Epidemiology and Prevalence of Musculoskeletal Disabilities Following Motor Vehicle Accidents in Aljouf Region, Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Settings
2.2. Eligibility Criteria
2.3. Study Sample
2.4. Data Collection
2.5. Injury Severity Score (ISS)
2.6. Disability Score (DS)
2.7. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Status Report on Road Safety 2018: World Health Organization. 2018. Available online: https://www.who.int/publications/i/item/9789241565684 (accessed on 10 May 2024).
- Bethge, M.; Von Groote, P.; Giustini, A.; Gutenbrunner, C. The World Report on Disability: A challenge for rehabilitation medicine. Am. J. Phys. Med. Rehabil. 2014, 93, S4–S11. [Google Scholar] [CrossRef] [PubMed]
- Alghnam, S.; Alghamdi, M.; Alzahrani, S.; Alzomai, S.; Alghannam, A.; Albabtain, I.; Alsheikh, K.; Bajowaiber, M.; Alghamdi, A.; Alibrahim, F.; et al. The prevalence of long-term rehabilitation following motor-vehicle crashes in Saudi Arabia: A multicenter study. BMC Musculoskelet. Disord. 2022, 23, 202. [Google Scholar]
- Mansuri, F.A.; Al-Zalabani, A.H.; Zalat, M.M.; Qabshawi, R.I. Road safety and road traffic accidents in Saudi Arabia: A systematic review of existing evidence. Saudi Med. J. 2015, 36, 418. [Google Scholar] [CrossRef]
- Alshahri, S.; Cripps, R.; Lee, B.; Al-Jadid, M.S. Traumatic spinal cord injury in Saudi Arabia: An epidemiological estimate from Riyadh. Spinal Cord 2012, 50, 882–884. [Google Scholar] [CrossRef] [PubMed]
- Robert, A.A.; Zamzami, M.M. Traumatic spinal cord injury in Saudi Arabia: A review of the literature. Pan Afr. Med. J. 2013, 16, 104. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.M.; Findlay, D.M. Musculoskeletal health in the context of spinal cord injury. Curr. Osteoporos. Rep. 2017, 15, 433–442. [Google Scholar] [CrossRef]
- Lundell, L.; Savikj, M.; Kostovski, E.; Iversen, P.; Zierath, J.; Krook, A.; Chibalin, A.; Widegren, U. Protein translation, proteolysis and autophagy in human skeletal muscle atrophy after spinal cord injury. Acta Physiol. 2018, 223, e13051. [Google Scholar] [CrossRef]
- O’Brien, L.C.; Gorgey, A.S. Skeletal muscle mitochondrial health and spinal cord injury. World J. Orthop. 2016, 7, 628. [Google Scholar] [CrossRef]
- World Health Organization. Road Safety. 2020. Available online: https://www.who.int (accessed on 28 August 2024).
- Worldbank Mortality Caused by Road Traffic Injury (Per 100,000 People). Available online: https://liveprod.worldbank.org/en/indicator/sh-sta-traf-p5 (accessed on 28 August 2024).
- Al-Jadid, M.S. A retrospective study on traumatic spinal cord injury in an inpatient rehabilitation unit in central Saudi Arabia. Saudi Med. J. 2013, 34, 161–165. [Google Scholar]
- Alawad, M.O.; Alenezi, N.; Alrashedan, B.S.; Alsabieh, M.; Alnasser, A.; Abdulkader, R.S.; Surur, S. Traumatic spinal injuries in Saudi Arabia: A retrospective single-centre medical record review. BMJ Open 2020, 10, e039768. [Google Scholar] [CrossRef]
- Al-Arabi, K.M.; Al-Sebai, M.W. Epidemiological survey of spinal cord injury: A study of 377 patients. Ann. Saudi Med. 1992, 12, 269–273. [Google Scholar] [CrossRef] [PubMed]
- AboAbat, A.M. Spinal Cord Injury in Saudi Arabia: Characteristics, Bone Mineral Density, and Functional Electrical Stimulation for Upright Mobility; University of Salford: Manchester, UK, 1999. [Google Scholar]
- Alshammari, N.K. An Investigation into Spinal Injury from Vehicle Crashes in Saudi Arabia. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2011. [Google Scholar]
- Hou, S.; Zhang, Y.; Wu, W. Study on characteristics of fractures from road traffic accidents in 306 cases. Chin. J. Traumatol. = Zhonghua Chuang Shang Za Zhi 2002, 5, 52–54. [Google Scholar] [PubMed]
- Bengnér, U.; Ekbom, T.; Johnell, O.; Nilsson, B.E. Incidence of femoral and tibial shaft fractures: Epidemiology 1950–1983 in Malmö, Sweden. Acta Orthop. Scand. 1990, 61, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Butcher, N.E.; D’Este, C.; Balogh, Z.J. The quest for a universal definition of polytrauma: A trauma registry-based validation study. J. Trauma Acute Care Surg. 2014, 77, 620–623. [Google Scholar] [CrossRef]
- Alotaibi, F.; Alqahtani, A.H.; Alwadei, A.; Al-Raeh, H.M.; Abusaq, I.; Mufrrih, S.A.; Alqahtani, A.A.; Alsabaani, A.; Alsulami, M.M. Pattern of orthopedic injuries among victims of road traffic accidents in Aseer region, Saudi Arabia. Ann. Med. Surg. 2021, 67, 102509. [Google Scholar] [CrossRef]
- Al Nefaie, H.; Alsuhaymi, Z.; Alzahrani, A.; Alghamdi, A.; Esmael, E.; Eid, N.; Agheel, E.; ALJuraysan, F.; Alrawaili, N.; Alasmari, N. Fracture Patterns in Saudi Arabian Road Traffic Accidents Over the Last 12 Years: A Systematic Review. J. Healthc. Sci. (JOHS) 2022, 2, 413–421. [Google Scholar] [CrossRef]
- AlHammad, Z.; Nusair, Y.; Alotaibi, S.; Ababtain, R.; Alsulami, S.; Aljumah, G. A cross-sectional study of the prevalence and severity of maxillofacial fractures resulting from motor vehicle accidents in Riyadh, Saudi Arabia. Saudi Dent. J. 2020, 32, 314–320. [Google Scholar] [CrossRef]
