Effect of Virtual Reality Therapy on Quality of Life and Self-Sufficiency in Post-Stroke Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Instruments Used
2.5. Intervention
2.6. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. Stroke 2018, 49, e160–e161. [Google Scholar] [CrossRef]
- Ratnasabapathy, Y.; Chi-Lun Lee, A.; Feigin, V.; Anderson, C. Blood pressure lowering interventions for preventing dementia in patients with cerebrovascular disease (Protocol). Cochrane Database Syst. Rev. 2009, 2001, CD004034. [Google Scholar]
- World Health Organization. World Health Statistics 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Lincoln, N.; Majid, M.; Weyman, N. Cognitive rehabilitation for attention deficits following stroke. Cochrane Database Syst. Rev. 2000, CD002842. [Google Scholar]
- Wiley, E.; Khattab, S.; Tang, A. Examining the effect of virtual reality therapy on cognition post-stroke: A systematic review and meta-analysis. Disabil. Rehabil. Assist. Technol. 2022, 17, 50–60. [Google Scholar] [CrossRef]
- Pollock, A.; Baer, G.; Campbell, P.; Choo, P.L.; Forster, A.; Morris, J.; Pomeroy, V.M.; Langhorne, P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst. Rev. 2014, 2014, CD001920. [Google Scholar]
- Kelly-Hayes, M.; Beiser, A.; Kase, C.S.; Scaramucci, A.; D’Agostino, R.B.; Wolf, P.A. The influence of gender and age on disability following ischemic stroke: The Framingham study. J. Stroke Cerebrovasc. Dis. 2003, 12, 119–126. [Google Scholar] [CrossRef]
- Luque-Moreno, C.; Jiménez-Blanco, A.; Cano-Bravo, F.; Paniagua-Monrobel, M.; Zambrano-García, E.; Moral-Munoz, J.A. Effectiveness of visual feedback and postural balance treatment of post-stroke pusher syndrome. A systematic review. Rev. Científica Soc. Enfermería Neurológica Engl. Ed. 2021, 53, 16–24. [Google Scholar] [CrossRef]
- Coutts, S.B.; Wein, T.H.; Lindsay, M.P.; Buck, B.; Cote, R.; Ellis, P.; Foley, N.; Hill, M.D.; Jaspers, S.; Jin, A.Y. Canadian Stroke Best Practice Recommendations: Secondary prevention of stroke guidelines, update 2014. Int. J. Stroke 2015, 10, 282–291. [Google Scholar] [CrossRef]
- Langhorne, P.; Coupar, F.; Pollock, A. Motor recovery after stroke: A systematic review. Lancet Neurol. 2009, 8, 741–754. [Google Scholar] [CrossRef]
- Pulman, J.; Buckley, E. Assessing the efficacy of different upper limb hemiparesis interventions on improving health-related quality of life in stroke patients: A systematic review. Top. Stroke Rehabil. 2013, 20, 171–188. [Google Scholar] [CrossRef]
- Landi, F.; Cesari, M.; Onder, G.; Tafani, A.; Zamboni, V.; Cocchi, A. Effects of an occupational therapy program on functional outcomes in older stroke patients. Gerontology 2006, 52, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Duncan, P.W.; Horner, R.D.; Reker, D.M.; Samsa, G.P.; Hoenig, H.; Hamilton, B.; LaClair, B.J.; Dudley, T.K. Adherence to postacute rehabilitation guidelines is associated with functional recovery in stroke. Stroke 2002, 33, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-J.; Ding, D.; Starke, R.M.; Mehndiratta, P.; Crowley, R.W.; Liu, K.C.; Southerland, A.M.; Worrall, B.B. Endovascular vs medical management of acute ischemic stroke. Neurology 2015, 85, 1980–1990. [Google Scholar] [CrossRef] [PubMed]
