Albumin-To-Alkaline Phosphatase Ratio as a New Early Predictive Marker of Axillary Response in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population and Ethics Approval
2.3. Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer. J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Surveillance, Epidemiology, and End Results Program of the National Health Institute of the United States of America NIH National Cancer Institute Cancer Stat Facts: Female Breast Cancer. Available online: https://seer.cancer.gov/statfacts/html/breast.html (accessed on 20 March 2024).
- Swisher, S.K.; Vila, J.; Tucker, S.L.; Bedrosian, I.; Shaitelman, S.F.; Litton, J.K.; Smith, B.D.; Caudle, A.S.; Kuerer, H.M.; Mittendorf, E.A. Locoregional Control According to Breast Cancer Subtype and Response to Neoadjuvant Chemotherapy in Breast Cancer Patients Undergoing Breast-conserving Therapy. Ann. Surg. Oncol. 2016, 23, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, C.; Michel, E.; Vincent, L.; Beltjens, F.; Arnould, L.; Ladoire, S.; Coutant, C. Axillary pathologic response after neoadjuvant chemotherapy and surgery according to breast cancers subtypes and survival impact. Bull. Cancer 2023, 110, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, T.; Bauerfeind, I.; Fehm, T.; Fleige, B.; Hausschild, M.; Helms, G.; Lebeau, A.; Liedtke, C.; von Minckwitz, G.; Nekljudova, V.; et al. Sentinel-lymph-node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): A prospective, multicentre cohort study. Lancet Oncol. 2013, 14, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Boileau, J.; Poirier, B.; Basik, M.; Holloway, C.M.B.; Gaboury, L.; Sideris, L.; Meterissian, S.; Arnaout, A.; Brackstone, M.; McCready, D.R.; et al. Sentinel node biopsy after neoadjuvant chemotherapy in biopsy-proven node-positive breast cancer: The SN FNAC study. J. Clin. Oncol. 2015, 33, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Boughey, J.C.; Suman, V.J.; Mittendorf, E.A.; Ahrendt, G.M.; Wilke, L.G.; Taback, B.; Leitch, A.M.; Kuerer, H.M.; Bowling, M.; Flippo-Morton, T.S.; et al. Alliance for Clinical Trials in Oncology Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: The ACOSOG Z1071 (Alliance) clinical trial. JAMA 2013, 310, 1455–1461. [Google Scholar] [CrossRef]
- Classe, J.; Loaec, C.; Gimbergues, P.; Alran, S.; de Lara, C.T.; Dupre, P.F.; Rouzier, R.; Faure, C.; Paillocher, N.; Chauvet, M.P.; et al. Sentinel lymph node biopsy without axillary lymphadenectomy after neoadjuvant chemotherapy is accurate and safe for selected patients: The GANEA 2 study. Breast Cancer Res. Treat. 2019, 173, 343–352. [Google Scholar] [CrossRef]
- Wu, S.; Li, J.; Wang, Y.; Jin, K.; Yang, B.; Li, J.; Yu, X.; Mo, M.; Hu, N.; Shao, Z.; et al. Clinical feasibility and oncological safety of non-radioactive targeted axillary dissection after neoadjuvant chemotherapy in biopsy-proven node-positive breast cancer: A prospective diagnostic and prognostic study. Int. J. Surg. 2023, 109, 1863–1870. Available online: https://journals.lww.com/international-journal-of-surgery/fulltext/2023/07000/clinical_feasibility_and_oncological_safety_of.4.aspx (accessed on 20 September 2024). [CrossRef]