- AbdelRazik, M.; Alquwaiz, I.A.; Khojah, A.A.; Alshahrani, A.Y.; Aldakkan, O.Z.; Alhumaydani, N.K.; Alqahtani, F.T. Clinical and epidemiological characteristics of road traffic accidents patients received at 2 intensive care units in Saudi Arabia—A cross-sectional study. J. Fam. Med. Prim. Care 2021, 10, 3863–3868. [Google Scholar] [CrossRef]
- Elnibras, M.; Abdullah, A.; Albalawi, I.; Elsiddig, S. Pattern and mortality of chest injuries among victims of road traffic accidents in a tertiary hosp West Saudi Arabia. Merit Res. J. Med. Med. Sci. 2017, 5, 484–494. [Google Scholar]
- Aloudah, A.A.; Almesned, F.A.; Alkanan, A.A.; Alharbi, T. Pattern of fractures among road traffic accident victims requiring hospitalisation: Single-institution experience in Saudi Arabia. Cureus 2020, 12, e6550. [Google Scholar] [CrossRef]
- Alraddadi, A.S.; Al Muklass, A.M.; Alhammad, S.; Alasmari, A.; Alhejji, K.; Alghathber, N. Fractures caused by car accidents admitted to a tertiary care hospital: A cross-sectional study. J. Musculoskelet. Surg. Res. 2020, 4, 36. [Google Scholar] [CrossRef]
- Alkhathlan, K.M.; Alzahrani, M.G.; Aldosari, K.H.; Alsheddi, M.I.; Alqeair, A.A. Traumatic spinal injuries in the Kingdom of Saudi Arabia: A study of associated injuries, management and mortality. Pan Afr. Med. J. 2019, 32, 142222. [Google Scholar] [CrossRef]
- Sonbol, A.M.; Almulla, A.A.; Hetaimish, B.M.; Taha, W.S.; Mohmmedthani, T.S.; Alfraidi, T.A.; Alrashidi, Y.A. Prevalence of femoral shaft fractures and associated injuries among adults after road traffic accidents in a Saudi Arabian trauma center. J. Musculoskelet. Surg. Res. 2018, 2, 62. [Google Scholar] [CrossRef]
- Mohmmedthani, T.S.; Alfraidi, T.A.; Sonbol, A.M.; Almulla, A.A.; Hetaimish, B.M.; Alrashidi, Y.A. Prevalence of femoral shaft fracture and associated injuries among children after road traffic accidents in a Saudi Arabian trauma center. J. Musculoskelet. Surg. Res. 2018, 2, 66. [Google Scholar] [CrossRef]
- Almansouf, A.S.; Alkhanbashi, O.K.; Alsumairi, S.; Alhussein, N.A.; Alosaimi, M.; Alquraishi, A.A.; Yousif, A. The prevalence of pediatric lower limb fractures following motor vehicle accidents at King Abdullah Specialist Children’s Hospital, Riyadh, Saudi Arabia. Cureus 2022, 14, e28724. [Google Scholar] [CrossRef]
- Algahtany, M. Association between orthopedic fractures and traumatic spinal injury due to road traffic accidents. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7878–7886. [Google Scholar] [CrossRef] [PubMed]
- Shults, R.A.; Jones, B.H.; Kresnow, M.J.; Langlois, J.A.; Guerrero, J.L. Disability among adults injured in motor-vehicle crashes in the United States. J. Saf. Res. 2004, 35, 447–452. [Google Scholar] [CrossRef]
- Khalaf, M.K.; Rosen, H.E.; Mitra, S.; Neki, K.; Mbugua, L.W.; Hyder, A.A.; Paichadze, N. Estimating the burden of disability from road traffic injuries in 5 low-and middle-income countries: Protocol for a prospective observational study. JMIR Res. Protoc. 2023, 12, e40985. [Google Scholar] [CrossRef]
- Zieliński, G.; Gawda, P. Analysis of the Use of Sample Size and Effect Size Calculations in a Temporomandibular Disorders Randomised Controlled Trial—Short Narrative Review. J. Pers. Med. 2024, 14, 655. [Google Scholar] [CrossRef]
- Ngoie, L.B.; Dybvik, E.; Hallan, G.; Gjertsen, J.E.; Mkandawire, N.; Varela, C.; Young, S. Prevalence, causes and impact of musculoskeletal impairment in Malawi: A national cluster randomised survey. PLoS ONE 2021, 16, e0243536. [Google Scholar] [CrossRef]
- Smythe, T.; Mactaggart, I.; Kuper, H.; Oye, J.; Sieyen, N.C.; Lavy, C.; Polack, S. Prevalence and causes of musculoskeletal impairment in Fundong District, North-West Cameroon: Results of a population-based survey. Trop. Med. Int. Health 2017, 22, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Atijosan, O.; Rischewski, D.; Simms, V.; Kuper, H.; Linganwa, B.; Nuhi, A.; Foster, A.; Lavy, C. A national survey of musculoskeletal impairment in Rwanda: Prevalence, causes and service implications. PLoS ONE 2008, 3, e2851. [Google Scholar] [CrossRef] [PubMed]
- Loftis, K.L.; Price, J.; Gillich, P.J. Evolution of the abbreviated injury scale: 1990–2015. Traffic Inj. Prev. 2018, 19, S109–S113. [Google Scholar] [CrossRef] [PubMed]
- Cantais, E.; Paut, O.; Giorgi, R.; Viard, L.; Camboulives, J. Evaluating the prognosis of multiple, severely traumatised children in the intensive care unit. Intensive Care Med. 2001, 27, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Rapsang, A.G.; Shyam, D.C. Scoring Systems of Severity in Patients with Multiple Trauma. Cirugía Española (Engl. Ed.) 2015, 93, 213–221. [Google Scholar] [CrossRef]
- Bull, J. Disabilities caused by road traffic accidents and their relation to severity scores. J. Traffic Med. 1986, 14, 14. [Google Scholar] [CrossRef]
- Meena, R.; Singh, A.; Singh, C.; Chishti, S.; Kumar, A.; Langshong, R. Pattern of fractures and dislocations in a tertiary hospital in North-East India. Int. J. Epidemiol. 2013, 11, 847. [Google Scholar]
- Memish, Z.A.; Jaber, S.; Mokdad, A.H.; AlMazroa, M.A.; Murray, C.J.; Al Rabeeah, A.A.; Collaborators, S.B.o.D. Peer reviewed: Burden of disease, injuries, and risk factors in the Kingdom of Saudi Arabia, 1990–2010. Prev. Chronic Dis. 2014, 11, 140176. [Google Scholar] [CrossRef]
