Signal Transducer and Activator of Transcription 4 (STAT4) Association with Pituitary Adenoma
Abstract
:1. Introduction
2. Methods
2.1. DNA Extraction and Genotyping
- rs7574865: this SNP involves a G>T substitution located in intron 3 at chromosome position 191,964,633, denoted as NC_000002.12:191099907: T>G in HGVS nomenclature.
- rs10181656: a C>G substitution located in intron 3 at chromosome position 191,969,879, denoted as NC_000002.12:191105152: C>G in HGVS nomenclature.
- rs7601754: a G>A substitution located in intron 4 at chromosome position 191,940,045, denoted as NC_000002.12:191075724: G>A in HGVS nomenclature.
- rs10168266: a C>T substitution located in intron 5 at chromosome position 191,935,804, denoted as NC_000002.12:191071077: C>T in HGVS nomenclature.
2.2. Serum Level Measurements
2.3. Study Group
- Diagnosed and confirmed PA through magnetic resonance imaging (MRI).
- Good general health.
- Informed consent.
- Age 18 years and above.
- No other tumors.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, J.; Wan, F.; Wang, L.; Peng, C.; Huang, R.; Peng, F. STAT4 facilitates PD-L1 level via IL-12R/JAK2/STAT3 axis and predicts immunotherapy response in breast cancer. Medcomm 2023, 4, e464. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scarno, G.; Mazej, J.; Laffranchi, M.; Di Censo, C.; Mattiola, I.; Candelotti, A.M.; Pietropaolo, G.; Stabile, H.; Fionda, C.; Peruzzi, G.; et al. Divergent roles for STAT4 in shaping differentiation of cytotoxic ILC1 and NK cells during gut inflammation. Proc. Natl. Acad. Sci. USA 2023, 120, e2306761120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sohrab, S.S.; Raj, R.; Nagar, A.; Hawthorne, S.; Paiva-Santos, A.C.; Kamal, M.A.; El-Daly, M.M.; Azhar, E.I.; Sharma, A. Chronic inflammation’s transformation to cancer: A nanotherapeutic paradigm. Molecules 2023, 28, 4413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, C.; Mai, H.; Peng, J.; Zhou, B.; Hou, J.; Jiang, D. STAT4, an immunoregulator contributing to diverse human diseases. Int. J. Biol. Sci. 2020, 16, 1575–1585. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faida, P.; Attiogbe, M.K.; Majeed, U.; Zhao, J.; Qu, L.; Fan, D. Lung cancer treatment potential and limits associated with the STAT family of transcription factors. Cell. Signal. 2023, 109, 110797. [Google Scholar] [CrossRef] [PubMed]
- Hjazi, A.; Obaid, R.F.; Ali, S.S.; Abdullaev, B.; Alsaab, H.O.; Huldani, H.; Romero-Parra, R.M.; Mustafa, Y.F.; Hussien, B.M.; Saadoon, S.J. The cross-talk between LncRNAs and JAK-STAT signaling pathway in cancer. Pathol.-Res. Pract. 2023, 248, 154657. [Google Scholar] [CrossRef]
- Ravid, J.D.; Leiva, O.; Chitalia, V.C. Janus kinase signaling pathway and its role in COVID-19 inflammatory, vascular, and thrombotic manifestations. Cells 2022, 11, 306. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef]
- Orsolini, G.; Bertoldi, I.; Rossini, M. Osteoimmunology in rheumatoid and psoriatic arthritis: Potential effects of tofacitinib on bone involvement. Clin. Rheumatol. 2020, 39, 727–736. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Sun, J.-F.; Nie, P.; Herdewijn, P.; Wang, Y.-T. Synthesis and clinical application of small-molecule inhibitors of Janus kinase. Eur. J. Med. Chem. 2023, 261, 115848. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cui, Y.; Sheng, Y.; Zhang, X. Genetic susceptibility to SLE: Recent progress from GWAS. J. Autoimmun. 2013, 41, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Melmed, S.; Kaiser, U.B.; Lopes, M.B.; Bertherat, J.; Syro, L.V.; Raverot, G.; Reincke, M.; Johannsson, G.; Beckers, A.; Fleseriu, M.; et al. Clinical Biology of the Pituitary Adenoma. Endocr. Rev. 2022, 43, 1003–1037. