The Role of Vericiguat in Early Phases of Anterior Myocardial Infarction: A Potential Game-Changer?
Abstract
:1. Introduction
2. Rationale
2.1. The Role of Nitric Oxide Deficiency in Post-Myocardial Infarction and the Therapeutic Potential of Vericiguat
2.2. The Promise of Vericiguat in Early Myocardial Infarction
2.3. Potential Challenges and Considerations
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newman, J.D.; Shimbo, D.; Baggett, C.; Liu, X.; Crow, R.; Abraham, J.M.; Loehr, L.R.; Wruck, L.M.; Folsom, A.R.; Rosamond, W.D. Trends in myocardial infarction rates and case fatality by anatomical location in four United States communities, 1987 to 2008 (from the Atherosclerosis Risk in Communities Study). Am. J. Cardiol. 2013, 112, 1714–1719. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Després, J.-P.; Fullerton, H.J.; et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association [published correction appears in Circulation. Circulation 2016, 133, e38–e360. [Google Scholar] [CrossRef]
- Yu, B.; Akushevich, I.; Yashkin, A.P.; Kravchenko, J. Epidemiology of Geographic Disparities of Myocardial Infarction Among Older Adults in the United States: Analysis of 2000–2017 Medicare Data. Front. Cardiovasc. Med. 2021, 8, 7102. [Google Scholar] [CrossRef] [PubMed]
- Hayıroğlu, M.; Keskin, M.; Uzun, A.O.; Yıldırım, D.I.; Kaya, A.; Çinier, G.; Bozbeyoğlu, E.; Yıldırımtürk, Ö.; Kozan, Ö.; Pehlivanoğlu, S. Predictors of In-Hospital Mortality in Patients With ST-Segment Elevation Myocardial Infarction Complicated with Cardiogenic Shock. Heart Lung Circ. 2019, 28, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Karkabi, B.; Meir, G.; Zafrir, B.; Jaffe, R.; Adawi, S.; Lavi, I.; Flugelman, M.Y.; Shiran, A. Door-to-balloon time and mortality in patients with ST-elevation myocardial infarction undergoing primary angioplasty. Eur. Heart J. Quality Care Clinic Outcomes 2017, 7, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Levine, G.N.; Bates, E.R.; Blankenship, J.C.; Bailey, S.R.; Bittl, J.A.; Cercek, B.; Chambers, C.E.; Ellis, S.G.; Guyton, R.A.; Hollenberg, S.M.; et al. 2015 ACC/AHA/SCAI Focused Update on Primary Percutaneous Coronary Intervention for Patients with ST-Elevation Myocardial Infarction: An Update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention and the 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction. J. Am. Coll. Cardiol. 2016, 67, 1235–1250, Erratum in J. Am. Coll. Cardiol. 2016, 67, 1506. [Google Scholar] [CrossRef]
- Kwok, C.S.; Qureshi, A.I.; Lip, G.Y. The impact of the site of myocardial infarction on in-hospital outcomes for patients with STEMI. Coron. Artery Dis. 2024, 35, 286–291. [Google Scholar] [CrossRef]
- Shabbir, M.; Kayani, A.M.; Qureshi, O.; Mughal, M.M. Predictors of fatal outcome in acute myocardial infarction. J. Ayub Med. Coll. Abbottabad 2009, 20, 14–16. [Google Scholar]
- Keeley, E.C.; Boura, J.A.; Grines, C.L. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: A quantitative review of 23 randomised trials. Lancet 2003, 361, 13–20. [Google Scholar] [CrossRef]
- Armstrong, P.W.; Pieske, B.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; Butler, J.; Lam, C.S.; Ponikowski, P.; Voors, A.A.; Jia, G.; et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2020, 382, 1883–1893. [Google Scholar] [CrossRef]
