.01, p = 0.06) |
Previous Hb1Ac (%) | 7.0 ± 2.0 | 6.6 ± 2.0 | 6.8 ± 2.0 | 1.11 (0.92–1.34, p = 0.22) |
CRP (mg/dL) | 9.0 [1.9; 13.3] | 9.0 [2.4; 14.6] | 9.0 [1.9; 13.6] | 1.00 (0.96–1.04, p = 0.96) |
LDH (U/L) | 359.0 [244.0; 441.0] | 313.0 [228.0; 361.5] | 339.7 [236.5; 402.5] | 1.00 (1.00–1.00, p = 0.13) |
Lymphocytes (mm3) | 903.5 [458.0; 1067.0] | 896.7 [474.3; 1103.0] | 901.0 [460.0; 1094.0] | 1.00 (1.00–1.00, p = 0.96) |
D-dimer (µg/L) | 2.1 [0.6; 1.8] | 2.5 [0.5; 2.2] | 2.3 [0.6; 1.9] | 0.98 (1.00–1.07, p = 0.61) |
AST (U/L) | 37.9 [20.0; 41.0] | 36.2 [23.0; 43.0] | 37.3 [20.0; 42.3] | 1.00 (1.00–1.02, p = 0.73) |
ALT (U/L) | 31.9 [15.0; 36.0] | 27.6 [17.8; 33.8] | 30.3 [15.0; 36.0] | 1.01 (1.00–1.02, p = 0.38) |
Sodium (mEq/L) | 135.6 ± 3.8 | 135.0 ± 5.2 | 135.4 ± 4.4 | 1.03 (0.95–1.12, p = 0.42) |
Outcomes | ||||
Death (n, %) | 36 (37.1) | 16 (25.4) | 52 (32.5) | 1.73 (0.86–3.50, p = 0.12) |
ICU (n, %) | 47 (48.5) | 29 (46.0) | 76 (47.5) | 1.10 (0.58–2.08, p = 0.76) |
O2 (n, %) | 52 (53.6) | 30 (47.6) | 82 (51.3) | 1.27 (0.67–2.40, p = 0.46) |
IMV (n, %) | 42 (43.3) | 19 (30.2) | 61 (38.1) | 1.77 (0.90–3.46, p = 0.10) |
AKI (n, %) | 51 (52.6) | 40 (63.5) | 91 (56.9) | 0.64 (0.33–1.22, p = 0.17) |
Stage 1 | 6 (6.2) | 11 (17.5) | 17 (10.6) | 0.31 (0.11–0.89, p = 0.03) |
Stage 2 | 3 (3.1) | 5 (7.9) | 8 (5.0) | 0.37 (0.08–1.61, p = 0.18) |
Stage 3 | 42 (43.3) | 24 (38.1) | 66 (41.3) | 1.24 (0.65–2.37, p = 0.51) |
HD (n, %) | 41 (42.3) | 23 (36.5) | 64 (40.0) | 1.27 (0.66–2.44, p = 0.47) |
Variables | BMI ≥ 25, Female (n = 88, 71.0%) | BMI < 25, Female (n = 36, 29.0%) | TOTAL, Female (n = 124, 100%) | Univariate Analysis OR (95% CI) |
---|---|---|---|---|
Age (years) | 52.8 ± 11.2 | 48.7 ± 13.1 | 51.6 ± 11.9 | 1.03 (1.00–1.07, p = 0.09) |
Race (n, %) White Black/brown | 59 (67.0) 29 (33.0) | 18 (50.0) 18 (50.0) | 77 (62.1) 47 (37.9) | 2.03 (0.93–4.48, p = 0.08) |
Transplant time (months) | 90.0 [37.8;145.0] | 94.7 [26.0;127.3] | 91.4 [32.3;132.0] | 0.99 (0.99–1.00, p = 0.74) |
Donor type (n, %) Live Deceased | 20 (22.7) 68 (77.3) | 10 (27.8) 26 (72.2) | 30 (24.2) 94 (75.8) | 0.77 (0.32–1.85, p = 0.55) |
Hypertension (n, %) | 61 (69.3) | 23 (63.9) | 84 (67.7) | 1.28 (0.56–2.89, p = 0.56) |
Diabetes mellitus (n, %) | 37 (42.0) | 15 (41.7) | 52 (41.9) | 1.02 (0.46–2.23, p = 0.97) |