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moini, J.; Badolato, C.; Ahangari, R. Chapter 8—Pituitary tumors. In Epidemiology of Endocrine Tumors; Moini, J., Badolato, C., Ahangari, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 151–200. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, S.; Zhao, X.; Ren, L.; Liu, X.; Gang, X.; Wang, G. Pathogenesis, clinical features, and treatment of plurihormonal pituitary adenoma. Front. Neurosci. 2024, 17, 1323883. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, X. The Molecular Pathogenesis of Pituitary Adenomas: An Update. Endocrinol. Metab. 2013, 28, 245–254. [Google Scholar] [CrossRef]
- Melmed, S. Pathogenesis of pituitary tumors. Nat. Rev. Endocrinol. 2011, 7, 257–266. [Google Scholar] [CrossRef]
- Russ, S.; Anastasopoulou, C.; Shafiq, I. Pituitary adenoma. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Li, Y.; Ren, X.; Gao, W.; Cai, R.; Wu, J.; Liu, T.; Chen, X.; Jiang, D.; Chen, C.; Cheng, Q.; et al. The biological behavior and clinical outcome of pituitary adenoma are affected by the microenvironment. CNS Neurosci. Ther. 2024, 30, e14729. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Simander, G.; Eriksson, P.O.; Lindvall, P.; Koskinen, L.-O.D. Intrasellar pressure in patients with pituitary adenoma—Relation to tumour size and growth pattern. BMC Neurol. 2022, 22, 82. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarapultsev, A.; Gusev, E.; Komelkova, M.; Utepova, I.; Luo, S.; Hu, D. JAK-STAT signaling in inflammation and stress-related diseases: Implications for therapeutic interventions. Mol. Biomed. 2023, 4, 40. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hibino, S.; Kawazoe, T.; Kasahara, H.; Itoh, S.; Ishimoto, T.; Sakata-Yanagimoto, M.; Taniguchi, K. Inflammation-induced tumorigenesis and metastasis. Int. J. Mol. Sci. 2021, 22, 5421. [Google Scholar] [CrossRef]
- Moon, C.M.; Cheon, J.H.; Kim, S.W.; Shin, D.J.; Kim, E.S.; Shin, E.S.; Kang, Y.; Park, J.J.; Hong, S.P.; Nam, S.Y.; et al. Association of signal transducer and activator of transcription 4 genetic variants with extra-intestinal manifestations in inflammatory bowel disease. Life Sci. 2010, 86, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pang, G.S.; Chong, S.S.; Lee, C.G. SNP web resources and their potential applications in personalized medicine. Curr. Drug Metab. 2012, 13, 978–990. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.D.; Lee, W.J.; Kong, K.A.; Woo, J.H.; Choi, S.J.; Lee, Y.H.; Song, G.G. Association of STAT4 polymorphism with rheumatoid arthritis and systemic lupus erythematosus: A meta-analysis. Mol. Biol. Rep. 2010, 37, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, T.; Kawaguchi, Y.; Goto, K.; Hayashi, Y.; Tsuburaya, R.; Furuya, T.; Gono, T.; Nishino, I.; Yamanaka, H. Positive association between STAT4 polymorphisms and polymyositis/dermatomyositis in a Japanese population. Ann. Rheum. Dis. 2012, 71, 1646–1650. [Google Scholar] [CrossRef]
- Kim, E.S.; Kim, S.W.; Moon, C.M.; Park, J.J.; Kim, T.I.; Kim, W.H.; Cheon, J.H. Interactions between IL17A, IL23R, and STAT4 polymorphisms confer susceptibility to intestinal Behcet’s disease in Korean population. Life Sci. 2012, 91, 34–40. [Google Scholar] [CrossRef]
- Wang, C.; Gao, N.; Yang, L.; Guo, Y.; Fang, Y.; Wang, T.; Xu, C.; Li, G.F.; Zhou, J.; Zhang, Y.; et al. Stat4 rs7574865 polymorphism promotes the occurrence and progression of hepatocellular carcinoma via the Stat4/CYP2E1/FGL2 pathway. Cell Death Dis. 2022, 13, 130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, X.; Jiang, K.; Liang, B.; Huang, X. STAT4Gene Polymorphism and Risk of Chronic Hepatitis B-Induced Hepatocellular Carcinoma. Cell Biochem. Biophys. 2015, 71, 353–357. [Google Scholar] [CrossRef]
