Role of Intestinal Inflammation and Permeability in Patients with Acute Heart Failure
Abstract
:1. Introduction
2. Patients and Methods
2.1. Outcome Measures
2.2. Fecal Calprotectin Test
2.3. Serum and Fecal Zonulin Test
2.4. Statistical Analysis
2.5. Ethical Statement
3. Results
3.1. Sample Study
3.2. Predictors of Clinical Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Masip, J.; Frank Peacok, W.; Arrigo, M.; Rossello, X.; Platz, E.; Cullen, L.; Mebazaa, A.; Price, S.; Bueno, H.; Di Somma, S.; et al. Acute Heart Failure in the 2021 ESC Heart Failure Guidelines: A Scientific Statement from the Association for Acute CardioVascular Care (ACVC) of the European Society of Cardiology. Eur. Heart J. Acute Cardiovasc. Care 2022, 11, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Marini, M.; Manfredi, R.; Battistoni, I.; Francioni, M.; Vittoria Matassini, M.; Pongetti, G.; Angelini, L.; Shkoza, M.; Bontempo, A.; Belfioretti, L.; et al. Acute Heart Failure: Differential Diagnosis and Treatment. Eur. Heart J. Suppl. 2023, 25, C276–C282. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.P.; Kakkar, R.; McCarthy, C.P.; Januzzi, J.L. Inflammation in Heart Failure. J. Am. Coll. Cardiol. 2020, 75, 1324–1340. [Google Scholar] [CrossRef] [PubMed]
- Yuzefpolskaya, M.; Bohn, B.; Nasiri, M.; Zuver, A.M.; Onat, D.D.; Royzman, E.A.; Nwokocha, J.; Mabasa, M.; Pinsino, A.; Brunjes, D.; et al. Gut Microbiota, Endotoxemia, Inflammation, and Oxidative Stress in Patients with Heart Failure, Left Ventricular Assist Device, and Transplant. J. Heart Lung Transplant. 2020, 39, 880–890. [Google Scholar] [CrossRef] [PubMed]
- Albar, Z.; Albakri, M.; Hajjari, J.; Karnib, M.; Janus, S.E.; Al-Kindi, S.G. Inflammatory Markers and Risk of Heart Failure With Reduced to Preserved Ejection Fraction. Am. J. Cardiol. 2022, 167, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Abernethy, A.; Raza, S.; Sun, J.; Anstrom, K.J.; Tracy, R.; Steiner, J.; VanBuren, P.; LeWinter, M.M. Pro-Inflammatory Biomarkers in Stable Versus Acutely Decompensated Heart Failure With Preserved Ejection Fraction. J. Am. Heart Assoc. 2018, 7, e007385. [Google Scholar] [CrossRef]
- Mesquita, T.; Lin, Y.; Ibrahim, A. Chronic Low-grade Inflammation in Heart Failure with Preserved Ejection Fraction. Aging Cell 2021, 20, e13453. [Google Scholar] [CrossRef]
- Kalogeropoulos, A.P.; Tang, W.H.W.; Hsu, A.; Felker, G.M.; Hernandez, A.F.; Troughton, R.W.; Voors, A.A.; Anker, S.D.; Metra, M.; McMurray, J.J.V.; et al. High-Sensitivity C-Reactive Protein in Acute Heart Failure: Insights From the ASCEND-HF Trial. J. Card. Fail. 2014, 20, 319–326. [Google Scholar] [CrossRef]