- Mokdad, A.H.; Jaber, S.; Aziz, M.I.A.; AlBuhairan, F.; AlGhaithi, A.; AlHamad, N.M.; Al-Hooti, S.N.; Al-Jasari, A.; AlMazroa, M.A.; AlQasmi, A.M. The state of health in the Arab world, 1990–2010: An analysis of the burden of diseases, injuries, and risk factors. Lancet 2014, 383, 309–320. [Google Scholar] [CrossRef]
- Bendak, S.; Al-Shammari, N.; Kim, I.-J. Fifty Years of Motor Vehicle Crashes in Saudi Arabia: A Way Forward. Open Transp. J. 2022, 16, e187444782208180. [Google Scholar] [CrossRef]
- Alenezi, E.Z.; AlQahtani, A.M.; Althunayan, S.F.; Alanazi, A.S.; Aldosari, A.O.; Alharbi, A.M.; Alanazi, S.T.; Alanazi, S.S.S.; Tubayqi, H.G.A.; Taheri, T.A. Prevalence and determinants of road traffic accidents in Saudi Arabia: A systematic review. Cureus 2023, 15, e51205. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.A. The Progressive Public Measures of Saudi Arabia to Tackle Covid-19 and Limit Its Spread. Int. J. Environ. Res. Public Health 2021, 18, 783. [Google Scholar] [CrossRef] [PubMed]
- Alghnam, S.; Towhari, J.; Alkelya, M.; Binahmad, A.; Bell, T.M. The effectiveness of introducing detection cameras on compliance with mobile phone and seatbelt laws: A before-after study among drivers in Riyadh, Saudi Arabia. Inj. Epidemiol. 2018, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Aldossari, M.; AlDerah, S.; Almogheer, N.; Alhammad, H. 262 Road Safety Efforts in the KSA under the National Transformation, Vision 2030; BMJ Publishing Group Ltd.: Hoboken, NJ, USA, 2022. [Google Scholar]
- Glèlè-Ahanhanzo, Y.; Kpozèhouen, A.; Paraïso, N.M.; Makoutodé, P.; Biaou, C.O.A.; Remacle, E.; Ouendo, E.M.; Levêque, A. Disability and Related Factors among Road Traffic Accident Victims in Benin: Study from Five Public and Faith-Based Hospitals in Urban and Suburban Areas. Open, J. Epidemiol. 2018, 08, 226–241. [Google Scholar] [CrossRef]
- Abedzadeh-Kalahroudi, M.; Razi, E.; Sehat, M.; Lari, M.A. Measurement of disability and its predictors among trauma patients: A follow-up study. Arch. Trauma Res. 2015, 4, e29393. [Google Scholar] [CrossRef]
- Alslamah, T.; Alsofayan, Y.M.; Al Imam, M.H.; Almazroa, M.A.; Abalkhail, A.; Alasqah, I.; Mahmud, I. Emergency Medical Service Response Time for Road Traffic Accidents in the Kingdom of Saudi Arabia: Analysis of National Data (2016–2020). Int. J. Environ. Res. Public Health 2023, 20, 3875. [Google Scholar] [CrossRef]
- Algahtany, M.A. Epidemiology, trend and in-hospital outcome of traumatic spinal injuries due to road traffic accidents. Pak. J. Med. Sci. 2022, 38, 492–497. [Google Scholar] [CrossRef]
- Al Babtain, I.; Alabdulkarim, A.; Alquwaiee, G.; Alsuwaid, S.; Alrushid, E.; Albalawi, M. Outcomes of road traffic accidents before and after the implementation of a seat belt detection system: A comparative retrospective study in Riyadh. Cureus 2022, 14, e27298. [Google Scholar] [CrossRef] [PubMed]
- Yagoub, U.; Saiyed, N.S.; Rahim, B.-e.E.; Musawa, N.; Al Zahrani, A.M. Road traffic injuries and related safety measures: A multicentre analysis at military hospitals in Tabuk, Saudi Arabia. Emerg. Med. Int. 2021, 2021, 6617381. [Google Scholar] [CrossRef] [PubMed]
- Gorge, J.; Alsufyani, L.; Almefreh, G.; Aljuhani, S.; Almutairi, L.; Al Babtain, I.; Othman, F. The age and gender distribution of patients admitted following nonfatal road traffic accidents in Riyadh: A cross-sectional study. Int. J. Crit. Illn. Inj. Sci. 2020, 10, 76–80. [Google Scholar] [CrossRef]
- Ahmed, S.; Mahmood, M.; Rizvi, S.A.H.; Siddiqui, A.A.; Shahid, N.; Akram, W.A.; Bano, S. Frequency and nature of road traffic injuries: Data of more than 10,000 patients from Ha’il, Saudi Arabia. Cureus 2019, 11, e3830. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Salam, D.M.; Alruwaili, R.R.; Alhablani, F.S.; Alfahel, N.H.; Almunahi, A.F.; Alblawi, A.A. Epidemiologic aspects of trauma in al-Jouf region, saudi arabia: A retrospective study. Asian, J. Pharm. Clin. Res. 2019, 12, 261–264. [Google Scholar] [CrossRef]
- Sisimwo, P.K.; Mwaniki, P.K.; Bii, C. Crash characteristics and injury patterns among commercial motorcycle users attending Kitale level IV district hospital, Kenya. Pan Afr. Med. J. 2014, 19, 296. [Google Scholar] [CrossRef] [PubMed]
- Hailemichael, F.; Suleiman, M.; Pauolos, W. Magnitude and outcomes of road traffic accidents at Hospitals in Wolaita Zone, SNNPR, Ethiopia. BMC Res. Notes 2015, 8, 135. [Google Scholar] [CrossRef] [PubMed]
- Seid, M.; Azazh, A.; Enquselassie, F.; Yisma, E. Injury characteristics and outcome of road traffic accident among victims at Adult Emergency Department of Tikur Anbessa specialised hospital, Addis Ababa, Ethiopia: A prospective hospital based study. BMC Emerg. Med. 2015, 15, 10. [Google Scholar] [CrossRef]
- Eshrak, A.; Ali, A.; Yousef, K. Pattern of road traffic injuries in Yemen: A hospital-based study. Pan Afr. Med. J. 2018, 29, 145. [Google Scholar] [CrossRef]
- Peden, M.M. World Report on Road Traffic Injury Prevention: World Health Organization. 2004. Available online: https://www.who.int/publications/i/item/world-report-on-road-traffic-injury-prevention (accessed on 28 August 2024).
