Contemporary Management and Prognostic Factors of Arrhythmia Recurrence in Patients with High-Energy Discharge of Cardiac Implantable Electronic Devices
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Coronary Angiography and Presence of Coronary Artery Stenosis >50%
3.2. Recurrent VT during Hospitalization
3.3. Catheter Ablation Due to VT during Hospitalization
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Braunschweig, F.; Boriani, G.; Bauer, A.; Hatala, R.; Herrmann-Lingen, C.; Kautzner, J.; Pedersen, S.S.; Pehrson, S.; Ricci, R.; Schalij, M.J. Management of patients receiving implantable cardiac defibrillator shocks: Recommendations for acute and long-term patient management. Europace 2010, 12, 1673–1690. [Google Scholar] [CrossRef] [PubMed]
- Borne, R.T.; Varosy, P.D.; Masoudi, F.A. Implantable cardioverter-defibrillator shocks: Epidemiology, outcomes, and therapeutic approaches. JAMA Intern. Med. 2013, 173, 859–865. [Google Scholar] [CrossRef]
- Poole, J.E.; Johnson, G.W.; Hellkamp, A.S.; Anderson, J.; Callans, D.J.; Raitt, M.H.; Reddy, R.K.; Marchlinski, F.E.; Yee, R.; Guarnieri, T.; et al. Prognostic importance of defibrillator shocks in patients with heart failure. N. Engl. J. Med. 2008, 359, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Muhammed, A.; Abdelazeem, M.; Elewa, M.G.; Sharief, M.; Ammar, A. Primary prevention implantable cardioverter-defibrillator use in non-ischemic dilated cardiomyopathy based on arrhythmic risk stratification and left ventricular reverse remodeling prediction. Heart Fail. Rev. 2023, 28, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Evertz, R.; van der Heijden, T.; Beukema, R.; Westra, S.; Meindersma, E.; van Deursen, C.; Vernooy, K. Comparison and predictors of implantable cardioverter-defibrillator therapy for primary and secondary prevention. Neth. Heart J. 2023, 31, 348–356. [Google Scholar] [CrossRef]
- Ammannaya, G.K.K. Implantable cardioverter defibrillators—The past, present and future. Arch. Med. Sci. Atheroscler. Dis. 2020, 5, e163–e170. [Google Scholar] [CrossRef]
- Kloppe, A.; Schiedat, F.; Mügge, A.; Mijic, D. Sachgerechtes Vorgehen bei Herzschrittmacher- und ICD-Fehlfunktion [Appropriate procedure for pacemaker and ICD malfunction]. Herzschrittmacherther Elektrophysiol. 2020, 31, 64–72. (In German) [Google Scholar] [CrossRef]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. ESC Scientific Document Group. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Bavishi, C.; Sardar, P.; Agarwal, V.; Krishnamoorthy, P.; Grodzicki, T.; Messerli, F.H. Meta-analysis of left ventricular hypertrophy and sustained arrhythmias. Am. J. Cardiol. 2014, 114, 1049–1052. [Google Scholar] [CrossRef]
- O’Mahony, C.; Jichi, F.; Pavlou, M.; Monserrat, L.; Anastasakis, A.; Rapezzi, C.; Biagini, E.; Gimeno, J.R.; Limongelli, G.; McKenna, W.J.; et al. Hypertrophic Cardiomyopathy Outcomes Investigators. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur. Heart J. 2014, 35, 2010–2020. [Google Scholar] [CrossRef]