- Montalto, M.; Gallo, A.; Santoro, L.; D’Onofrio, F.; Landolfi, R.; Gasbarrini, A. Role of Fecal Calprotectin in Gastrointestinal Disorders. Role Fecal Calprotectin Gastrointest. Disord. 2013, 17, 1569–1582. [Google Scholar]
- Jukic, A.; Bakiri, L.; Wagner, E.F.; Tilg, H.; Adolph, T.E. Calprotectin: From Biomarker to Biological Function. Gut 2021, 70, 1978–1988. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.J.; Kistorp, C.; Bjerre, M.; Raymond, I.; Flyvbjerg, A. Plasma Calprotectin Levels Reflect Disease Severity in Patients with Chronic Heart Failure. Eur. J. Prev. Cardiol. 2012, 19, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.W.; Wang, Z.; Fan, Y.; Levison, B.; Hazen, J.E.; Donahue, L.M.; Wu, Y.; Hazen, S.L. Prognostic Value of Elevated Levels of Intestinal Microbe-Generated Metabolite Trimethylamine-N-Oxide in Patients With Heart Failure. J. Am. Coll. Cardiol. 2014, 64, 1908–1914. [Google Scholar] [CrossRef] [PubMed]
- Pasini, E.; Aquilani, R.; Testa, C.; Baiardi, P.; Angioletti, S.; Boschi, F.; Verri, M.; Dioguardi, F. Pathogenic Gut Flora in Patients With Chronic Heart Failure. JACC Heart Fail. 2016, 4, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Matsiras, D.; Bezati, S.; Ventoulis, I.; Verras, C.; Parissis, J.; Polyzogopoulou, E. Gut Failure: A Review of the Pathophysiology and Therapeutic Potentials in the Gut–Heart Axis. J. Clin. Med. 2023, 12, 2567. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Ke, B.; Du, J. TMAO: How Gut Microbiota Contributes to Heart Failure. Transl. Res. 2021, 228, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.W.; Li, D.Y.; Hazen, S.L. Dietary Metabolism, the Gut Microbiome, and Heart Failure. Nat. Rev. Cardiol. 2019, 16, 137–154. [Google Scholar] [CrossRef]
- Fasano, A. All Disease Begins in the (Leaky) Gut: Role of Zonulin-Mediated Gut Permeability in the Pathogenesis of Some Chronic Inflammatory Diseases. F1000Research 2020, 9, 69. [Google Scholar] [CrossRef]
- Vanuytsel, T.; Tack, J.; Farre, R. The Role of Intestinal Permeability in Gastrointestinal Disorders and Current Methods of Evaluation. Front. Nutr. 2021, 8, 717925. [Google Scholar] [CrossRef]
- Cenni, S.; Casertano, M.; Trani, M.; Pacella, D.; Martinelli, M.; Staiano, A.; Miele, E.; Strisciuglio, C. The Use of Calgranulin-C (S100A12) and Fecal Zonulin as Possible Non-Invasive Markers in Children with Inflammatory Bowel Disease: A Clinical Study. Eur. J. Pediatr. 2023, 182, 1299–1308. [Google Scholar] [CrossRef]
- Caviglia, G.P.; Dughera, F.; Ribaldone, D.G.; Rosso, C.; Abate, M.L.; Pellicano, R.; Bresso, F.; Smedile, A.; Saracco, G.M.; Astegiano, M. Serum Zonulin in Patients with Inflammatory Bowel Disease: A Pilot Study. Minerva Med. 2019, 110. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Memon, A.A.; Palmér, K.; Hedelius, A.; Sundquist, J.; Sundquist, K. The Association of Zonulin-Related Proteins with Prevalent and Incident Inflammatory Bowel Disease. BMC Gastroenterol. 2022, 22, 3. [Google Scholar] [CrossRef] [PubMed]