- Adili, A.; Bhandari, M.; Lachowski, R.J.; Kwok, D.C.; Dunlop, R.B. Organ injuries associated with femoral fractures: Implications for severity of injury in motor vehicle collisions. J. Trauma. Acute Care Surg. 1999, 46, 386–391. [Google Scholar] [CrossRef]
- Chalya, P.L.; Mabula, J.B.; Dass, R.M.; Mbelenge, N.; Ngayomela, I.H.; Chandika, A.B.; Gilyoma, J.M. Injury characteristics and outcome of road traffic crash victims at Bugando Medical Centre in Northwestern Tanzania. J. Trauma Manag. Outcomes 2012, 6, 1. [Google Scholar] [CrossRef]
- Sharaf, E.; Al Hammad, F. Analysis of traffic injuries. In Proceedings of the First National Conference on the Traffic Safety, Riyadh, Saudi Arabia, 20–22 December 1997; pp. 29–56. [Google Scholar]
- Al-Ghamdi, A.S. Pedestrian–vehicle crashes and analytical techniques for stratified contingency tables. Accid. Anal. Prev. 2002, 34, 205–214. [Google Scholar] [CrossRef]
- Al-Ghamdi, A. Road Traffic Accidents in Saudi Arabia: Causes, Effects, and Solutions; King Abdulaziz City for Science and Technology: Riyadh, Saudi Arabia, 1999. [Google Scholar]
- AlGhamdi, S.; Alasmari, F.S.; Alarjani, M.B.; Alamri, H.S.; Aldamkh, A.A.; Alanazi, I.A.; Alarjani, M.B.; Moafa, A.I.; Alrusayyis, N.S. Association between maxillofacial fractures and brain injuries in trauma patients: A cross-sectional study in the Kingdom of Saudi Arabia. Pan Afr. Med. J. 2022, 43, 193. [Google Scholar] [CrossRef]
- Aldwsari, O.M.; Aldosari, K.H.; Alzahrani, M.K.; Alzahrani, Z.A.; Alanazi, A.H.; Alkhathlan, K.M.; Alzahrani, M.G.; Alzahrani, A.H.; Al-Ghamdi, S. Associated head injuries and survival rate of patients with maxillofacial fractures in road traffic accident: A prospective study in Saudi Arabia. J. Fam. Med. Prim. Care 2018, 7, 1548–1554. [Google Scholar] [CrossRef]
- Modi, A.D.; Parmar, A.P.; Parmar, V.N.; Patel, D.S.; Bhagora, R.V.; Darji, J.A. Demographic profile of head injury cases in Bhavnagar region, Gujarat. Int. J. Res. Med. 2014, 3, 154–157. [Google Scholar]
- Arora, S.; Khajuria, B. Patterns of Cranio Cerebral Injuries in Fatal Vehicular Accidents in Jammu Region-J&K State. JK Sci. 2016, 18, 181. [Google Scholar]
- Hitosugi, M.; Mizuno, K.; Nagai, T.; Tokudome, S. Analysis of Maxillofacial Injuries of Vehicle Passengers Involved in Frontal Collisions. J. Oral. Maxillofac. Surg. 2011, 69, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Bharadwaj, R.; Khatri, B.; Krishna, L.G. Incidence rate and epidemiology of cervical spinal injuries and management in tertiary care hospital of Delhi: A institutional based retrospective study. Adv. Human. Biol. 2021, 11, 262–265. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Zhao, Y.; Ou, L.; Zhou, Y.; Li, C.; Liu, J.; Chen, Y.; Yu, H.; Wang, Q. Incidence and pattern of traumatic spinal fractures and associated spinal cord injury resulting from motor vehicle collisions in China over 11 years: An observational study. Medicine 2016, 95, e5220. [Google Scholar] [CrossRef] [PubMed]
- Freitas, S.; Barrett-Connor, E.; Ensrud, K.; Fink, H.; Bauer, D.; Cawthon, P.; Lambert, L.; Orwoll, E.; Group, O.F.i.M.R. Rate and circumstances of clinical vertebral fractures in older men. Osteoporos. Int. 2008, 19, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Kochar, M.P.; Singh, S.P. A prospective randomised trial on trauma thoracic cage with rib fracture especially first rib fracture and associated complications. Int. J. Surg. 2016, 3, 1278–1282. [Google Scholar] [CrossRef]
- Joshi, S.; Panday, S.; Parulkar, G.; Sen, P. Bilateral fracture of the first rib: Report of two cases. J. Bone Jt. Surg. Br. Vol. 1965, 47, 283–285. [Google Scholar] [CrossRef]
- Leucht, P.; Fischer, K.; Muhr, G.; Mueller, E.J. Epidemiology of traumatic spine fractures. Injury 2009, 40, 166–172. [Google Scholar] [CrossRef]