- Boas, R.; Sappler, N.; von Stülpnagel, L.; Klemm, M.; Dixen, U.; Thune, J.J.; Pehrson, S.; Køber, L.; Nielsen, J.C.; Videbæk, L.; et al. Periodic Repolarization Dynamics Identifies ICD Responders in Nonischemic Cardiomyopathy: A DANISH Substudy. Circulation 2022, 145, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Kouakam, C.; Lauwerier, B.; Klug, D.; Jarwe, M.; Marquié, C.; Lacroix, D.; Kacet, S. Effect of elevated heart rate preceding the onset of ventricular tachycardia on antitachycardia pacing effectiveness in patients with implantable cardioverter defibrillators. Am. J. Cardiol. 2003, 92, 26–32. [Google Scholar] [CrossRef]
- Sadoul, N.; Mletzko, R.; Anselme, F.; Bowes, R.; Schöls, W.; Kouakam, C.; Casteigneau, G.; Luise, R.; Iscolo, N.; Aliot, E. Incidence and clinical relevance of slow ventricular tachycardia in implantable cardioverter-defibrillator recipients: An international multicenter prospective study. Circulation 2005, 112, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Sivagangabalan, G.; Eshoo, S.; Eipper, V.E.; Thiagalingam, A.; Kovoor, P. Discriminatory therapy for very fast ventricular tachycardia in patients with implantable cardioverter defibrillators. Pacing Clin. Electrophysiol. 2008, 31, 1095–1099. [Google Scholar] [CrossRef]
- Kleemann, T.; Lampropoulou, E.; Kouraki, K.; Strauss, M.; Fendt, A.; Zahn, R. Management of implantable cardioverter-defibrillator patients with appropriate ICD shocks: A 3-step treatment concept. Heart Rhythm O2 2021, 2, 537–540. [Google Scholar] [CrossRef]
- Weidner, K.; Behnes, M.; Weiß, C.; Nienaber, C.; Reiser, L.; Bollow, A.; Taton, G.; Reichelt, T.; Ellguth, D.; Engelke, N.; et al. Impact of chronic kidney disease on recurrent ventricular tachyarrhythmias in ICD recipients. Heart Vessel. 2019, 34, 1811–1822. [Google Scholar] [CrossRef]
- Akhtar, Z.; Leung, L.W.; Kontogiannis, C.; Chung, I.; Bin Waleed, K.; Gallagher, M.M. Arrhythmias in Chronic Kidney Disease. Eur. Cardiol. 2022, 17, e05. [Google Scholar] [CrossRef] [PubMed]
- Chiu, D.Y.; Sinha, S.; Kalra, P.A.; Green, D. Sudden cardiac death in haemodialysis patients: Preventative options. Nephrology 2014, 19, 740–749. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Liao, Y.C.; Li, C.H.; Lin, J.C.; Weng, C.J.; Lin, C.C.; Lo, C.P.; Huang, K.C.; Lin, C.H.; Sang, J.S.; et al. Hypoglycaemic episodes increase the risk of ventricular arrhythmia and sudden cardiac arrest in patients with type 2 diabetes-A nationwide cohort study. Diabetes Metab. Res. Rev. 2020, 36, e3226. [Google Scholar] [CrossRef]
- Andersen, A.; Bagger, J.I.; Baldassarre, M.P.A.; Christensen, M.B.; Abelin, K.U.; Faber, J.; Pedersen-Bjergaard, U.; Holst, J.J.; Lindhardt, T.B.; Gislason, G.; et al. Acute hypoglycemia and risk of cardiac arrhythmias in insulin-treated type 2 diabetes and controls. Eur. J. Endocrinol. 2021, 185, 343–353. [Google Scholar] [CrossRef]