- Zielina, M.; Šmahaj, J.; Raudenská, J.; Javůrková, A. Využívání a vytváření terapeutických her ve virtuální realitě a model hráč/hra/terapie. Ceskoslov. Psychol. 2022, 66, 332–348. [Google Scholar] [CrossRef]
- Levin, M.F.; Weiss, P.L.; Keshner, E.A. Emergence of virtual reality as a tool for upper limb rehabilitation: Incorporation of motor control and motor learning principles. Phys. Ther. 2015, 95, 415–425. [Google Scholar] [CrossRef]
- Khan, A.; Podlasek, A.; Somaa, F. Virtual reality in post-stroke neurorehabilitation–a systematic review and meta-analysis. Top. Stroke Rehabil. 2023, 30, 53–72. [Google Scholar] [CrossRef]
- Bedwell, W.L.; Pavlas, D.; Heyne, K.; Lazzara, E.H.; Salas, E. Toward a taxonomy linking game attributes to learning: An empirical study. Simul. Gaming 2012, 43, 729–760. [Google Scholar] [CrossRef]
- Lee, Y.; Won, M. Mediating effects of rehabilitation motivation between social support and health-related quality of life among patients with stroke. Int. J. Environ. Res. Public Health 2022, 19, 15274. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, E.-J. The Effect of Diagonal Exercise Training for Neurorehabilitation on Functional Activity in Stroke Patients: A Pilot Study. Brain Sci. 2023, 13, 799. [Google Scholar] [CrossRef]
- Webster, D.; Celik, O. Systematic review of Kinect applications in elderly care and stroke rehabilitation. J. Neuroeng. Rehabil. 2014, 11, 108. [Google Scholar] [CrossRef]
- Wingham, J.; Adie, K.; Turner, D.; Schofield, C.; Pritchard, C. Participant and caregiver experience of the Nintendo Wii SportsTM after stroke: Qualitative study of the trial of WiiTM in stroke (TWIST). Clin. Rehabil. 2015, 29, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Broeren, J.; Rydmark, M.; Sunnerhagen, K.S. Virtual reality and haptics as a training device for movement rehabilitation after stroke: A single-case study. Arch. Phys. Med. Rehabil. 2004, 85, 1247–1250. [Google Scholar] [CrossRef]
- Leng, Y.; Lo, W.L.A.; Mao, Y.R.; Bian, R.; Zhao, J.L.; Xu, Z.; Li, L.; Huang, D.F. The impact of cognitive function on virtual reality intervention for upper extremity rehabilitation of patients with subacute stroke: Prospective randomized controlled trial with 6-month follow-up. JMIR Serious Games 2022, 10, e33755. [Google Scholar] [CrossRef] [PubMed]
- Bour, A.; Rasquin, S.; Boreas, A.; Limburg, M.; Verhey, F. How predictive is the MMSE for cognitive performance after stroke? J. Neurol. 2010, 257, 630–637. [Google Scholar] [CrossRef]
- Mehrholz, J.; Wagner, K.; Rutte, K.; Meiβner, D.; Pohl, M. Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. Arch. Phys. Med. Rehabil. 2007, 88, 1314–1319. [Google Scholar] [CrossRef] [PubMed]
- Green, J.; Young, J. A test-retest reliability study of the Barthel Index, the Rivermead Mobility Index, the Nottingham Extended Activities of Daily Living Scale and the Frenchay Activities Index in stroke patients. Disabil. Rehabil. 2001, 23, 670–676. [Google Scholar] [CrossRef] [PubMed]
- 0th Revision of the International Classification of Diseases. Institute of Health Information and Statistics of the Czech Republic [Online]. Prague. Available online: https://mkn10.uzis.cz/ (accessed on 1 November 2022).