- Hui, S.K.; Sharma, A.; Docherty, K.; McMurray, J.J.V.; Pitt, B.; Dickstein, K.; A Pfeffer, M.; Girerd, N.; Rossignol, P.; Ferreira, J.P.; et al. Non-fatal cardiovascular events preceding sudden cardiac death in patients with an acute myocardial infarction complicated by heart failure: Insights from the high-risk myocardial infarction database. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, M.E.; Ayalasomayajula, S.; Blaustein, R.O.; Gheyas, F. Vericiguat, a novel sGC stimulator: Mechanism of action, clinical, and translational science. Clin. Transl. Sci. 2023, 16, 2458–2466. [Google Scholar] [CrossRef] [PubMed]
- Gheorghiade, M.; Marti, C.N.; Sabbah, H.N.; Roessig, L.; Greene, S.J.; Böhm, M.; Burnett, J.C.; Campia, U.; Cleland, J.G.F.; Collins, S.P.; et al. Soluble guanylate cyclase: A potential therapeutic target for heart failure. Heart Fail. Rev. 2013, 18, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Denninger, J.W.; Marletta, M.A. Guanylate cyclase and the NO/cGMP signaling pathway. Biochim. et Biophys. Acta 1999, 1411, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Derbyshire, E.R.; Marletta, M.A. Structure and regulation of soluble guanylate cyclase. Annu. Rev. Biochem. 2012, 81, 533–559. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Anstrom, K.J.; Armstrong, P.W. Comparing the Benefit of Novel Therapies Across Clinical Trials: Insights From the VICTORIA Trial. Circulation 2020, 142, 717–719. [Google Scholar] [CrossRef]
- Zhu, W.; Ben, Y.; Shen, Y.; Liu, W. Vericiguat protects against cardiac damage in a pig model of ischemia/reperfusion. PLoS ONE 2023, 18, e0295566. [Google Scholar] [CrossRef]
- Chen, T.; Kong, B.; Shuai, W.; Gong, Y.; Zhang, J.; Huang, H. Vericiguat alleviates ventricular remodeling and arrhythmias in mouse models of myocardial infarction via CaMKII signaling. Life Sci. 2023, 334, 122184. [Google Scholar] [CrossRef] [PubMed]
- Lavalle, C.; Mariani, M.V.; Severino, P.; Palombi, M.; Trivigno, S.; D’Amato, A.; Silvetti, G.; Pierucci, N.; Di Lullo, L.; Chimenti, C.; et al. Efficacy of modern therapies for heart failure with reduced ejection fraction in specific population subgroups: A systematic review and network meta-analysis. Cardiorenal Med. 2024, 1–23. [Google Scholar] [CrossRef]
- Ziolo, M.T.; Kohr, M.J.; Wang, H. Nitric oxide signaling and the regulation of myocardial function. J. Mol. Cell. Cardiol. 2008, 45, 625–632. [Google Scholar] [CrossRef]
- Bice, J.S.; Jones, B.R.; Chamberlain, G.R.; Baxter, G.F. Nitric oxide treatments as adjuncts to reperfusion in acute myocardial infarction: A systematic review of experimental and clinical studies. Basic Res. Cardiol. 2016, 111, 23. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, J.; Stark, K.; Esslinger, U.B.; Rumpf, P.M.; Koesling, D.; de Wit, C.; Kaiser, F.J.; Braunholz, D.; Medack, A.; Fischer, M.; et al. Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature 2013, 504, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Umar, S.; van der Laarse, A. Nitric oxide and nitric oxide synthase isoforms in the normal, hypertrophic, and failing heart. Mol. Cell. Biochem. 2009, 333, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Paulus, W.J.; Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef]
- Roman-Campos, D.; Sales-Junior, P.; Santos-Miranda, A.; Joviano-Santos, J.V.; Ropert, C.; Cruz, J.S. Deletion of inducible nitric oxide synthase delays the onset of cardiomyocyte electrical remodeling in experimental Chagas disease. Biochim. et Biophys. Acta (BBA) Mol. Basis Dis. 2020, 1866, 165949. [Google Scholar] [CrossRef]
- Sahana, U.; Wehland, M.; Simonsen, U.; Schulz, H.; Grimm, D. A Systematic Review of the Effect of Vericiguat on Patients with Heart Failure. Int. J. Mol. Sci. 2023, 24, 11826. [Google Scholar] [CrossRef]
- Vericiguat. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2023.