- Saboe, L.A.; Reid, D.C.; Davis, L.A.; Warren, S.A.; Grace, M.G. Spine trauma and associated injuries. J. Trauma. Acute Care Surg. 1991, 31, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, H.; Cao, C.; Lu, H.; Zhao, Y.; Zeng, G.; Li, C.; Zhou, Y.; Ou, L.; Liu, J. Incidence patterns of traumatic upper limb fractures in children and adolescents: Data from medical university-affiliated hospitals in Chongqing, China. Medicine 2019, 98, e17299. [Google Scholar] [CrossRef]
- Joeris, A.; Lutz, N.; Wicki, B.; Slongo, T.; Audigé, L. An epidemiological evaluation of pediatric long bone fractures—A retrospective cohort study of 2716 patients from two Swiss tertiary pediatric hospitals. BMC Pediatr. 2014, 14, 314. [Google Scholar] [CrossRef] [PubMed]
- Haris, A.; Zulfiqar, T.; Ali, A. Frequency Of Upper Extremity Fractures In Patients With Road Traffic Accidents And Its Association With Age. Med. Sci. J. Adv. Res. 2022, 3, 143–148. [Google Scholar] [CrossRef]
- Chigblo, P.; Lawson, E.; Tidjani, I.F.; Padonou, A.; Nezien, C.T.; Goukodadja, O.; Madougou, S.; Akue, A.H.-M. Epidemiology of fractures in a tropical country. Eur. Sci. J. 2017, 13, 416–426. [Google Scholar] [CrossRef]
- Omoke, N.I.; Ekumankama, F.O. Incidence and pattern of extremity fractures seen in accident and emergency department of a Nigerian teaching hospital. Niger. J. Surg. 2020, 26, 28–34. [Google Scholar] [CrossRef]
- AlTurki, A.A.; AlAqeely, K.S.; AlMugren, T.S.; AlZimami, I.S. Analysis of femoral fracture post motor vehicle accidents. Saudi Med. J. 2019, 40, 41. [Google Scholar] [CrossRef] [PubMed]
- Enger, M.; Skjaker, S.A.; Melhuus, K.; Nordsletten, L.; Pripp, A.H.; Moosmayer, S.; Brox, J.I. Shoulder injuries from birth to old age: A 1-year prospective study of 3031 shoulder injuries in an urban population. Injury 2018, 49, 1324–1329. [Google Scholar] [CrossRef]
- Abrams, R.; Akbarnia, H. Shoulder Dislocations Overview; StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459125/ (accessed on 15 May 2024).
- Agudelo-Ledezma, H.H.; Ruiz-Mazuera, L.C.; Valencia-Amaya, N.; Bravo-Realpe, K.A.; Hurtado-Burbano, Y.V.; Cabrera-Correal, M.C.; Rojas-Díaz, A.B.; Ortiz-Martínez, R.A. Performance of ISS, NISS, and RTS trauma scales in traffic accidents to predict mortality in a high-complexity hospital. Rev. Colomb. De Cirugía 2022, 37, 640–652. [Google Scholar] [CrossRef]
- Soberg, H.L.; Bautz-Holter, E.; Roise, O.; Finset, A. Long-term multidimensional functional consequences of severe multiple injuries two years after trauma: A prospective longitudinal cohort study. J. Trauma Acute Care Surg. 2007, 62, 461–470. [Google Scholar] [CrossRef]
- Kendrick, D.; Vinogradova, Y.; Coupland, C.; Christie, N.; Lyons, R.A.; Towner, E.L. Getting back to work after injury: The UK Burden of Injury multicentre longitudinal study. BMC Public. Health 2012, 12, 584. [Google Scholar] [CrossRef] [PubMed]
Variables | The Year 2020 | Year 2021 | Year 2022 | p-Value between Years | |||
---|---|---|---|---|---|---|---|
N (%) Mean ± SD | x2 (p-Value) | N (%) Mean ± SD | x2 (p-Value) | N (%) Mean ± SD | x2 (p-Value) | ||
Number of patients | 88 | 168 | 153 | ||||
Age | 34.86 ± 10.32 | 34.27 ± 12.22 | 33.97 ± 12.19 | 0.84 | |||
Age group (years) | 35.41 (<0.001 ^^^) | 81.07 (<0.001 ^^^) | 71.04 (<0.001 ^^^) | 0.06 | |||
18–24 | 13 (14.8) | 46 (27.4) | 39 (25.5) | ||||
25–34 | 36 (40.9) | 40 (23.8) | 53 (34.6) | ||||
35–44 | 23 (26.1) | 52 (31.0) | 29 (19.0) | ||||
45–54 | 13 (14.8) | 23 (13.7) | 22 (14.4) | ||||
55–64 | 3 (3.4) | 4 (2.4) | 7 (4.6) | ||||
≥65 | 0 (0.0) | 3 (1.8) | 3 (2) | ||||
Gender | 55.68 (<0.001 ^^^) | 72.02 (<0.001 ^^^) | 54.12 (<0.001 ^^^) | ||||
Male | 79 (89.8) | 139 (82.7) | 122 (79.7) | 0.13 | |||
Female | 9 (10.2) | 29 (17.3) | 31 (20.3) | ||||
Nationality | 20.05 (<0.001 ^^^) | 54.86 (<0.001 ^^^) | 49.47 (<0.001 ^^^) | 0.65 | |||
Saudi | 65 (73.90) | 132 (78.6) | 120 (78.4) | ||||