COPD (n, %) | 3 (3.4) | 1 (2.8) | 4 (3.2) | 1.24 (0.12–12.29, p = 0.86) |
Heart disease (n, %) | 11 (12.5) | 1 (2.8) | 12 (9.7) | 5.00 (0.62–40.25, p = 0.13) |
Neoplasia (n, %) | 5 (5.7) | 2 (5.6) | 7 (5.6) | 1.02 (0.19–5.54, p = 0.98) |
Liver disease (n, %) | 2 (2.3) | 0 (0) | 2 (1.6) | (0.0001, p = 0.99) |
Autoimmune disease (n, %) | 7 (8.0) | 0 (0) | 7 (5.6) | (0.0001, p = 0.99) |
Smoking (n, %) | 21 (29.9) | 3 (8.3) | 24 (19.4) | 3.57 (0.97–13.08, p = 0.05) |
Laboratory data | ||||
Basal eGFR | 48.7 ± 23.7 | 43.3 ± 21.9 | 47.2 ± 23.3 | 1.01 (0.99–1.03, p = 0.24) |
Admission eGFR | 37.1 ± 21.7 | 33.7 ± 25.6 | 36.1 ± 22.9 | 1.01 (1.00–1.02, p = 0.45) |
Previous glucose (mg/dL) | 123.0 ± 65.8 | 117.7 ± 101.5 | 121.4 ± 77.6 | 1.00 (1.00–1.01, p = 0.73) |
Admission glucose (mg/dL) | 166.0 ± 99.0 | 166.9 ± 109.0 | 166.3 ± 101.0 | 1.00 (0.99–1.01, p = 0.97) |
Previous Hb1Ac (%) | 7.1 ± 2.0 | 6.5 ± 1.1 | 7.0 ± 2.0 | 1.21 (0.90–1.60, p = 0.20) |
CRP (mg/dL) | 8.6 [2.3; 12.5] | 6.6 [1.7; 8.0] | 8.0 [2.2; 11.0] | 1.03 (0.97–1.09, p = 0.30) |
LDH (U/L) | 321.5 [213.0; 355.0] | 317.0 [182.8; 386.0] | 320.2 [209.3; 377.5] | 1.00 (1.00–1.00, p = 0.92) |
Lymphocytes (mm3) | 1016.7 [551.0; 1508.5] | 1015.3 [494.8; 1153.8] | 1016.3 [523.5; 1298.5] | 1.00 (1.00–1.00, p = 0.99) |
D-dimer (µg/L) | 2.2 [0.6; 2.4] | 3.1 [0.8; 3.1] | 2.4 [0.6; 2.5] | 0.91 (0.81–1.03, p = 0.15) |
AST (U/L) | 40.9 [21.0; 38.0] | 40.4 [21.5; 40.0] | 40.7 [21.0; 40.0] | 1.00 (0.99–1.01, p = 0.97) |
ALT (U/L) | 34.3 [14.8; 28.0] | 23.7 [14.0; 26.8] | 31.1 [14.0; 27.0] | 1.01 (1.00–1.02, p = 0.48) |
Sodium (mEq/L) | 134. 6 ± 5.8 | 134.1 ± 5.5 | 134.5 ± 5.7 | 1.02 (0.95–1.09, p = 0.66) |
Outcomes | ||||
Death (n, %) | 23 (26.1) | 9 (25.0) | 32 (25.8) | 1.06 (0.43–2.59, p = 0.90) |
ICU (n, %) | 45 (51.1) | 13 (36.1) | 58 (46.8) | 1.85 (0.83–4.11, p = 0.13) |
O2 (n, %) | 56 (63.6) | 15 (41.7) | 71 (57.3) | 2.45 (1.11–5.41, p = 0.03) |
IMV (n, %) | 28 (31.8) | 8 (22.2) | 36 (29.0) | 1.63 (0.66–4.04, p = 0.29) |
AKI (n, %) | 52 (59.1) | 22 (61.1) | 74 (59.7) | 0.92 (0.42–2.03, p = 0.83) |
Stage 1 | 15 (17.0) | 5 (13.9) | 20 (16.1) | 1.27 (0.43–3.81, p = 0.66) |
Stage 2 | 6 (6.8) | 0 (0) | 6 (4.8) | (0.0001, p = 0.99) |