- Seethaler, B.; Basrai, M.; Neyrinck, A.M.; Nazare, J.-A.; Walter, J.; Delzenne, N.M.; Bischoff, S.C. Biomarkers for Assessment of Intestinal Permeability in Clinical Practice. Am. J. Physiol.-Gastrointest. Liver Physiol. 2021, 321, G11–G17. [Google Scholar] [CrossRef] [PubMed]
- Jauregi-Miguel, A. The Tight Junction and the Epithelial Barrier in Coeliac Disease. In International Review of Cell and Molecular Biology; Elsevier: Amsterdam, The Netherlands, 2021; Volume 358, pp. 105–132. ISBN 978-0-323-85311-8. [Google Scholar]
- Ahmad, F.; Karim, A.; Khan, J.; Qaisar, R. Plasma Zonulin Correlates with Cardiac Dysfunction and Poor Physical Performance in Patients with Chronic Heart Failure. Life Sci. 2022, 311, 121150. [Google Scholar] [CrossRef] [PubMed]
- Dschietzig, T.; Boschann, F.; Ruppert, J.; Armbruster, F.; Meinitzer, A.; Bankovic, D.; Mitrovic, V.; Melzer, C. Plasma Zonulin and Its Association with Kidney Function, Severity of Heart Failure, and Metabolic Inflammation. Clin. Lab. 2016, 62. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global Burden of Heart Failure: A Comprehensive and Updated Review of Epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef]
- Ma, L.-P.; Haugen, E.; Ikemoto, M.; Fujita, M.; Terasaki, F.; Fu, M. S100A8/A9 Complex as a New Biomarker in Prediction of Mortality in Elderly Patients with Severe Heart Failure. Int. J. Cardiol. 2012, 155, 26–32. [Google Scholar] [CrossRef]
- Pedersen, L.; Nybo, M.; Poulsen, M.K.; Henriksen, J.E.; Dahl, J.; Rasmussen, L.M. Plasma Calprotectin and Its Association with Cardiovascular Disease Manifestations, Obesity and the Metabolic Syndrome in Type 2 Diabetes Mellitus Patients. BMC Cardiovasc. Disord. 2014, 14, 196. [Google Scholar] [CrossRef]
- Sager, H.B.; Heidt, T.; Hulsmans, M.; Dutta, P.; Courties, G.; Sebas, M.; Wojtkiewicz, G.R.; Tricot, B.; Iwamoto, Y.; Sun, Y.; et al. Targeting Interleukin-1β Reduces Leukocyte Production After Acute Myocardial Infarction. Circulation 2015, 132, 1880–1890. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Gong, C.; Wang, J.; Liu, B.; Shi, L.; Duan, J. Prevalence of Malnutrition and Analysis of Related Factors in Elderly Patients with COVID-19 in Wuhan, China. Eur. J. Clin. Nutr. 2020, 74, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Costanza, A.C.; Moscavitch, S.D.; Faria Neto, H.C.C.; Mesquita, E.T. Probiotic Therapy with Saccharomyces Boulardii for Heart Failure Patients: A Randomized, Double-Blind, Placebo-Controlled Pilot Trial. Int. J. Cardiol. 2015, 179, 348–350. [Google Scholar] [CrossRef] [PubMed]