Non-Saudi | 23 (26.1) | 36 (21.4) | 33 (21.6) |
Variables | Year 2020 | Year 2021 | Year 2022 | p-Value between Years | |||
---|---|---|---|---|---|---|---|
N (%) Mean (±SD) | x2 (p-Value) | N (%) Mean (±SD) | x2 (p-Value) | N (%) Mean (±SD) | x2 (p-Value) | ||
Number of injuries | 88 | 86.27 (<0.001 ^^^) | 168 | 151.00 (<0.001 ^^^) | 153 | 184.75 (<0.001 ^^^) | 0.52 |
One | 70 (79.6) | 130 (77.4) | 130 (85.0) | ||||
Two | 14 (15.9) | 30 (17.8) | 17 (11.1) | ||||
Three or more | 4 (4.5) | 8 (4.8) | 6 (3.9) | ||||
Site of injury | 24.07 (<0.001 ^^^) | 41.92 (<0.001 ^^^) | 48.50 (<0.001 ^^^) | 0.87 | |||
Head and neck (including cervical spine) | 19 (21.6) | 44 (26.2) | 31 (20.3) | ||||
Thorax (including thoracic spine) | 18 (20.5) | 41 (24.4) | 26 (17) | ||||
Spine (lumbosacral) | 6 (6.8) | 9 (5.4) | 10 (6.5) | ||||
Upper extremity (including shoulder girdle) | 34 (38.6) | 62 (36.9) | 62 (40.5) | ||||
Lower extremity (including pelvic girdle) | 32 (36.4) | 60 (35.7) | 53 (34.6) | ||||
Trauma Severity (ISS) | 11.82 ± 7.71 | 32.52 (<0.001 ^^^) | 11.23 ± 6.42 | 127.00 (<0.001 ^^^) | 12.16 ± 7.28 | 35.89 (<0.001 ^^^) | 0.04 ^ |
Mild, ISS < 9 | 17 (19.3) | 24 (14.3) | 32 (20.9) | ||||
Moderate, ISS = 9–15 | 43 (48.9) | 103 (61.3) | 64 (41.8) | ||||
Severe, ISS= 16–24 | 22 (25) | 34 (20.2) | 44 (28.8) | ||||
Very severe, ISS ≥ 25 | 6 (6.8) | 7 (4.2) | 13 (8.5) | ||||
Disability score | 68.64 (<0.001 ^^^) | 59.57 (<0.001 ^^^) | 71.60 (<0.001 ^^^) | 0.003 ^^ | |||
DS1 | 54 (61.4) | 102 (60.7) | 74 (48.4) | ||||
DS2 | 11 (12.5) | 42 (25.0) | 45 (29.4) | ||||
DS3 | 20 (22.7) | 24 (14.3) | 33 (21.6) | ||||
DS4 | 3 (3.4) | 0 (0.0) | 1 (0.7) | ||||
Hospital admission | 0.41 (ns) | 130.38 (<0.001 ^^^) | 1.47 (ns) | <0.001 ^^^ | |||
Yes | 47 (53.4) | 158 (94) | 84 (54.9) | ||||
No | 41 (46.6) | 10 (6) | 69 (45.1) | ||||
GCS | 14.44 ± 2.26 | 14.95 ± 0.56 | 14.53 ± 2.57 | 0.07 |
Variables | Year 2020 | Year 2021 | Year 2022 | p-Value between Years | |||
---|---|---|---|---|---|---|---|
N (%) | x2 (p-Value) | N (%) | x2 (p-Value) | N (%) | x2 (p-Value) | ||
Skull bones | N = 2 | 0.00 (ns) | N = 25 | 29.56 (<0.001 ^^^) | N = 12 | 1.33 (ns) | 0.10 |
The base of the skull with temporal bone | 1 (50) | 3 (12) | 4 (33.3) | ||||
Parietal bone | 1 (0.0) | 2 (8) | 0 (0.0) | ||||
Occipital bone | 0 (0.0) | 2 (8) | 0 (0.0) | ||||
Head trauma | 1 (50.0) | 18 (72) | 8 (66.7) | ||||
Facial bones | N = 11 | 9 (<0.05 ^) | N = 12 | 1.00 (ns) | N = 28 | 26.58 (<0.001 ^^^) | 0.25 |
Orbital bone | 1 (9.1) | 2 (16.7) | 5 (17.86) | ||||
Nasal bone | 7 (63.6) | 3 (25.0) | 14 (50.0) | ||||
Zygomatic bone | 0 (0.0) | 2 (16.7) | 1 (3.6) | ||||
Maxillary bone | 0 (0.0) | 1 (8.2) | 4 (14.3) | ||||
Mandible | 1 (9.1) | 2 (16.7) | 2 (7.2) | ||||
Multiple facial bones | 2 (18.2) | 2 (16.7) | 2 (7.2) | ||||
Cervical vertebra | N = 5 | 1.80 (ns) | N = 7 | 1.29 (ns) | N = 11 | 2.27 (ns) | 0.94 |
Upper cervical fracture (C1-C2) | 1 (20.0) | 2 (28.6) | 3 (27.3) | ||||
Subaxial cervical fracture (C3-C7) | 4 (80.0) | 5 (71.4) | 8 (72.7) |
Variables | Year 2020 | Year 2021 | Year 2022 | p-Value between Years | |||
---|---|---|---|---|---|---|---|
N (%) | x2 (p-Value) | N (%) | x2 (p-Value) | N (%) | x2 (p-Value) | ||
Location of fractured ribs | N = 10 | 1.6 (ns) | N = 28 | 19.14 (<0.001 ^^^) | N = 28 | 22.36 (<0.001 ^^^) | 0.16 |
Upper (1st–3rd ribs) | 0 (0.0) | 6 (21.4) | 2 (7.1) | ||||
Middle (4th–9th ribs) | 7 (70.0) | 20 (71.4) | 21 (75.0) | ||||
Lower (10th–12th ribs) | 3 (30.0) | 2 (7.1) | 5 (17.9) | ||||
Number of fractured ribs | |||||||
1–2 | 2 (20.00) | 3.6 (ns) | 9 (36.0) | 8.72 (<0.05 ^) | 7 (26.9) | 22.36 (<0.01 ^^) | 0.04 ^ |
3–5 | 8 (80.0) | 14 (56.0) | 17 (65.4) | ||||
≥6 | 0 (0.0) | 2 (8.0) | 2 (7.7) | ||||
Side of fractured ribs | 5.33 (0.02) | 13.37 (<0.001 ^^^) | 15.13 (<0.001 ^^^) | 0.99 | |||
Right | 10 (83.3) | 23 (85.2) | 27 (84.4) | ||||