- Andersen, A.; Jørgensen, P.G.; Knop, F.K.; Vilsbøll, T. Hypoglycaemia and cardiac arrhythmias in diabetes. Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018820911803. [Google Scholar] [CrossRef] [PubMed]
- Albert, C.M.; Ma, J.; Rifai, N.; Stampfer, M.J.; Ridker, P.M. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation 2002, 105, 2595–2599. [Google Scholar] [CrossRef] [PubMed]
- Biasucci, L.M.; Bellocci, F.; Landolina, M.; Rordorf, R.; Vado, A.; Menardi, E.; Giubilato, G.; Orazi, S.; Sassara, M.; Castro, A.; et al. Risk stratification of ischaemic patients with implantable cardioverter defibrillators by C-reactive protein and a multi-markers strategy: Results of the CAMI-GUIDE study. Eur. Heart J. 2012, 33, 1344–1350. [Google Scholar] [CrossRef]
- Morin, D.P.; Chong-Yik, R.; Thihalolipavan, S.; Krauthammer, Y.S.; Bernard, M.L.; Khatib, S.; Polin, G.M.; Rogers, P.A. Utility of serial measurement of biomarkers of cardiovascular stress and inflammation in systolic dysfunction. Europace 2020, 22, 1044–1053. [Google Scholar] [CrossRef] [PubMed]
- Lerman, B.B.; Markowitz, S.M.; Cheung, J.W.; Thomas, G.; Ip, J.E. Ventricular Tachycardia Due to Triggered Activity: Role of Early and Delayed Afterdepolarizations. JACC Clin. Electrophysiol. 2024, 10, 379–401. [Google Scholar] [CrossRef]
- Desch, S.; Freund, A.; Akin, I.; Behnes, M.; Preusch, M.R.; Zelniker, T.A.; Skurk, C.; Landmesser, U.; Graf, T.; Eitel, I.; et al. Angiography after Out-of-Hospital Cardiac Arrest without ST-Segment Elevation. N. Engl. J. Med. 2021, 385, 2544–2553. [Google Scholar] [CrossRef]
- Kerin, N.Z.; Somberg, J. Proarrhythmia: Definition, risk factors, causes, treatment, and controversies. Am. Heart J. 1994, 128, 575–585. [Google Scholar] [CrossRef]
- Malakar, A.K.; Choudhury, D.; Halder, B.; Paul, P.; Uddin, A.; Chakraborty, S. A review on coronary artery disease, its risk factors, and therapeutics. J. Cell Physiol. 2019, 234, 16812–16823. [Google Scholar] [CrossRef]
- Virani, S.S.; Newby, L.K.; Arnold, S.V.; Bittner, V.; Brewer, L.C.; Demeter, S.H.; Dixon, D.L.; Fearon, W.F.; Hess, B.; Johnson, H.M.; et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients with Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2023, 148, e9–e119. [Google Scholar] [CrossRef]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Streitner, F.; Kuschyk, J.; Dietrich, C.; Mahl, E.; Streitner, I.; Doesch, C.; Veltmann, C.; Schimpf, R.; Wolpert, C.; Borggrefe, M. Comparison of ventricular tachyarrhythmia characteristics in patients with idiopathic dilated or ischemic cardiomyopathy and defibrillators implanted for primary prevention. Clin. Cardiol. 