- Shen, J.; Gilcrease, M.Z.; Babiera, G.V.; Ross, M.I.; Meric-Bernstam, F.; Feig, B.W.; Kuerer, H.M.; Francis, A.; Ames, F.C.; Hunt, K.K. Feasibility and accuracy of sentinel lymph node biopsy after preoperative chemotherapy in breast cancer patients with documented axillary metastases. Cancer 2007, 109, 1255–1263. [Google Scholar] [CrossRef]
- Alvarado, R.; Yi, M.; Le-Petross, H.; Gilcrease, M.; Mittendorf, E.A.; Bedrosian, I.; Hwang, R.F.; Caudle, A.S.; Babiera, G.V.; Akins, J.S.; et al. The role for sentinel lymph node dissection after neoadjuvant chemotherapy in patients who present with node-positive breast cancer. Ann. Surg. Oncol. 2012, 19, 3177–3184. [Google Scholar] [CrossRef]
- Gradishar, W.J.; Moran, M.S.; Abraham, J.; Abramson, V.; Aft, R.; Agnese, D.; Allison, K.H.; Anderson, B.; Bailey, J.; Burstein, H.J.; et al. Breast Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Network 2024, 22, 331–357. [Google Scholar] [CrossRef] [PubMed]
- Tee, S.R.; Devane, L.A.; Evoy, D.; Rothwell, J.; Geraghty, J.; Prichard, R.S.; McDermott, E.W. Meta-analysis of sentinel lymph node biopsy after neoadjuvant chemotherapy in patients with initial biopsy-proven node-positive breast cancer. Br. J. Surg. 2018, 105, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.P.; Matrai, Z.; Hayoz, S.; Tausch, C.; Henke, G.; Zimmermann, F.; Montagna, G.; Fitzal, F.; Gnant, M.; Ruhstaller, T.; et al. Association of Axillary Dissection with Systemic Therapy in Patients with Clinically Node-Positive Breast Cancer. JAMA Surg. 2023, 158, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Schipper, R.; de Bruijn, A.; van der Sangen, M.J.C.; Bloemen, J.G.; van den Hoven, I.; Schepers, E.E.M.; Vriens, B.E.P.; Boerman, T.; Rijkaart, D.C.; van de Winkel, L.M.H.; et al. Oncologic outcomes of de-escalating axillary treatment in clinically node-positive breast cancer patients treated with neoadjuvant systemic therapy—A two center cohort study. Eur. J. Surg. Oncol. 2024, 50, 108472. [Google Scholar] [CrossRef] [PubMed]
- Gasparri, M.L.; de Boniface, J.; Poortmans, P.; Gentilini, O.D.; Kaidar-Person, O.; Banys-Paluchowski, M.; Di Micco, R.; Niinikoski, L.; Murawa, D.; Bonci, E.A.; et al. Axillary surgery after neoadjuvant therapy in initially node-positive breast cancer: International EUBREAST survey. Br. J. Surg. 2022, 109, 857–863. [Google Scholar] [CrossRef]
- Ruf, F.; Kühn, T.; Hartmann, S.; de Boniface, J.; Gentilini, O.D.; Stickeler, E.; Cakmak, G.K.; Rubio, I.; Niinikoski, L.; Kontos, M.; et al. 120P AXSANA (AXillary Surgery After NeoAdjuvant Treatment) EUBREAST-3: An international prospective multicenter cohort study to evaluate different surgical methods of axillary staging in clinically node-positive breast cancer patients treated with neoadjuvant chemotherapy (NCT04373655). Ann. Oncol. 2022, 33, S178–S179. [Google Scholar] [CrossRef]
- Corsi, F.; Albasini, S.; Sorrentino, L.; Armatura, G.; Carolla, C.; Chiappa, C.; Combi, F.; Curcio, A.; Della Valle, A.; Ferrari, G.; et al. Development of a novel nomogram-based online tool to predict axillary status after neoadjuvant chemotherapy in cN+ breast cancer: A multicentre study on 1,950 patients. Breast 2021, 60, 131–137. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, H.S.; Kim, S.; Ryu, J.; Park, S.; Kim, S.I. Prognostic Nomogram for Prediction of Axillary Pathologic Complete Response After Neoadjuvant Chemotherapy in Cytologically Proven Node-Positive Breast Cancer. Medicine 2015, 94, e1720. [Google Scholar] [CrossRef]