Left | 2 (16.7) | 4 (14.8) | 5 (15.6) | ||||
Thoracic vertebra | N = 7 | 3.86 (ns) | N = 22 | 4.91 (ns) | N = 11 | 1.00 (ns) | 0.51 |
1st thoracic vertebra | 0 (0.0) | 0 (0.0) | 2 (18.2) | ||||
4th thoracic vertebra | 0 (0.0) | 3 (13.6) | 0 (0.0) | ||||
5th thoracic vertebra | 1 (14.3) | 4 (18.2) | 2 (18.2) | ||||
6th thoracic vertebra | 0 (0.0) | 3 (13.6) | 0 (0.0) | ||||
7th thoracic vertebra | 1 (14.3) | 3 (13.6) | 0 (0.0) | ||||
8th thoracic vertebra | 0 (0.0) | 2 (9.1) | 0 (0.0) | ||||
9th thoracic vertebra | 0 (0.0) | 1 (4.5) | 0 (0.0) | ||||
10th thoracic vertebra | 0 (0.0) | 1 (4.5) | 0 (0.0) | ||||
11th thoracic vertebra | 1 (14.3) | 0 (0.0) | 3 (27.3) | ||||
12th thoracic vertebra | 4 (57.1) | 5 (22.7) | 4 (36.4) |
Variables | Year 2020 | Year 2021 | Year 2022 | p-Value between Years | |||
---|---|---|---|---|---|---|---|
N (%) | x2 (p-Value) | N (%) | x2 (p-Value) | N (%) | x2 (p-Value) | ||
Lumbar vertebra | N = 7 | 0.14 (ns) | N = 9 | 1.22 (ns) | N = 6 | 2.67 (ns) | 0.35 |
1st lumbar vertebra | 4 (57.1) | 3 (33.3) | 5 (83.3) | ||||
2nd lumbar vertebra | 3 (42.9) | 3 (33.3) | 1 (16.7) | ||||
3rd lumbar vertebra | 0 (0.0) | 2 (22.2) | 0 (0.0) | ||||
5th lumbar vertebra | 0 (0.0) | 1 (11.1) | 0 (0.0) |
Variables | Year 2020 | Year 2021 | Year 2022 | p-Value between Years | |||
---|---|---|---|---|---|---|---|
N (%) | x2 (p-Value) | N (%) | x2 (p-Value) | N (%) | x2 (p-Value) | ||
Side of the fractured limb | N = 42 | 4.67 (0.03) | N = 68 | 28.47 (<0.001 ^^^) | N = 69 | 8.23 (<0.01 ^^) | 0.07 |
Right | 28 (66.7) | 56 (82.4) | 46 (66.7) | ||||
Left | 14 (33.3) | 12 (17.6) | 23 (33.3) | ||||
Upper limb region | N = 43 | 60.09 (<0.001 ^^^) | N = 68 | 29.35 (<0.01 ^^) | N = 70 | 66.80 (<0.001 ^^^) | 0.25 |
Clavicle | 5 (11.6) | 8 (11.8) | 12 (17.1) | ||||
Scapula | 3 (7.0) | 0 (0.0) | 4 (5.7) | ||||
Humerus | 15 (34.9) | 17 (25.0) | 19 (27.1) | ||||
Radius | 7 (16.3) | 10 (14.7) | 14 (20.0) | ||||
Ulna | 5 (11.6) | 7 (10.3) | 3 (4.3) | ||||
Carpal bones | 1 (2.3) | 1 (1.5) | 2 (2.9) | ||||
Metacarpal bones | 1 (2.3) | 7 (10.3) | 6 (8.6) | ||||
Phalanges | 1 (2.3) | 4 (5.9) | 1 (1.4) | ||||
Shoulder dislocation | 1 (2.3) | 9 (13.2) | 5 (7.1) | ||||
Elbow dislocation | 1 (2.3) | 3 (4.4) | 2 (2.9) | ||||
Carpometacarpal dislocation | 1 (2.3) | 0 (0.0) | 0 (0.0) | ||||
Interphalangeal dislocation | 1 (2.3) | 0 (0.0) | 1 (1.4) | ||||
Amputation distal forearm | 0 (0.0) | 2 (2.9) | 0 (0.0) | ||||
Quadriplegia | 1 (2.3) | 0 (0.0) | 1 (1.4) |
Variables | Year 2020 | Year 2021 | Year 2022 | p-Value between Years | |||
---|---|---|---|---|---|---|---|
N (%) | x2 (p-Value) | N (%) | x2 (p-Value) | N (%) | x2 (p-Value) | ||
Side of fractured limb | N = 38 | 0.95 (ns) | N = 84 | 58.33 (<0.001 ^^^) | N = 75 | 4.81 (<0.05 ^) | <0.001 ^^^ |
Right | 22 (57.9) | 77 (91.7) | 47 (62.7) | ||||
Left | 16 (42.1) | 7 (8.3) | 28 (37.3) | ||||
Lower limb region | N = 41 | 17.02 (ns) | N = 86 | 29.39 (<0.001 ^^^) | N = 76 | 73.58 (<0.001 ^^^) | <0.01 ^^ |
Acetabulum | 4 (9.8) | 11 (12.8) | 7 (9.2) | ||||
Hip bone | 2 (4.9) | 5 (5.8) | 6 (7.9) | ||||
Femur | 7 (17.1) | 20 (23.3) | 21 (27.6) | ||||
Patella | 4 (9.8) | 0 (0.0) | 1 (1.3) | ||||
Tibia | 6 (14.6) | 14 (16.3) | 12 (15.8) | ||||
Fibula | 6 (14.6) | 13 (15.1) | 9 (11.8) | ||||
Tarsal bones | 1 (2.4) | 2 (2.3) | 3 (3.9) | ||||
Metatarsal bones | 3 (7.3) | 8 (9.3) | 6 (8.6) | ||||
Phalanges | 0 (0.0) | 0 (0.0) | 2 (2.6) | ||||
Pelvic fracture | 3 (7.3) | 7 (8.1) | 4 (5.3) | ||||
Pelvic dislocation | 1 (2.4) | 0 (0.0) | 3 (3.9) | ||||
Interphalangeal dislocation | 1 (2.4) | 0 (0.0) | 1 (1.3) | ||||
Ankle trauma | 0 (0.0) | 3 (3.5) | 4 (5.3) | ||||
Amputation lower limb | 1 (2.4) | 0 (0.0) | 0 (0.0) | ||||
Quadriplegia | 2 (4.9) | 0 (0.0) | 1 (1.3) |
Variables | DS1 (N = 230) | DS2 (N = 98) | DS3 (N = 77) | DS4 (N = 4) | x2 (p-Value) Cramer’s V |