- Lam, C.S.; Giczewska, A.; Sliwa, K.; Edelmann, F.; Refsgaard, J.; Bocchi, E.; Ezekowitz, J.A.; Hernandez, A.F.; O’Connor, C.M.; Roessig, L.; et al. Clinical Outcomes and Response to Vericiguat According to Index Heart Failure Event: Insights from the VICTORIA Trial. JAMA Cardiol. 2021, 6, 706–712, Erratum in JAMA Cardiol. 2021, 6, e214194. [Google Scholar] [CrossRef]
- Peddibhotla, S.; Zheng, Y.; Pan, S.; Mehta, A.; Moroni, D.G.; Chen, Q.-Y.; Ma, X.; Burnett, J.C.; Malany, S.; Sangaralingham, S.J. Discovery of small molecule guanylyl cyclase B receptor positive allosteric modulators. PNAS Nexus 2024, 3, 225. [Google Scholar] [CrossRef]
- Park, M.; Sandner, P.; Krieg, T. cGMP at the centre of attention: Emerging strategies for activating the cardioprotective PKG pathway. Basic Res. Cardiol. 2018, 113, 24. [Google Scholar] [CrossRef]
- Borghi, C.; Omboni, S.; Reggiardo, G.; Bacchelli, S.; Degli Esposti, D.; Ambrosioni, E. Effects of the concomitant administration of xanthine oxidase inhibitors with zofenopril or other ACE-inhibitors in post-myocardial infarction patients: A meta-analysis of individual data of four randomized, double-blind, prospective studies. BMC Cardiovasc. Disord. 2018, 18, 112. [Google Scholar] [CrossRef]
- Bangalore, S.; Makani, H.; Radford, M.; Thakur, K.; Toklu, B.; Katz, S.D.; DiNicolantonio, J.J.; Devereaux, P.; Alexander, K.P.; Wetterslev, J.; et al. Clinical outcomes with β-blockers for myocardial infarction: A meta-analysis of randomized trials. Am. J. Med. 2014, 127, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Desta, L.; Raposeiras-Roubin, S.; Ibanez, B. The art of prescribing β-blockers after myocardial infarction. Circ. Cardiovasc. Interv. 2021, 14, 399–401. [Google Scholar] [CrossRef]
- Pitt, B.; Remme, W.; Zannad, F.; Neaton, J.; Martinez, F.; Roniker, B.; Bittman, R.; Hurley, S.; Kleiman, J.; Gatlin, M. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. New Engl. J. Med. 2003, 348, 1309–1321. [Google Scholar] [CrossRef] [PubMed]
- Buffolo, F.; Tetti, M.; Mulatero, P.; Monticone, S. Aldosterone as a Mediator of Cardiovascular Damage. Hypertension 2022, 79, 1899–1911. [Google Scholar] [CrossRef] [PubMed]
- Levine, G.N.; Bates, E.R.; Bittl, J.A.; Brindis, R.G.; Fihn, S.D.; Fleisher, L.A.; Granger, C.B.; Lange, R.A.; Mack, M.J.; Mauri, L.; et al. 2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients With Coronary Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines: An Update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention, 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease, 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction, 2014 AHA/ACC Guideline for the Management of Patients With Non-ST-Elevation Acute Coronary Syndromes, and 2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery. Circulation 2016, 134, e123–e155, Correction in Circulation 2016, 134, e192–e194. [Google Scholar]
- Gelbenegger, G.; Jilma, B. Clinical pharmacology of antiplatelet drugs. Expert Rev. Clin. Pharmacol. 2022, 15, 1177–1197. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.; Trêpa, M.; Oliveira, M.; Frias, A.; Campinas, A.; Luz, A.; Santos, M.; Torres, S. Heart Failure Incidence Following ST-Elevation Myocardial Infarction. Am. J. Cardiol. 2022, 164, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Elgendy, I.Y.; Van Spall, H.G.; Mamas, M.A. Cardiogenic Shock in the Setting of Acute Myocardial Infarction History Repeating Itself? Circ. Cardiovasc. Interv. 2020, 13, e009034. [Google Scholar] [CrossRef]
- Çınar, T.; Şaylık, F.; Akbulut, T.; Korkmaz, Y.; Çiçek, V.; Asal, S.; Erdem, A.; Selçuk, M.; Hayıroğlu, M. Evaluation of Intermountain Risk Score for Short- and Long-Term Mortality in ST Elevation Myocardial Infarction Patients. Angiology 2023, 74, 357–364. [Google Scholar] [CrossRef] [PubMed]
Complication | Timing | Description | Potential Beneficial Effects of Vericiguat |
---|---|---|---|
Cardiogenic Shock | Early | A severe drop in blood pressure and cardiac output due to extensive myocardial damage. | Vericiguat may improve cardiac output by enhancing myocardial contractility and vasodilation, thereby reducing afterload. |
Arrhythmias (e.g., Ventricular Tachycardia, Ventricular Fibrillation) | Early | Abnormal heart rhythms due to electrical instability of the damaged myocardium. | Increased cGMP production may stabilize myocardial cell membrane potentials, reducing the risk of arrhythmias. |