- Awoyemi, A.; Mayerhofer, C.; Felix, A.S.; Hov, J.R.; Moscavitch, S.D.; Lappegård, K.T.; Hovland, A.; Halvorsen, S.; Halvorsen, B.; Gregersen, I.; et al. Rifaximin or Saccharomyces Boulardii in Heart Failure with Reduced Ejection Fraction: Results from the Randomized GutHeart Trial. EBioMedicine 2021, 70, 103511. [Google Scholar] [CrossRef] [PubMed]
- Santaguida, P.L.; Don-Wauchope, A.C.; Oremus, M.; McKelvie, R.; Ali, U.; Hill, S.A.; Balion, C.; Booth, R.A.; Brown, J.A.; Bustamam, A.; et al. BNP and NT-proBNP as Prognostic Markers in Persons with Acute Decompensated Heart Failure: A Systematic Review. Heart Fail. Rev. 2014, 19, 453–470. [Google Scholar] [CrossRef]
- Castiglione, V.; Aimo, A.; Vergaro, G.; Saccaro, L.; Passino, C.; Emdin, M. Biomarkers for the Diagnosis and Management of Heart Failure. Heart Fail. Rev. 2022, 27, 625–643. [Google Scholar] [CrossRef]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic Inflammation in Ageing, Cardiovascular Disease, and Frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
Fecal Calprotectin Values | ||||
---|---|---|---|---|
Total Cohort (n. 59) | <50 µg/g (n. 23) | >50 µg/g (n. 36) | p | |
Demographic and clinical features | ||||
Median age (years) | 81 (76–86) | 77 (68–85) | 84.5 (78.3–87.8) | <0.05 |
Sex (females, %) | 23 (39%) | 9 (39.1%) | 14 (38.9%) | 0.10 |
NYHA class II (n. of pts, %) | 9 (15.2%) | 5 (21.7%) | 4 (11.1%) | 0.40 |
NYHA class III (n. of pts, %) | 35 (59.3%) | 16 (69.6%) | 19 (52.8%) | |
NYHA class IV (n. of pts, %) | 15 (20.3%) | 6 (26.1%) | 9 (25%) | |
Ischemic cardiomiopathy (n. of pts, %) | 21 (35.6%) | 9 (39.1%) | 21 (58.3%) | 0.40 |
Valvular heart disease (n. of pts, %) | 12 (20.3%) | 7 (30.4%) | 5 (13.9%) | |
Hypertensive cardiomyopathy (n. of pts, %) | 5 (8.5%) | 2 (8,7%) | 3 (8.3%) | |
Idiopathic cardiomyopathy (n. of pts, %) | 4 (6.8%) | 1 (1.7%) | 3 (8.3%) | |
Atrial fibrillation (n. of pts, %) | 17 (28.8%) | 4 (4.3%) | 13 (36.1%) | 0.38 |
Diabetes mellitus (n. of pts, %) | 24 (40.7%) | 9 (39.1%) | 15 (41.7%) | 0.85 |
ADHF (n. of pts, %) | 48 (81.4%) | 17 (73.9%) | 31 (86.1%) | 0.28 |
APO (n. of pts, %) | 8 (8.5%) | 3 (13.0%) | 5 (13.9%) | 0.08 |
IRVF (n. of pts, %) | 2 (3.4%) | 1 (4.3%) | 1 (2.8%) | 0.68 |
CS (n. of pts, %) | 1 (1.7%) | 0 (0%) | 1 (2.8%) | 0.42 |
NT-proBNP (median values) pg/mL | 4874 (2752–10,959) | 3321 (1678–5657) | 6988 (3493–14,965) | <0.001 |
CRP (median values) mg/L | 20.5 (5.1–51.2) | 15.7 (2.4–47.4) | 22.7 (23.2–64.7) | 0.25 |
IL-6 (median values) ng/L | 4.8 (2.7–17) | 2.7 (2.7–6.9) | 5.6 (3.4–23.8) | 0.60 |
ALT (median values) UI/L | 18.5 (12–32) | 18 (11–29) | 19 (12–42) | 0.49 |
γGT (median values) UI/L | 38 (23–64) | 38 (21–64) | 37.5 (23.2–64.8) | 0.99 |
ALP (median values) UI/L | 78.5 (59.3–103.5) | 66.5 (52.5–95.3) | 85.5 (65–106.5) | 0.11 |