2011, 34, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Dinov, B.; Fiedler, L.; Schönbauer, R.; Bollmann, A.; Rolf, S.; Piorkowski, C.; Hindricks, G.; Arya, A. Outcomes in catheter ablation of ventricular tachycardia in dilated nonischemic cardiomyopathy compared with ischemic cardiomyopathy: Results from the Prospective Heart Centre of Leipzig VT (HELP-VT) Study. Circulation 2014, 129, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Martinez, B.K.; Baker, W.L.; Konopka, A.; Giannelli, D.; Coleman, C.I.; Kluger, J.; Cronin, E.M. Systematic review and meta-analysis of catheter ablation of ventricular tachycardia in ischemic heart disease. Heart Rhythm 2020, 17, e206–e219. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.; Healey, J.S.; Nault, I.; Sterns, L.D.; Essebag, V.; Gray, C.; Hruczkowski, T.; Gardner, M.; Parkash, R.; Sapp, J.L. Ventricular Tachycardia and ICD Therapy Burden with Catheter Ablation Versus Escalated Antiarrhythmic Drug Therapy. JACC Clin. Electrophysiol. 2023, 9, 808–821. [Google Scholar] [CrossRef]
- Di Bella, G.; Passino, C.; Aquaro, G.D.; Rovai, D.; Strata, E.; Arrigo, F.; Emdin, M.; Lombardi, M.; Pingitore, A. Different substrates of non-sustained ventricular tachycardia in post-infarction patients with and without left ventricular dilatation. J. Card. Fail. 2010, 16, 61–68. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, B.; Chen, K.; Hua, W.; Su, Y.; Xu, W.; Wang, F.; Dan, X.; Niu, H.; Dai, Y.; et al. Association of Night-Time Heart Rate with Ventricular Tachyarrhythmias, Appropriate and Inappropriate Implantable Cardioverter-Defibrillator Shocks. Front. Cardiovasc. Med. 2021, 8, 739889. [Google Scholar] [CrossRef]
Variables | Overall Study Population n = 81 | Coronary Angiography during In-Hospital Stay | p-Value | ||
---|---|---|---|---|---|
No n = 47 | Yes n = 34 | ||||
n (%) or Mean ± SD | |||||
Demographics and comorbidities | |||||
Male | 70 (86.4%) | 39 (83.0%) | 31 (91.2%) | 0.288 | |
Age [years] | 63.6 ± 12.6 | 61.7 ± 15.0 | 66.3 ± 7.7 | 0.224 | |
BMI [kg/m2] | 28.4 ± 5.2 | 28.1 ± 5.0 | 28.8 ± 5.4 | 0.633 | |
Current cigarette smoking | 40 (50.0%) | 20 (42.6%) | 20 (60.6%) | 0.112 | |
NYHA | 2.33 ± 0.7 | 2.3 ± 0.6 | 2.3 ± 0.8 | 0.780 | |
CCS | 1.4 ± 0.9 | 1.5 ± 1.1 | 1.3 ± 0.5 | 0.729 | |
Arterial hypertension | 43 (53.1%) | 25 (53.2%) | 18 (52.9%) | 0.982 | |
Diabetes mellitus | 25 (30.9%) | 10 (21.3%) | 15 (44.1%) | 0.028 | |
Hyperlipidemia | 64 (79.0%) | 33 (70.2%) | 31 (91.2%) | 0.022 | |
Chronic kidney disease | 20 (25.0%) | 13 (28.3%) | 7 (20.6%) | 0.433 | |
History of AF | 28 (34.6%) | 19 (40.4%) | 9 (26.5%) | 0.500 | |
History of MI | 55 (67.9%) | 30 (63.8%) | 29 (87.9%) | 0.016 | |
Previous PCI/CABG | PCI | 27 (34.2%) | 10 (21.7%) | 17 (51.5%) | <0.001 |
CABG | 9 (11.4%) | 6 (13.0%) | 3 (9.1%) | ||
Both | 18 (22.8%) | 7 (15.2%) | 11 (33.3%) | ||
History of ischemic stroke/TIA | 12 (14.8%) | 6 (12.8%) | 6 (17.6%) | 0.481 | |
Hypertrophic cardiomyopathy | 7 (8.6%) | 4 (8.5%) | 3 (8.8%) | 0.645 | |
Hyperthyroidism | 16 (19.8%) | 9 (19.2%) | 7 (20.6%) | 0.872 | |
History of cardiac arrest | 19 (23.5%) | 12 (25.5%) | 7 (20.6%) | 0.604 | |