- Cohen-Inbar, O.; Soustiel, J.F.; Zaaroor, M. Meningiomas in the elderly, the surgical benefit and a new scoring system. Acta Neurochir. 2010, 152, 87–97. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel Index: A simple index of independence useful in scoring improvement in the rehabilitation of the chronically ill. Md. State Med. J. 1965, 14, 61–65. [Google Scholar] [PubMed]
- Richards, S.H.; Peters, T.J.; Coast, J.; Gunnell, D.J.; Darlow, M.-A.; Pounsford, J. Inter-rater reliability of the Barthel ADL index: How does a researcher compare to a nurse? Clin. Rehabil. 2000, 14, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Quinn, T.J.; Langhorne, P.; Stott, D.J. Barthel index for stroke trials: Development, properties, and application. Stroke 2011, 42, 1146–1151. [Google Scholar] [CrossRef]
- Prosiegel, M.; Böttger, S.; Schenk, T.; König, N.; Marolf, M.; Vaney, C.; Garner, C.; Yassouridis, A. Der erweiterte Barthel-Index (EBI)–eine neue Skala zur Erfassung von Fähigkeitsstörungen bei neurologischen Patienten. Neurol. Rehabil. 1996, 1, 7–13. [Google Scholar]
- Wee, J.Y.; Bagg, S.D.; Palepu, A. The Berg balance scale as a predictor of length of stay and discharge destination in an acute stroke rehabilitation setting. Arch. Phys. Med. Rehabil. 1999, 80, 448–452. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, C.B.; De Medeiros, I.; Frota, N.; Greters, M.E.; Conforto, A.B. Balance control in hemiparetic stroke patients: Main tools for evaluation. J. Rehabil. Res. Dev. 2008, 45, 1215–1226. [Google Scholar] [CrossRef]
- Lima, C.; Ricci, N.; Nogueira, E.; Perracini, M.R. The Berg Balance Scale as a clinical screening tool to predict fall risk in older adults: A systematic review. Physiotherapy 2018, 104, 383–394. [Google Scholar] [CrossRef]
- Üstün, T.B.; Kostanjesek, N.; Chatterji, S.; Rehm, J.; World Health Organization. Measuring Health and Disability: Manual for WHO Disability Assessment Schedule (WHODAS 2.0); Üstün, T.B., Kostanjsek, N., Chatterji, S., Rehm, J., Eds.; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Sládková, P.; Svěcená, K. Dotazník WHODAS 2.0 a možnosti jeho využití nejen v posudkové činnosti. Revis. Assess. Med./Reviz. A Posudkove Lek. 2023, 25, 55–59. [Google Scholar]
- Federici, S.; Bracalenti, M.; Meloni, F.; Luciano, J.V. World Health Organization disability assessment schedule 2.0: An international systematic review. Disabil. Rehabil. 2017, 39, 2347–2380. [Google Scholar] [CrossRef] [PubMed]
- Howard, M.C.; Davis, M.M. A meta-analysis and systematic literature review of mixed reality rehabilitation programs: Investigating design characteristics of augmented reality and augmented virtuality. Comput. Hum. Behav. 2022, 130, 107197. [Google Scholar] [CrossRef]
- Peruzzi, A.; Cereatti, A.; Mirelman, A.; Della Croce, U. Feasibility and acceptance of a virtual reality system for gait training of individuals with multiple sclerosis. Eur. Int. J. Sci. Technol. 2013, 2, 171–181. [Google Scholar]
- Feigin, V. Global and regional burden of stroke in 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 2013, 382, 1. [Google Scholar] [CrossRef]