- Hwang, H.W.; Jung, H.; Hyeon, J.; Park, Y.H.; Ahn, J.S.; Im, Y.; Nam, S.J.; Kim, S.W.; Lee, J.E.; Yu, J.; et al. A nomogram to predict pathologic complete response (pCR) and the value of tumor-infiltrating lymphocytes (TILs) for prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients. Breast Cancer Res. Treat. 2019, 173, 255–266. [Google Scholar] [CrossRef]
- Zhang, P.; Song, X.; Sun, L.; Li, C.; Liu, X.; Bao, J.; Tian, Z.; Wang, X.; Yu, Z. A novel nomogram model of breast cancer-based imaging for predicting the status of axillary lymph nodes after neoadjuvant therapy. Sci. Rep. 2023, 13, 5952. [Google Scholar] [CrossRef]
- Chen, P.; Zhao, T.; Bi, Z.; Zhang, Z.; Xie, L.; Liu, Y.; Song, X.; Song, X.; Wang, C.; Wang, Y. Laboratory indicators predict axillary nodal pathologic complete response after neoadjuvant therapy in breast cancer. Future Oncol. 2021, 17, 2449–2460. [Google Scholar] [CrossRef] [PubMed]
- Cullinane, C.; Creavin, B.; O’Leary, D.P.; O’Sullivan, M.J.; Kelly, L.; Redmond, H.P.; Corrigan, M.A. Can the Neutrophil to Lymphocyte Ratio Predict Complete Pathologic Response to Neoadjuvant Breast Cancer Treatment? A Systematic Review and Meta-analysis. Clin. Breast Cancer. 2020, 20, e675–e681. [Google Scholar] [CrossRef] [PubMed]
- Truffi, M.; Sottotetti, F.; Gafni, N.; Albasini, S.; Piccotti, F.; Morasso, C.; Tibollo, V.; Mocchi, M.; Zanella, V.; Corsi, F. Prognostic Potential of Immune Inflammatory Biomarkers in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Cancers 2022, 14, 5287. [Google Scholar] [CrossRef] [PubMed]
- von Au, A.; Shencoru, S.; Uhlmann, L.; Mayer, L.; Michel, L.; Wallwiener, M.; Hennigs, A.; Deutsch, T.; Riedel, F.; Heil, J.; et al. Predictive value of neutrophil-to-lymphocyte-ratio in neoadjuvant-treated patients with breast cancer. Arch. Gynecol. Obstet. 2023, 307, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Yin, W.; Sun, D. Albumin-to-alkaline phosphatase ratio as a promising indicator of prognosis in human cancers: Is it possible? BMC Cancer 2021, 21, 247. [Google Scholar] [CrossRef]
- Qu, F.; Li, Z.; Lai, S.; Zhong, X.; Fu, X.; Huang, X.; Li, Q.; Liu, S.; Li, H. Construction and Validation of a Serum Albumin-to-Alkaline Phosphatase Ratio-Based Nomogram for Predicting Pathological Complete Response in Breast Cancer. Front. Oncol. 2021, 11, 681905. Available online: https://www.frontiersin.org/articles/10.3389/fonc.2021.681905 (accessed on 20 March 2024). [CrossRef]
- Hua, X.; Duan, F.; Zhai, W.; Song, C.; Jiang, C.; Wang, L.; Huang, J.; Lin, H.; Yuan, Z. A Novel Inflammatory-Nutritional Prognostic Scoring System for Patients with Early-Stage Breast Cancer. J. Inflamm. Res. 2022, 15, 381–394. [Google Scholar] [CrossRef]
- Long, Z.Q.; Hua, X.; Zhang, W.W.; Lv, S.W.; Deng, J.P.; Guo, L.; He, Z.Y.; Lin, H.X. Prognostic impact of the pretreatment albumin to alkaline phosphatase ratio for nonmetastatic breast cancer patients. Cancer Manag. Res. 2019, 11, 4809–4814. [Google Scholar] [CrossRef]
- Schrenk, P.; Rieger, R.; Shamiyeh, A.; Wayand, W. Morbidity following sentinel lymph node biopsy versus axillary lymph node dissection for patients with breast carcinoma. Cancer 2000, 88, 608–614. [Google Scholar] [CrossRef]