Total serum bilirubin (median values) mg/dL | 0.9 (0.6–1.2) | 0.7 (0.6–1.2) | 0.9 (0.7–1.2) | 0.21 |
Fecal calprotectin (median values) µg/g | 117.1 (47–170) | 44.5 (11.2–78,7) | 157 (122–197) | <0.001 |
Serum zonulin (median values) ng/mL | 54.4 (42.0–78.5) | 8.2 (6.9–9.7) | 8.4 (7.2–9.3) | 0.83 |
Fecal zonulin (median values) ng/g | 8.3 (7.0–9.6) | 49.7 (30–77.8) | 65 (42.1–82.4) | 0.72 |
TAPSE (mm) | 18 (15–20) | 19 (17–21) | 17 (14–19) | <0.05 |
PAPS (mmHg) | 44 (35–55) | 45 (35–55) | 40 (35–53) | 0.40 |
EF (median values %) | 49 (38.56) | 50 (44–56) | 48.5 (35–56.5) | 0.41 |
Ascites (n. of pts, %) | 2 (3.4%) | 0 (0%) | 2 (5.6%) | 0.25 |
IVC diameter (>21 mm, n. of pts, %) | 19 (32.2%) | 8 (34.8%) | 11 (30.6%) | 0.52 |
Fecal Calprotectin Values | ||||
---|---|---|---|---|
Main HF Treatment Strategies during Hospitalization | Total Cohort (n. 59) | <50 µg/g (n. 23) | >50 µg/g (n. 36) | p |
i.v. loop diuretics (n. of patients, %) | 57 (96.6%) | 21 (91.3%) | 35 (97.2%) | 0.317 |
Vasodilators (n. of patients, %) | 4 (6.8%) | 1 (4.3%) | 3 (8.3%) | 0.556 |
Inotropes (n. of patients, %) | 1 (1.7%) | 0 (0%) | 1 (2.8%) | 0.424 |
Oxygen supplementation (n. of patients, %) | 48 (81.4%) | 18 (78.2%) | 30 (83.3%) | 0.466 |
Non-invasive positive pressure ventilation (n. of patients, %) | 4 (6.8%) | 1 (4.3%) | 3 (8.3%) | 0.076 |
Fecal Calprotectin Values | ||||
Main HF Medications at Hospital Discharge | Total Cohort (n. 51) | <50 µg/g (n. 22) | >50 µg/g (n. 29) | p |
Loop diuretics (n. of patients, %) | 51 (100%) | 22 (100%) | 29 (100%) | 0.327 |
Beta-blockers (n. of patients, %) | 51 (100%) | 22 (100%) | 29 (100%) | 0.327 |
ARNIs (n. of patients, %) | 33 (64.7%) | 10 (45.5%) | 23 (79.3%) | 0.013 |
ACE-1s/ARBs (n. of patients, %) | 46 (90.2%) | 19 (86.7%) | 27 (93.1%) | 0.427 |
Aldosterone antagonists (n. of patients, %) | 40 (78.4%) | 18(81.8%) | 22 (75.9%) | 0.071 |
Ivabradine (n. of patients, %) | 2 (3.9%) | 1 (4.5%) | 1 (3.4%) | 0.843 |
SGLT-2 inhibitors (n. of patients, %) | 26 (51%) | 16 (72.7%) | 10 (34.5%) | 0.007 |
Rehospitalization and/or Death within 90 Days | |||
---|---|---|---|
NO (n. pts 40) | YES (n. pts 19) | Univariate p | |
Median age (years) | 81 (76–80) | 82 (73–87) | 0.90 |
Sex (females, %) | 13 (32.5%) | 10 (52.6%) | 0.14 |
NYHA class IV (n. of patients, %) | 8 (20%) | 11 (57.9%) | <0.05 |
Ischemic cardiomiopathy (n. of patients, %) | 14 (35%) | 7 (36.8%) | 0.86 |
Valvular heart disease (n. of patients, %) | 8 (20%) | 4 (6.8%) | |
Hypertensive cardiomyopathy (n. of patients, %) | 3 (7.5%) | 2 (21.1%) | |
Idiopathic cardiomyopathy (n. of patients, %) | 2 (5.0%) | 2 (10.5%) | |
Atrial fibrillation (n. of patients, %) | 13 (32.5%) | 4 (21.1%) | 0.75 |