Stage 3 | 31 (35.2) | 17 (47.2) | 48 (38.7) | 0.61 (0.28–1.33, p = 0.21) |
HD (n, %) | 29 (33.0) | 12 (33.3) | 41 (33.1) | 0.98 (0.43–2.24, p = 0.97) |
Variables | O2, Female (n = 56, 63.6%) | No O2, Female (n = 32, 36.4%) | Univariate Analysis OR (95% CI) | Multivariate Analysis OR (95% CI) |
---|---|---|---|---|
Age (years) | 54.6 ± 11.7 | 49.5 ± 9.8 | 1.05 (1.00–1.09, p = 0.04) | 1.07 (1.01–1.13, p = 0.02) |
Race (n, %) White Black/brown | 39 (69.6) 17 (30.4) | 20 (62.5) 12 (37.5) | 1.38 (0.55–3.44, p = 0.49) | |
Transplant time (months) | 82.0 ± 68.0 | 103.9 ± 69.5 | 0.99 (1.00–1.00, p = 0.15) | |
Donor type (n, %) Live Deceased | 9 (16.1) 47 (83.9) | 11 (34.4) 21 (65.6) | 2.74 (1.00–7.60, p = 0.05) | 0.47 (0.12–1.91, p = 0.29) |
Hypertension (n, %) | 39 (69.6) | 22 (68.8) | 1.04 (0.41–2.67, p = 0.93) | |
Diabetes mellitus (n, %) | 26 (46.4) | 11 (34.4) | 1.66 (0.67–4.06, p = 0.27) | |
COPD (n, %) | 2 (3.6) | 1 (3.1) | 1.15 (0.10–13.18, p = 0.91) | |
Heart disease (n, %) | 7 (12.5) | 4 (12.5) | 1.00 (0.27–3.72, p = 1.000) | |
Neoplasia (n, %) | 3 (5.6) | 2 (6.3) | 0.85 (0.13–5.37, p = 0.86) | |
Liver disease (n, %) | 2 (3.6) | 0 (0) | (0.0001, p = 0.99) | |
Autoimmune disease (n, %) | 5 (8.9) | 2 (6.3) | (0.27–8.06, p = 0.66) | |
Smoking (n, %) | 18 (32.1) | 3 (9.4) | 4.55 (1.19–17.42, p = 0.03) | 3.82 (0.93–15.64, p = 0.06) |
Laboratory data | ||||
Basal eGFR | 44.3 ± 21.4 | 56.4 ± 25.9 | 0.98 (0.96–1.00, p = 0.03) | 0.99 (0.95–1.03, p = 0.64) |
Admission eGFR | 32.3 ± 21.3 | 45.6 ± 20.1 | 0.97 (0.95–0.99, p = 0.01) | 0.97 (0.93–1.01, p = 0.15) |
Previous glucose (mg/dL) | 105.0 [85.5; 152.5] | 89.0 [32.0; 174.5] | 1.01 (1.00–1.02, p = 0.06) | 1.01 (1.00–1.03, p = 0.08) |
Admission glucose (mg/dL) | 140.0 [95.0; 174.5] | 143.5 [106.8; 250.0] | 1.00 (0.99–1.01, p = 0.98) | |
Previous Hb1Ac (%) | 7.3 ± 2.0 | 6.7 ± 2.0 | 1.10 (0.89–1.61, p = 0.24) | |
CRP (mg/dL) | 9.5 [3.6; 13.0] | 7.3 [1.4; 9.2] | 1.03 (0.97–1.10, p = 0.29) | |
LDH (U/L) | 367.3 [231.5; 426.0] | 237.5 [165.3; 295.0] | 1.01 (1.00–1.01, p = 0.006) | 1.01 (1.002–1016, p = 0.17) |
Lymphocytes (mm3) | 941.9 [512.8; 1242.8] | 1156.0 [632.0; 1569.0] | 0.99 (1.00–1.00, p = 0.14) | |
D-dimer (µg/L) | 2.2 [0.7; 2.4] | 2.1 [0.5; 2.4] | 1.00 (0.83–1.22, p = 0.97) | |
AST (U/L) | 45.3 [20.5; 39.5] | 32.3 [21.5; 35.0] | 1.01 (1.00–1.03, p = 0.37) | |