Acute Heart Failure | Early | Sudden onset of heart failure symptoms due to reduced left ventricular function. | By improving vasodilation and reducing cardiac preload and afterload, vericiguat may alleviate heart failure symptoms. |
Pericarditis | Early | Inflammation of the pericardium, often presenting with chest pain. | Potential reduction in inflammatory response through improved endothelial function. |
Left Ventricular Thrombus | Early | Formation of a blood clot in the left ventricle due to stasis of blood. | Vericiguat’s inhibition of platelet aggregation could reduce thrombus formation. |
Left Ventricular Aneurysm | Late | Abnormal bulging of the ventricular wall due to scar tissue formation and remodeling. | Vericiguat may limit adverse remodeling and reduce the risk of aneurysm formation by promoting healthier myocardial repair. |
Heart Failure (Chronic) | Late | Progressive decline in heart function, leading to symptoms of fluid retention and reduced exercise tolerance. | Long-term improvement in cardiac function and reduced remodeling through enhanced cGMP levels may slow the progression of heart failure. |
Ventricular Septal Rupture | Early | A tear in the septum between the left and right ventricles, leading to a shunt. | Indirect benefits through overall reduction in myocardial stress and improved healing. |
Mitral Regurgitation | Early | Leakage of blood backward through the mitral valve due to papillary muscle dysfunction or rupture. | Improved myocardial function may reduce the risk of mitral valve complications. |
Dressler’s Syndrome | Late | A form of post-MI pericarditis occurring weeks to months after MI. | Anti-inflammatory effects of improved endothelial function may mitigate Dressler’s syndrome. |
Recurrent Myocardial Infarction | Late | New myocardial infarction occurring after the initial event. | Vericiguat’s anti-platelet effects could reduce the risk of subsequent coronary events. |
Beneficial Effect | Description |
---|---|
Enhanced Vasodilation | Vericiguat stimulates sGC, leading to increased cGMP production, which relaxes vascular smooth muscle and improves blood flow to the ischemic myocardium. |
Inhibition of Platelet Aggregation | Elevated cGMP levels reduce platelet aggregation and adhesion, helping to prevent thrombus formation and further coronary artery occlusion. |
Reduction in Myocardial Oxygen Demand | By promoting vasodilation and improving myocardial perfusion, vericiguat may help balance oxygen supply and demand in the heart. |
Cardioprotection | Vericiguat’s effects on cGMP levels can reduce cardiac remodeling and fibrosis, which are critical factors in the prevention of heart failure following MI. |
Improvement in Left Ventricular Function | Increased cGMP production can lead to improved left ventricular ejection fraction and global longitudinal strain, indicating better heart function. |
Anti-inflammatory Effects | By modulating cGMP levels, vericiguat may reduce inflammatory responses, which are often exacerbated in the setting of MI. |
Reduction in Vascular Resistance | Increased cGMP levels can decrease vascular resistance, potentially lowering the workload on the heart and improving overall cardiac function. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacciapuoti, F.; Mauro, C.; Capone, V.; Chianese, S.; Tarquinio, L.G.; Gottilla, R.; Marsico, F.; Crispo, S.; Cacciapuoti, F. The Role of Vericiguat in Early Phases of Anterior Myocardial Infarction: A Potential Game-Changer? Medicina 2024, 60, 1595. https://doi.org/10.3390/medicina60101595
Cacciapuoti F, Mauro C, Capone V, Chianese S, Tarquinio LG, Gottilla R, Marsico F, Crispo S, Cacciapuoti F. The Role of Vericiguat in Early Phases of Anterior Myocardial Infarction: A Potential Game-Changer? Medicina. 2024; 60(10):1595. https://doi.org/10.3390/medicina60101595
Chicago/Turabian StyleCacciapuoti, Federico, Ciro Mauro, Valentina Capone, Salvatore Chianese, Luca Gaetano Tarquinio, Rossella Gottilla, Fabio Marsico, Salvatore Crispo, and Fulvio Cacciapuoti. 2024. "The Role of Vericiguat in Early Phases of Anterior Myocardial Infarction: A Potential Game-Changer?" Medicina 60, no. 10: 1595. https://doi.org/10.3390/medicina60101595
APA StyleCacciapuoti, F., Mauro, C., Capone, V., Chianese, S., Tarquinio, L. G., Gottilla, R., Marsico, F., Crispo, S., & Cacciapuoti, F. (2024). The Role of Vericiguat in Early Phases of Anterior Myocardial Infarction: A Potential Game-Changer? Medicina, 60(10), 1595. https://doi.org/10.3390/medicina60101595