Diabetes mellitus (n. of patients, %) | 14 (35%) | 10 (52.6%) | 0.20 |
NT-proBNP (median values) pg/mL | 4550 (1782–6876) | 11,917 (3539–21,266) | 0.001 |
CRP (median values) mg/L | 17.4 (4.3–47.4) | 24.9 (6.8–63.6) | 0.24 |
IL-6 (median values) ng/L | 4.5 (2.7–15.4) | 6.9 (2.9–26) | 0.29 |
ALT (median values) UI/L | 17 (12–24) | 24 (14–42) | 0.12 |
γGT (median values) UI/L | 37 (21–64.5) | 40 (28–64) | 0.49 |
ALP (median values) UI/L | 74.5 (57–95.5) | 88.5 (69.5–111.5) | 0.15 |
Total serum bilirubin (median values) mg/dl | 0.8 (0.6–1.2) | 0.9 (0.7–1.2) | 0.91 |
Fecal calprotectin (median values) µg/g | 98.5 (44.6–167.7) | 121.6 (110.1–176.5) | 0.09 |
Fecal calprotectin (>50 µg/g, n. of patients, %) | 19 (47.5%) | 17 (89.5%) | 0.002 |
Serum zonulin (median values) ng/mL | 8.5 (7.4–10.0) | 8.3 (6.6–9.2) | 0.45 |
Fecal zonulin (median values) ng/g | 49.4 (41.5–79.5) | 65 (42.4–76.1) | 0.87 |
TAPSE (mm) | 18 (15.9–21) | 17 (14.2–19) | 0.26 |
PAPS (mmHg) | 40 (35–50) | 45 (37.5–58.5) | 0.29 |
EF (median values %) | 50 (39.2–56.8) | 46 (29–55) | 0.33 |
Ascites (n. of patients, %) | 0 (0%) | 2 (10.5%) | 0.06 |
IVC diameter (>21 mm, n. of patients, %) | 11 (27.5%) | 8 (42.1%) | 0.61 |
Coefficient Beta | SE | Walds Statistic | Sign | OR | 95% CI | ||
---|---|---|---|---|---|---|---|
Inferior | Superior | ||||||
FC > 50 µg/g | 1.823 | 0.874 | 4.351 | 0.037 | 6.192 | 1.116 | 34.351 |
NT-proBNP > 1249 pg/mL | 2.208 | 0.698 | 10.013 | 0.002 | 9.093 | 2.317 | 35.691 |
Constant | −2.927 | 0.834 | 12.318 | 0.000 | 0.054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Covino, M.; Gallo, A.; Macerola, N.; Pero, E.; Ibba, F.; Camilli, S.; Riccardi, L.; Sarlo, F.; De Ninno, G.; Baroni, S.; et al. Role of Intestinal Inflammation and Permeability in Patients with Acute Heart Failure. Medicina 2024, 60, 8. https://doi.org/10.3390/medicina60010008
Covino M, Gallo A, Macerola N, Pero E, Ibba F, Camilli S, Riccardi L, Sarlo F, De Ninno G, Baroni S, et al. Role of Intestinal Inflammation and Permeability in Patients with Acute Heart Failure. Medicina. 2024; 60(1):8. https://doi.org/10.3390/medicina60010008
Chicago/Turabian StyleCovino, Marcello, Antonella Gallo, Noemi Macerola, Erika Pero, Francesca Ibba, Sara Camilli, Laura Riccardi, Francesca Sarlo, Grazia De Ninno, Silvia Baroni, and et al. 2024. "Role of Intestinal Inflammation and Permeability in Patients with Acute Heart Failure" Medicina 60, no. 1: 8. https://doi.org/10.3390/medicina60010008
APA StyleCovino, M., Gallo, A., Macerola, N., Pero, E., Ibba, F., Camilli, S., Riccardi, L., Sarlo, F., De Ninno, G., Baroni, S., Landi, F., & Montalto, M. (2024). Role of Intestinal Inflammation and Permeability in Patients with Acute Heart Failure. Medicina, 60(1), 8. https://doi.org/10.3390/medicina60010008