- Gurcay, E.; Bal, A.; Cakci, A. Health-related quality of life in first-ever stroke patients. Ann. Saudi Med. 2009, 29, 36–40. [Google Scholar] [CrossRef]
- Johnson, L.; Bird, M.-L.; Muthalib, M.; Teo, W.-P. An Innovative STRoke Interactive Virtual thErapy (STRIVE) online platform for community-dwelling stroke survivors: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2020, 101, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Luengo-Fernandez, R.; Gray, A.M.; Bull, L.; Welch, S.; Cuthbertson, F.; Rothwell, P.M. Quality of life after TIA and stroke: Ten-year results of the Oxford Vascular Study. Neurology 2013, 81, 1588–1595. [Google Scholar] [CrossRef]
- Zhang, Q.; Fu, Y.; Lu, Y.; Zhang, Y.; Huang, Q.; Yang, Y.; Zhang, K.; Li, M. Impact of virtual reality-based therapies on cognition and mental health of stroke patients: Systematic review and meta-analysis. J. Med. Internet Res. 2021, 23, e31007. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ma, L.; Lin, C.; Zhu, S.; Yao, L.; Fan, H.; Gong, J.; Yan, X.; Wang, T. Effects of virtual reality-based intervention on cognition, motor function, mood, and activities of daily living in patients with chronic stroke: A systematic review and meta-analysis of randomized controlled trials. Front. Aging Neurosci. 2021, 13, 766525. [Google Scholar] [CrossRef] [PubMed]
- Wurzinger, E.H.; Abzhandadze, T.; Rafsten, L.; Sunnerhagen, K.S. Dependency in activities of daily living during the first year after stroke. Front. Neurol. 2021, 12, 736684. [Google Scholar] [CrossRef] [PubMed]
- Sulter, G.; Steen, C.; De Keyser, J. Use of the Barthel index and modified Rankin scale in acute stroke trials. Stroke 1999, 30, 1538–1541. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.Y.; Chi, W.C.; Chang, K.H.; Yen, C.F.; Escorpizo, R.; Liao, H.F.; Huang, S.W.; Liou, T.H. The World Health Organization Disability Assessment Schedule 2.0 can predict the institutionalization of patients with stroke. Eur. J. Phys. Rehabil. Med. 2017, 53, 856–862. [Google Scholar] [CrossRef] [PubMed]
General Characteristics of the Subjects | |||
---|---|---|---|
Characteristics | Experimental Group (n = 25) | Control Group (n = 25) | p |
Age (years), median (IQR) | 59.36 (40–75) | 62.96 (49–79) | 0.158 |
Gender (Male/Female) (%) | 13 (52)/12 (48) | 13 (52)/12 (48) | 1 |
Limb dominance side (right/left) n (%) | 24 (96)/1 (4) | 23 (92)/2 (8) | 1 |
Side of the lesion (right/left) n (%) | 17 (68)/8 (32) | 14 (56)/11 (44) | 0.561 |
Time since stroke (days), median (IQR) | 126 (60.5–154) | 128 (94.0–152.5) | 0.762 |
Previous medical history, n (%) | |||
Hypertension | 25 (100) | 22 (88) | 0.235 |
Diabetes | 8 (32) | 9 (36) | 0.765 |
Hyperlipidaemia | 20 (80) | 15(60) | 0.217 |
Ischaemic heart disease | 4 (16) | 2 (8) | 0.667 |
Low back pain | 18 (72) | 14 (56) | 0.239 |
Dysarthria | 8 (32) | 5 (20) | 0.333 |
Obesity | 13 (52) | 11 (44) | 0.571 |
Baseline | After Treatment | |||||
---|---|---|---|---|---|---|
Variable | Experimental | Control | p | Experimental | Control | p |