Electrotherapy and management | |||||
ICD implantation etiology | Ischemic | 55 (67.9%) | 25 (53.2%) | 30 (88.2%) | 0.001 |
Non-ischemic | 26 (32.1%) | 22 (46.8%) | 4 (11.8%) | ||
Implanted device | ICD | 57 (70.4%) | 33 (70.2%) | 24 (70.6%) | 0.971 |
CRT-D | 24 (29.6%) | 14 (29.8%) | 10 (29.4%) | ||
Appropriate intervention (VT) | 77 (95.1%) | 44 (93.6%) | 33 (97.1%) | 0.480 | |
Inappropriate intervention | AF | 3 (3.7%) | 2 (4.3%) | 1 (2.9%) | 0.658 |
Supraventricular tachycardia | 1 (1.2%) | 1 (2.1%) | 0 (0.0%) | ||
T-wave oversensing | 1 (1.2%) | 1 (2.1%) | 0 (0.0%) | ||
Number of high-energy interventions | 6.1 ± 6.9 | 4.1 ± 3.5 | 8.6 ± 9.0 | 0.086 | |
Electrical storm | 54 (71.1%) | 30 (66.7%) | 24 (77.4%) | 0.310 | |
Sustained ventricular tachycardia on admission | 11 (15.5%) | 7 (16.7%) | 4 (13.8%) | 0.742 | |
AF on admission | 9 (12.3%) | 8 (19.1%) | 1 (3.2%) | 0.042 | |
Recurrent discharge during hospitalization | 16 (19.8%) | 7 (14.9%) | 9 (26.5%) | 0.197 | |
Recurrent VT during hospitalization | 21 (26.3%) | 10 (21.3%) | 11 (33.3%) | 0.228 | |
High-energy interventions in the medical history | 52 (68.4%) | 27 (62.8%) | 25 (75.8%) | 0.228 | |
PCI during hospitalization | 8 (9.9%) | 0 (0%) | 8 (23.5%) | <0.001 | |
Ablation due to VT during hospitalization | 36 (45.0%) | 20 (42.5%) | 16 (47.1%) | 0.750 | |
Echocardiographic and electrocardiographic parameters | |||||
LVEF [%] | 29.5 ± 12.4 | 31.6 ± 13.9 | 26.5 ± 9.4 | 0.129 | |
LAd [mm] | 46.0 ± 7.2 | 46.1 ± 8.0 | 45.9 ± 5.9 | 0.945 | |
LVEDV [mL] | 221.5 ± 89.5 | 209.4 ± 93.6 | 236.7 ± 84.8 | 0.310 | |
LVESV [mL] | 149.3 ± 88.6 | 129.2 ± 88.3 | 177.0 ± 86.8 | 0.322 | |
LV hypertrophy | 31 (44.9%) | 17 (43.6%) | 14 (46.7%) | 0.799 | |
Holter monitoring during hospitalization | mean HR [bpm] | 65.2 ± 9.9 | 66.4 ± 11.1 | 63.0 ± 7.1 | 0.363 |
max HR [bpm] | 88.8 ± 16.0 | 90.1 ± 17.9 | 86.8 ± 12.3 | 0.833 | |
min HR [bpm] | 54.5 ± 10.0 | 55.5 ± 12.4 | 53.3 ± 5.7 | 0.841 | |
number of PVCs | 4753.7 ± 10220.8 | 6734.6 ± 12464.4 | 1386.3 ± 2361.9 | 0.482 | |
RBBB | 16 (28.1%) | 11 (30.6%) | 5 (23.8%) | 0.585 | |
LBBB | 7 (12.7%) | 4 (11.8%) | 3(14.3%) | 0.785 | |
QTc [ms] | 453.1 ± 57.8 | 447.6 ± 64.2 | 465.2 ± 44.0 | 0.394 | |
Laboratory tests | |||||
Hgb [g/dL] | 13.7 ± 1.8 | 13.7 ± 1.9 | 13.5 ± 1.8 | 0.670 | |
WBC [1000/mm3] | 9.0 ± 3.1 | 9.0 ± 3.3 | 9.0 ± 3.0 | 0.730 | |
K+ [mmol/L] | 4.4 ± 0.5 | 4.4 ± 0.5 | 4.4 ± 0.5 | 0.927 | |
LDL [mg/dL] | 80.9 ± 36.9 | 86.0 ± 42.5 | 74.6 ± 27.7 | 0.361 | |
TCH [mg/dL] | 146.2 ± 43.00 | 149.6 ± 49.1 | 141.9 ± 34.3 | 0.675 | |
CRP [mg/L] | 50.7 ± 100 | 61.5 ± 127.2 | 33.7 ± 28.3 | 0.497 | |
hsTnT [ng/mL] | 0.106 ± 0.16 | 0.044 ± 0.04 | 0.162 ± 0.21 | 0.093 | |
TSH [uIU/mL] | 2.0 ± 1.4 | 2.1 ± 1.3 | 1.9 ± 1.7 | 0.383 | |
eGFR [ml/min/1.73 m2] | 68.4 ± 18.8 | 68.4 ± 18.8 | 64.4 ± 21.0 | 0.467 | |
sCr [mg/dL] | 1.2 ± 0.6 | 1.1 ± 0.4 | 1.4 ± 0.9 | 0.433 |