- Gasparri, M.L.; Kuehn, T.; Ruscito, I.; Zuber, V.; Di Micco, R.; Galiano, I.; Navarro Quinones, S.C.; Santurro, L.; Di Vittorio, F.; Meani, F.; et al. Fibrin Sealants and Axillary Lymphatic Morbidity: A Systematic Review and Meta-Analysis of 23 Clinical Randomized Trials. Cancers 2021, 13, 2056. [Google Scholar] [CrossRef]
- McEvoy, M.P.; Feldman, S. Prevention and Treatment of Lymphedema in Breast Cancer. Adv. Surg. 2024, 58, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Lazar, A.M.; Mutuleanu, M.; Spiridon, P.M.; Bordea, C.I.; Suta, T.L.; Blidaru, A.; Gherghe, M. Feasibility of Sentinel Lymph Node Biopsy in Breast Cancer Patients with Axillary Conversion after Neoadjuvant Chemotherapy—A Single-Tertiary Centre Experience and Review of the Literature. Diagnostics 2023, 13, 3000. [Google Scholar] [CrossRef] [PubMed]
- Gasparri, M.L.; Albasini, S.; Truffi, M.; Favilla, K.; Tagliaferri, B.; Piccotti, F.; Bossi, D.; Armatura, G.; Calcinotto, A.; Chiappa, C.; et al. Low neutrophil-to-lymphocyte ratio and pan-immune-inflammation-value predict nodal pathologic complete response in 1274 breast cancer patients treated with neoadjuvant chemotherapy: A multicenter analysis. Ther. Adv. Med. Oncol. 2023, 15, 17588359231193732. [Google Scholar] [CrossRef] [PubMed]
- Eckart, A.; Struja, T.; Kutz, A.; Baumgartner, A.; Baumgartner, T.; Zurfluh, S.; Neeser, O.; Huber, A.; Stanga, Z.; Mueller, B.; et al. Relationship of Nutritional Status, Inflammation, and Serum Albumin Levels During Acute Illness: A Prospective Study. Am. J. Med. 2020, 133, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Soeters, P.B.; Wolfe, R.R.; Shenkin, A. Hypoalbuminemia: Pathogenesis and Clinical Significance. J. Parenter. Enter. Nutr. 2019, 43, 181–193. [Google Scholar] [CrossRef]
- Jiang, C.; Hu, F.; Xia, X.; Guo, X. Prognostic value of alkaline phosphatase and bone-specific alkaline phosphatase in breast cancer: A systematic review and meta-analysis. Int. J. Biol. Markers 2023, 38, 25–36. [Google Scholar] [CrossRef]
- Aminian, A.; Karimian, F.; Mirsharifi, R.; Alibakhshi, A.; Hasani, S.M.; Dashti, H.; Jahangiri, Y.; Ghaderi, H.; Meysamie, A. Correlation of serum alkaline phosphatase with clinicopathological characteristics of patients with oesophageal cancer. East. Mediterr. Health J. 2011, 17, 862–866. [Google Scholar] [CrossRef]
- Chen, S.; Yu, C.; Chang, H.; Lin, Y.; Lo, Y.; Shen, S.; Kuo, W.; Tsai, H.; Chou, H.; Chu, C.; et al. Discrepancy of Breast and Axillary Pathologic Complete Response and Outcomes in Different Subtypes of Node-positive Breast Cancer after Neoadjuvant Chemotherapy. J. Cancer 2021, 12, 5365–5374. [Google Scholar] [CrossRef]
Total Number, 45 (100%) | AAPR < 0.583, n = 9 | AAPR ≥ 0.583, n = 36 | p-Value Fisher’s Exact T. | OR with 95% CI | |
---|---|---|---|---|---|
Age (median = 51) | |||||
<median | 23 (51.1%) | 3 (6.7%) | 20 (44.4%) | ||
≥median | 22 (48.9%) | 6 (13.3%) | 16 (35.6%) | ||
0.284 | 0.416 (0.073; 1.906) | ||||
Histological type | |||||
ductal | 39 (86.7%) | 8 (17.8%) | 31 (68.9%) | ||
other | 6 (13.3%) | 1 (2.2%) | 5 (11.1%) | ||
1.000 | 1.175 (0.149; 34.343) | ||||
cT | |||||
T1–2 | 30 (66.7%) | 4 (8.9%) | 26 (57.8%) | ||
T3–4 | 15 (33.3%) | 5 (11.1%) | 10 (22.2%) | ||
0.135 | 0.319 (0.063; 1.493) | ||||
cN | |||||
N1 | 31 (68.9%) | 6 (13.3%) | 25 (55.6%) | ||
N2–3 | 14 (31.1%) | 3 (6.7%) | 11 (24.4%) | ||
1.000 | 0.867 (0.183; 5.014) | ||||
Histological grade | |||||
1–2 | 10 (22.2%) | 1 (2.2%) | 9 (20%) | ||