MMSE | 28.0 (25–30) | 27.0 (26–28) | 0.415 | 28.0 (26.5–30) | 27.0 (26–29) | 0.181 |
BI | 90.0 (75–100) | 95.0 (85–97.5) | 0.933 | 100.0 (90–100) | 95.0 (95–100) | 0.527 |
EBI | 90.0 (75–90) | 90.0 (85–90) | 0.438 | 90.0 (85–90) | 90.0 (85–90) | 0.603 |
BBS | 48.0 (39–51) | 48.0 (47.5–51) | 0.188 | 52.0 (47–54) | 52.0 (50.5–54) | 0.584 |
WHODAS 2 | 31.5 (18–62.6) | 27.4 (17.15–36.8) | 0.261 | 22.6 (11.3–50.7) | 21.6 (15.3–30.6) | 0.740 |
Experimental Group | Control Group | p | |
---|---|---|---|
WHODAS 2 | |||
Baseline | 31.5 (18–62.6) | 27.4 (17.2–36.8) | 0.261 |
After treatment | 22.6 (11.3–50.7) | 21.6 (15.3–30.6) | 0.740 |
Four weeks after treatment | 20.1 (9.2–43.8) | 20.6 (15.1–29.2) | 0.996 |
Cognitive function | |||
Baseline | 16.7 (10.4–66.7) | 16.7 (8.3–33.3) | 0.470 |
After treatment | 12.5 (8.3–45.8) | 12.5 (8.3–27.1) | 0.857 |
Four weeks after treatment | 12.5 (6.3–45.8) | 12.5 (8.3–25.0) | 0.989 |
Mobility | |||
Baseline | 35 (22.5–75.0) | 35 (20–42.5) | 0.271 |
After treatment | 20 (15–55) | 20 (10–35) | 0.577 |
Four weeks after treatment | 20 (10–52.5) | 20(10–32.5) | 0.881 |
ADL | |||
Baseline | 37.5 (9.4–65.6) | 25 (12.5–46.9) | 0.380 |
After treatment | 25 (0–50) | 25 (9.4–25) | 0.523 |
Four weeks after treatment | 18.8 (0–37.5) | 18.8 (9.4–25) | 0.965 |
Relationships | |||
Baseline | 25 (10–50) | 25 (10–50) | 0.617 |
After treatment | 25 (7.5–35) | 20 (15–32.5) | 0.981 |
Four weeks after treatment | 15 (5–35) | 20 (12.5–27.5) | 0.672 |
Life activities | |||
Baseline | 25 (18.8–50) | 25 (17.2–28.1) | 0.301 |
After treatment | 25 (12.5–45.3) | 21.9 (14.1–25) | 0.493 |
Four weeks after treatment | 18.8 (12.5–37.5) | 21.9 (14.1–25) | 0.753 |
Participation | |||
Baseline | 53.1 (37.5–73.4) | 37.5 (28.1–59.4) | 0.052 |
After treatment | 34.4 (29.7–64,1) | 37.5 (23.4–45.3) | 0.425 |
Four weeks after treatment | 31.3 (26.6–57.8) | 34.4 (23.4–46.9) | 0.859 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dąbrowská, M.; Pastucha, D.; Janura, M.; Tomášková, H.; Honzíková, L.; Baníková, Š.; Filip, M.; Fiedorová, I. Effect of Virtual Reality Therapy on Quality of Life and Self-Sufficiency in Post-Stroke Patients. Medicina 2023, 59, 1669. https://doi.org/10.3390/medicina59091669
Dąbrowská M, Pastucha D, Janura M, Tomášková H, Honzíková L, Baníková Š, Filip M, Fiedorová I. Effect of Virtual Reality Therapy on Quality of Life and Self-Sufficiency in Post-Stroke Patients. Medicina. 2023; 59(9):1669. https://doi.org/10.3390/medicina59091669
Chicago/Turabian StyleDąbrowská, Marcela, Dalibor Pastucha, Miroslav Janura, Hana Tomášková, Lucie Honzíková, Šárka Baníková, Michal Filip, and Iva Fiedorová. 2023. "Effect of Virtual Reality Therapy on Quality of Life and Self-Sufficiency in Post-Stroke Patients" Medicina 59, no. 9: 1669. https://doi.org/10.3390/medicina59091669
APA StyleDąbrowská, M., Pastucha, D., Janura, M., Tomášková, H., Honzíková, L., Baníková, Š., Filip, M., & Fiedorová, I. (2023). Effect of Virtual Reality Therapy on Quality of Life and Self-Sufficiency in Post-Stroke Patients. Medicina, 59(9), 1669. https://doi.org/10.3390/medicina59091669