No Recurrent VT during Hospitalization (n = 60) | Recurrent VT during Hospitalization (n = 21) | p-Value | ||
---|---|---|---|---|
n (%) or Mean ± SD | n (%) or Mean ± SD | |||
Demographics and comorbidities | ||||
Male | 53 (88.3%) | 17 (81.0%) | 0.395 | |
Age [years] | 62.3 ± 13.8 | 67.4 ± 7.5 | 0.217 | |
BMI [kg/m2] | 27.9 ± 5.4 | 29.7 ± 4.5 | 0.116 | |
NYHA | 2.2 ± 0.6 | 2.9 ± 0.8 | 0.028 | |
CCS | 1.4 ± 0.9 | 1.7 ± 1.2 | 0.775 | |
Arterial hypertension | 32 (53.3%) | 11 (52.4%) | 0.940 | |
Diabetes mellitus | 17 (28.3%) | 8 (38.1%) | 0.405 | |
Insulin therapy | 3 (5.0%) | 5 (23.8%) | 0.013 | |
Chronic kidney disease | 11 (18.6%) | 9 (42.9%) | 0.028 | |
Current cigarette smoking | 27 (45.8%) | 13 (61.9%) | 0.204 | |
History of AF | 22 (36.7%) | 6 (33.3%) | 0.796 | |
History of MI | 44 (74.6%) | 15 (71.4%) | 0.778 | |
Previous PCI/CABG | PCI | 20 (34.5%) | 7 (33.3%) | 0.669 |
CABG | 8 (13.8%) | 1 (4.8%) | ||
Both | 12 (20.7%) | 6 (28.6%) | ||
Ischemic stroke/TIA in medical history | 8 (13.3%) | 4 (19.0%) | 0.591 | |
History of cardiac arrest | 14 (23.3%) | 5 (23.8%) | 0.965 | |
Electrotherapy and management | ||||
ICD implantation etiology | Ischemic | 39 (65.0%) | 16 (76.2%) | 0.344 |
Non-ischemic | 21 (35.0%) | 5 (23.8%) | ||
Implanted device | ICD | 44 (73.3%) | 13 (61.9%) | 0.324 |
CRT-D | 16 (26.7%) | 8 (38.1%) | ||
Appropriate intervention (VT) | 56 (93.3%) | 21 (100.0%) | 0.225 | |
Inappropriate intervention | AF | 3 (5.0%) | 0 (0%) | 0.601 |
Supraventricular tachycardia | 1 (1.7%) | 0 (0%) | ||
T-wave oversensing | 1 (1.7%) | 0 (0%) | ||
Number of high-energy interventions | 6.3 ± 7.4 | 5.1 ± 3.8 | 0.957 | |
Electrical storm | 38 (66.7%) | 16 (84.2%) | 0.144 | |
Sustained ventricular tachycardia on admission | 7 (12.7%) | 4 (25.0%) | 0.232 | |
AF on admission | 5 (9.3%) | 4 (21.1%) | 0.179 | |
Recurrent discharge during hospitalization | 5 (8.3%) | 11 (52.4%) | <0.001 | |
Number of recurrent discharges | 2.5 ± 0.7 | 23.2 ± 43 | 0.310 | |
High-energy interventions in the medical history | 38 (65.5%) | 14 (77.8%) | 0.328 | |
Coronary angiography during hospitalization | 23 (38.3%) | 11 (52.4%) | 0.262 | |
PCI during hospitalization | 6 (16.2%) | 2 (13.3%) | 0.794 | |
Ablation due to VT during hospitalization | 20 (33.3%) | 16 (80.0%) | 0.001 | |
Ablation site | LV | 17 (89.5%) | 14 (87.5%) | 0.855 |
RV | 2 (10.5%) | 2 (12.5%) | ||
Echocardiographic and electrocardiographic parameters | ||||
LVEF [%] | 31 ± 13.3 | 25.4 ± 8.4 | 0.093 | |
LAd [mm] | 45.7 ± 7.3 | 47.2 ± 7.0 | 0.734 | |
LVEDV [mL] | 220.3 ± 96.6 | 225.0 ± 70.4 | 0.978 | |
LVESV [mL] | 148.3 ± 94.8 | 155.0 ± 56.3 | 0.911 | |
LV hypertrophy | 19 (35.9%) | 12 (75.0%) | 0.006 | |
Holter monitoring during hospitalization | mean HR [bpm] | 64.0 ± 8.7 | 72 ± 13.7 | 0.160 |
max HR [bpm] | 87.0 ± 14.4 | 98.7 ± 21.2 | 0.128 | |
min HR [bpm] | 52.3 ± 7.6 | 63.7 ± 13.6 | 0.033 | |