ALT (U/L) | 40.0 [14.0; 28.0] | 23.2 [15.0; 27.0] | 1.01 (1.00–1.03, p = 0.42) | |
Sodium (mEq/L) | 134.0±6.7 | 135.7±3.8 | 0.94 (0.86–1.04, p = 0.24) | |
Outcomes | ||||
Death (n, %) | 23 (41.1) | 0 (0.0) | 21. 61 (2.75–169.74, p = 0.003) | 0.45 (0.01–23.78, p = 0.69) |
ICU (n, %) | 41 (73.2) | 4 (12.5) | 19.13 (5.75–63.72, p = 0.0001) | 6.13 (1.38–27.14, p = 0.02) |
IMV (n, %) | 28 (50.0) | 0 (0.0) | 31.00 (3.96–242.99, p = 0.001) | 3.68 (0.05–257.65, p = 0.55) |
AKI (n, %) | 44 (78.6) | 8 (25.0) | 11.00 (3.95–30.61, p = 0.0001) | 2.90 (0.81–10.34, p = 0.10) |
Stage 1 | 10 (17.9) | 5 (15.6) | 1.17 (0.36–3.80, p = 0.80) | |
Stage 2 | 4 (7.1) | 2 (6.3) | 1.15 (0.20–6.68, p = 0.87) | |
Stage 3 | 30 (53.6) | 1 (3.1) | 35.77 (4.56–280.48, p = 0.001) | 9.54 (0.39–231.49, p = 0.17) |
HD (n, %) | 29 (51.8) | 0 (0.0) | 33.30 (4.25–261.02, p = 0.001) | 0.56 (0.11–29.06, p = 0.77) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veronese-Araújo, A.; de Lucena, D.D.; Aguiar-Brito, I.; Cristelli, M.P.; Tedesco-Silva, H.; Medina-Pestana, J.O.; Rangel, É.B. Sex Differences among Overweight/Obese Kidney Transplant Recipients Requiring Oxygen Support Amid the COVID-19 Pandemic. Medicina 2023, 59, 1555. https://doi.org/10.3390/medicina59091555
Veronese-Araújo A, de Lucena DD, Aguiar-Brito I, Cristelli MP, Tedesco-Silva H, Medina-Pestana JO, Rangel ÉB. Sex Differences among Overweight/Obese Kidney Transplant Recipients Requiring Oxygen Support Amid the COVID-19 Pandemic. Medicina. 2023; 59(9):1555. https://doi.org/10.3390/medicina59091555
Chicago/Turabian StyleVeronese-Araújo, Alexandre, Débora D. de Lucena, Isabella Aguiar-Brito, Marina P. Cristelli, Hélio Tedesco-Silva, José O. Medina-Pestana, and Érika B. Rangel. 2023. "Sex Differences among Overweight/Obese Kidney Transplant Recipients Requiring Oxygen Support Amid the COVID-19 Pandemic" Medicina 59, no. 9: 1555. https://doi.org/10.3390/medicina59091555
APA StyleVeronese-Araújo, A., de Lucena, D. D., Aguiar-Brito, I., Cristelli, M. P., Tedesco-Silva, H., Medina-Pestana, J. O., & Rangel, É. B. (2023). Sex Differences among Overweight/Obese Kidney Transplant Recipients Requiring Oxygen Support Amid the COVID-19 Pandemic. Medicina, 59(9), 1555. https://doi.org/10.3390/medicina59091555