---|---|---|---|---|---|
N (%) | N (%) | N (%) | N (%) | ||
Age group (years) | 19.507 (ns) | ||||
18–24 | 59 (60.2) | 26 (26.5) | 13 (13.3) | 0 (0.0) | |
25–34 | 63 (48.8) | 34 (26.4) | 29 (22.5) | 3 (2.3) | |
35–44 | 63 (60.6) | 16 (15.4) | 24 (23.1) | 1 (1.0) | |
45–54 | 36 (62.1) | 13 (22.4) | 9 (15.5) | 0 (0.0) | |
55–64 | 7 (50.0) | 6 (42.9) | 1 (7.1) | 0 (0.0) | |
≥65 | 2 (33.3) | 3 (50.0) | 1 (16.7) | 0 (0.0) | |
Gender | 5.736 (ns) | ||||
Male | 189 (55.6) | 77 (22.6) | 70 (20.6) | 4 (1.2) | |
Female | 41 (59.4) | 21 (30.4) | 7 (10.1) | 0 (0.0) | |
Site of injury | 9.191 (ns) | ||||
Head and neck (including cervical spines) | 44 (46.7) | 34 (36.2) | 15 (16.0) | 1 (1.1) | |
Thorax (including thoracic spines) | 60 (70.6) | 17 (20.0) | 8 (9.4) | 0 (0.0) | |
Spine (lumbosacral) | 13 (52.0) | 7 (28.0) | 5 (20.0) | 0 (0.0) | |
Upper extremity (including shoulder girdle) | 91 (49.2) | 34 (18.4) | 32 (17.3) | 1 (0.5) | |
Lower extremity (including pelvic girdle) | 57 (39.3) | 35 (24.1) | 51 (35.2) | 2 (1.4) |
Variables | Odds Ratio (95% CI) | Relative Risk (95% CI) | p-Value Fisher’s Exact Test |
---|---|---|---|
Sex | |||
Female | Ref | Ref | Ref |
Male | 2.46 (1.09–5.79) | 2.15 (1.08–4.46) | 0.03 ^ |
Age (years) | |||
≥65 | Ref | Ref | Ref |
18–24 | 0.76 (0.10–9.64) | 0.80 (0.20–4.62) | 0.59 (ns) |
25–34 | 1.65 (0.21–19.99) | 1.49 (0.41–8.40) | 0.99 (ns) |
35–44 | 1.58 (0.20–19.32) | 1.44 (0.39–8.17) | 0.99 (ns) |
45–54 | 0.92 (0.13–11.91) | 0.93 (0.22–5.50) | 0.99 (ns) |
55–64 | 0.38 (0.02–8.67) | 0.43 (0.05–3.85) | 0.52 (ns) |
Trauma Severity(ISS) | |||
Mild, ISS < 9 | Ref | Ref | Ref |
Moderate, ISS = 9–15 | ∞ (1.22–∞) | ∞ (1.22–∞) | 0.02 ^ |
Severe, ISS = 16–24 | ∞ (20.90–∞) | ∞ (2.00–∞) | <0.0001 ^^^ |
Very Severe, ISS ≥ 25 | ∞ (39.81–∞) | ∞ (2.00–∞) | <0.0001 ^^^ |
Number of injuries | |||
One | Ref | Ref | Ref |
Two | 2.26 (1.23–4.15) | 1.87 (1.18–2.85) | 0.01 ^ |
Three or more | 3.18 (1.23–8.59) | 2.33 (1.17–3.98) | 0.02 ^ |
Site of injury | |||
Spine (lumbosacral) | Ref | Ref | Ref |
Thorax (including thoracic spines) | 0.41 (0.13–1.27) | 0.47 (0.18–1.28) | 0.16 (ns) |
Head and neck (including cervical spines) | 0.83 (0.27–2.27) | 0.86 (0.38–2.14) | 0.77 (ns) |
Upper extremity (including shoulder girdle) | 1.07 (0.37–2.78) | 1.06 (0.50–2.50) | 0.99 (ns) |
Lower extremity (including pelvic girdle) | 2.26 (0.81–5.74) | 1.80 (0.88–4.17) | 0.16 (ns) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsherbini, D.M.A.; Ali, L.S.; Allam, N.M.; Elshorbagy, R.T.; Eladl, H.M.; Ibrahim, A.M.; Elbastawisy, Y.M.; Eldesoqui, M.; El-Sherbiny, M. Epidemiology and Prevalence of Musculoskeletal Disabilities Following Motor Vehicle Accidents in Aljouf Region, Saudi Arabia. Medicina 2024, 60, 1562. https://doi.org/10.3390/medicina60101562
Elsherbini DMA, Ali LS, Allam NM, Elshorbagy RT, Eladl HM, Ibrahim AM, Elbastawisy YM, Eldesoqui M, El-Sherbiny M. Epidemiology and Prevalence of Musculoskeletal Disabilities Following Motor Vehicle Accidents in Aljouf Region, Saudi Arabia. Medicina. 2024; 60(10):1562. https://doi.org/10.3390/medicina60101562
Chicago/Turabian StyleElsherbini, Dalia Mahmoud Abdelmonem, Lashin Saad Ali, Nesma M. Allam, Radwa T. Elshorbagy, Hadaya Mosaad Eladl, Ateya Megahed Ibrahim, Yasser M. Elbastawisy, Mamdouh Eldesoqui, and Mohamed El-Sherbiny. 2024. "Epidemiology and Prevalence of Musculoskeletal Disabilities Following Motor Vehicle Accidents in Aljouf Region, Saudi Arabia" Medicina 60, no. 10: 1562. https://doi.org/10.3390/medicina60101562
APA StyleElsherbini, D. M. A., Ali, L. S., Allam, N. M., Elshorbagy, R. T., Eladl, H. M., Ibrahim, A. M., Elbastawisy, Y. M., Eldesoqui, M., & El-Sherbiny, M. (2024). Epidemiology and Prevalence of Musculoskeletal Disabilities Following Motor Vehicle Accidents in Aljouf Region, Saudi Arabia. Medicina, 60(10), 1562. https://doi.org/10.3390/medicina60101562