number of PVCs | 1435.7 ± 2556.7 | 16367.0 ± 17578.1 | 0.012 | |
RBBB | 13 (28.9%) | 3 (25.0%) | 0.790 | |
LBBB | 5 (11.6%) | 2 (16.7%) | 0.643 | |
QTc [ms] | 433.4 ± 35.2 | 512.3 ± 77.0 | 0.028 | |
Laboratory tests | ||||
Hgb [g/dL] | 13.9 ± 1.8 | 13.0 ± 1.9 | 0.099 | |
WBC [1000/mm3] | 8.5 ± 2.7 | 10.5 ± 3.8 | 0.018 | |
K+ [mmol/L] | 4.3 ± 0.5 | 4.6 ± 0.4 | 0.063 | |
LDL [mg/dL] | 82.7 ± 38.4 | 76.2 ± 32.8 | 0.503 | |
TCH [mg/dL] | 147.6 ± 43.4 | 142.2 ± 43.0 | 0.613 | |
CRP [mg/L] | 26.0 ± 18.6 | 75.4 ± 139.7 | 0.691 | |
hsTnT [ng/mL] | 0.1 ± 0.2 | 0.1 ± 0.1 | 0.440 | |
TSH [uIU/mL] | 2.0 ± 1.5 | 2.1 ± 1.4 | 0.778 | |
eGFR [ml/min/1.73 m2] | 70.7 ± 18.7 | 55.5 ± 18.8 | 0.002 | |
sCr [mg/dL] | 1.1 ± 0.4 | 1.5 ± 1.0 | 0.007 |
Variable | Univariate Analysis | Logistic Regression Analysis AUC = 0.853. 95%CI 0.716 to 0.941; Hosmer–Lemeshow p = 0.57 | ||||
---|---|---|---|---|---|---|
OR | 95%CI | p-Value | OR | 95%CI | p-Value | |
Non-Ischemic etiology | 0.58 | 0.19–1.81 | 0.348 | - | - | - |
PCI | 0.63 | 0.10–3.78 | 0.613 | - | - | - |
QTc (per 1 ms) | 1.03 | 0.99–1.08 | 0.09 | - | - | - |
NYHA (per 1 class) | 4.74 | 1.29–17.44 | 0.019 | 4.63 | 1.07–19.99 | 0.040 |
LVH | 5.37 | 1.52–18.99 | 0.009 | 10.59 | 1.01–111.26 | 0.049 |
LVEF (per 1%) | 0.96 | 0.91–1.01 | 0.086 | - | - | - |
Insulin therapy | 5.94 | 1.28–27.56 | 0.023 | - | - | - |
WBC (per 1000/mm3) | 1.23 | 1.04–1.45 | 0.016 | - | - | - |
eGFR | 0.96 | 0.93–0.99 | 0.005 | - | - | - |
hsTnT (per 1 ng/mL) | 0.82 | 0.01–98.59 | 0.936 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kampka, Z.; Drabczyk, M.; Pająk, M.; Drapacz, O.; Orszulak, M.; Cichoń, M.; Mizia-Stec, K.; Wybraniec, M.T. Contemporary Management and Prognostic Factors of Arrhythmia Recurrence in Patients with High-Energy Discharge of Cardiac Implantable Electronic Devices. Medicina 2024, 60, 1662. https://doi.org/10.3390/medicina60101662
Kampka Z, Drabczyk M, Pająk M, Drapacz O, Orszulak M, Cichoń M, Mizia-Stec K, Wybraniec MT. Contemporary Management and Prognostic Factors of Arrhythmia Recurrence in Patients with High-Energy Discharge of Cardiac Implantable Electronic Devices. Medicina. 2024; 60(10):1662. https://doi.org/10.3390/medicina60101662
Chicago/Turabian StyleKampka, Zofia, Mateusz Drabczyk, Magdalena Pająk, Olga Drapacz, Michał Orszulak, Małgorzata Cichoń, Katarzyna Mizia-Stec, and Maciej T. Wybraniec. 2024. "Contemporary Management and Prognostic Factors of Arrhythmia Recurrence in Patients with High-Energy Discharge of Cardiac Implantable Electronic Devices" Medicina 60, no. 10: 1662. https://doi.org/10.3390/medicina60101662
APA StyleKampka, Z., Drabczyk, M., Pająk, M., Drapacz, O., Orszulak, M., Cichoń, M., Mizia-Stec, K., & Wybraniec, M. T. (2024). Contemporary Management and Prognostic Factors of Arrhythmia Recurrence in Patients with High-Energy Discharge of Cardiac Implantable Electronic Devices. Medicina, 60(10), 1662. https://doi.org/10.3390/medicina60101662