3 | 35 (78.8%) | 8 (17.8%) | 27 (60%) | ||
0.659 | 0.421 (0.015; 2.897) | ||||
Hormone receptor status | |||||
negative | 12 (26.7%) | 2 (4.4%) | 10 (22.2%) | ||
positive | 33 (73.3%) | 7 (15.6%) | 26 (57.8%) | ||
1.000 | 0.778 (0.093; 4.069) | ||||
HER2 status | |||||
negative | 21 (46.7%) | 5 (11.1%) | 16 (35.6%) | ||
positive | 24 (53.3%) | 4 (8.9%) | 20 (44.4%) | ||
0.713 | 1.537 (0.337; 7.473) | ||||
Ki67 expression | |||||
<20 | 2 (4.4%) | 0 (0%) | 2 (4.4%) | ||
≥20 | 43 (95.6%) | 9 (20%) | 34 (75.6%) | ||
1.000 | NA | ||||
pCR in primary tumor | |||||
ypT0 | 22 (48.9%) | 2 (4.4%) | 20 (44.4%) | ||
ypT ≥ 1 | 23 (51.1%) | 7 (15.6%) | 16 (35.6%) | ||
0.135 | 0.246 (0.030; 1.227) | ||||
pCR in lymph nodes | |||||
ypN0 | 20 (44.4%) | 1 (2.2%) | 19 (42.2%) | ||
ypN ≥ 1 | 25 (55.6%) | 8 (17.8%) | 17 (37.8%) | ||
0.030 | 0.129 (0.005; 0.835) |
Study Population | Study Design | AAPR Cut-Off | Cut-Off Definition | Primary Endpoint | Findings | |
---|---|---|---|---|---|---|
Long et al., 2019 [29] | 746 | retrospective | 0.525 | ROC curve | OS | Low AAPR group: 5-year OS rate 80.16% |
High AAPR group: 5-year OS rate 92.66% | ||||||
Qu et al., 2021 [27] | 780 | retrospective | 0.583 | ROC curve | T pCR | Univariate analysis: pCR correlated with AAPR (p = 0.03) |
Multivariate analysis: AAPR correlated with pCR (p = 0.03) | ||||||
Hua et al., 2022 [28] | 1259 | retrospective | 0.576 | C-index and ROC curve | OS | Construction of INPS with Lasso Cox regression included |
NLR, MLR, PNI, and AAPR multivariate Cox regression: INPS independent indicator of OS (HR = 0.51; 95% CI: 0.35–0.75, p < 0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, R.F.M.; Harder, Y.; Rossi, L.; Canino, P.; Schiaffino, S.; Calcinotto, A.; Perriard, U.; Graffeo, R.; Decio, R.; Canonica, C.; et al. Albumin-To-Alkaline Phosphatase Ratio as a New Early Predictive Marker of Axillary Response in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy: A Pilot Study. Medicina 2024, 60, 1767. https://doi.org/10.3390/medicina60111767
Schmidt RFM, Harder Y, Rossi L, Canino P, Schiaffino S, Calcinotto A, Perriard U, Graffeo R, Decio R, Canonica C, et al. Albumin-To-Alkaline Phosphatase Ratio as a New Early Predictive Marker of Axillary Response in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy: A Pilot Study. Medicina. 2024; 60(11):1767. https://doi.org/10.3390/medicina60111767
Chicago/Turabian StyleSchmidt, Rahel Felicia Mirjam, Yves Harder, Lorenzo Rossi, Paola Canino, Simone Schiaffino, Arianna Calcinotto, Ulrike Perriard, Rossella Graffeo, Roberta Decio, Claudia Canonica, and et al. 2024. "Albumin-To-Alkaline Phosphatase Ratio as a New Early Predictive Marker of Axillary Response in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy: A Pilot Study" Medicina 60, no. 11: 1767. https://doi.org/10.3390/medicina60111767
APA StyleSchmidt, R. F. M., Harder, Y., Rossi, L., Canino, P., Schiaffino, S., Calcinotto, A., Perriard, U., Graffeo, R., Decio, R., Canonica, C., Cuzzocrea, M., Farooqi, A. A., Colombo, G. E., Diller, M., Peradze, N., Papadia, A., Pagnamenta, A., & Gasparri, M. L. (2024). Albumin-To-Alkaline Phosphatase Ratio as a New Early Predictive Marker of Axillary Response in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy: A Pilot Study. Medicina, 60(11), 1767. https://doi.org/10.3390/medicina60111767