- Shi, H.; He, H.; Ojha, S.C.; Sun, C.; Fu, J.; Yan, M.; Deng, C.; Sheng, Y.J. Association of STAT3 and STAT4 polymorphisms with susceptibility to chronic hepatitis B virus infection and risk of hepatocellular carcinoma: A meta-analysis. Biosci Rep. 2019, 39, BSR20190783. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, Y.; Zhang, H.; Su, X. Immune Response-Related Genes—STAT4, IL8RA and CCR7Polymorphisms in Lung Cancer: A Case-Control Study in China. Pharmgenom. Pers. Med. 2020, 13, 511–519. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bowes, J.; Ho, P.; Flynn, E.; Ali, F.; Marzo-Ortega, H.; Coates, L.C.; Warren, R.B.; McManus, R.; Ryan, A.W.; Kane, D.; et al. Comprehensive assessment of rheumatoid arthritis susceptibility loci in a large psoriatic arthritis cohort. Ann. Rheum. Dis. 2012, 71, 1350–1354. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Myrthianou, E.; Zervou, M.; Budu-Aggrey, A.; Eliopoulos, E.; Kardassis, D.; Boumpas, D.; Kougkas, N.; Barton, A.; Sidiropoulos, P.; Goulielmos, G. Investigation of the genetic overlap between rheumatoid arthritis and psoriatic arthritis in a Greek population. Scand. J. Rheumatol. 2016, 46, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Park, H.; Yang, S.; Kim, D.; Park, Y. STAT4 polymorphism is associated with early-onset type 1 diabetes, but not with late-onset type 1 diabetes. Ann. N. Y. Acad. Sci. 2008, 1150, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Bianco, B.; Fernandes, R.F.M.; Trevisan, C.M.; Christofolini, D.M.; Sanz-Lomana, C.M.; de Barnabe, J.V.; Barbosa, C.P. Influence of STAT4 gene polymorphisms in the pathogenesis of endometriosis. Ann. Hum. Genet. 2019, 83, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Feng, J.-B.; Pan, H.-F.; Qiu, L.-X.; Li, L.-H.; Zhang, N.; Ye, D.-Q. A meta-analysis of the association of STAT4 polymorphism with systemic lupus erythematosus. Mod. Rheumatol. 2010, 20, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Ng, P.; Zhao, M.; Hirankarn, N.; Lau, C.S.; Mok, C.C.; Chan, T.M.; Wong, R.W.S.; Lee, K.W.; Mok, M.Y.; et al. Population differences in SLE susceptibility genes: STAT4 and BLK, but not PXK, are associated with systemic lupus erythematosus in Hong Kong Chinese. Genes Immun. 2009, 10, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Joshita, S.; Umemura, T.; Nakamura, M.; Katsuyama, Y.; Shibata, S.; Kimura, T.; Morita, S.; Komatsu, M.; Matsumoto, A.; Yoshizawa, K.; et al. STAT4 gene polymorphisms are associated with susceptibility and ANA status in primary biliary cirrhosis. Dis Markers 2014, 2014, 727393. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.; Gao, C.; Liu, C.; Chen, J.; Xu, K. Association between STAT4 polymorphisms and risk of primary biliary cholangitis: A meta-analysis. Genes Genom. 2018, 40, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Marrero, A.; Arroyo, N.; Godoy, L.; Rahman, M.Z.; Matta, J.L.; Dutil, J. SNPs in the interleukin-12 signaling pathway are associated with breast cancer risk in Puerto Rican women. Oncotarget 2020, 11, 3420–3431. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Wang, J.; Chen, W.; Chen, X.; Wang, J. Overexpression of STAT4 under hypoxia promotes EMT through miR-200a/STAT4 signal pathway. Life Sci. 2021, 273, 119263. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Wu, J. High STAT4 expression correlates with poor prognosis in acute myeloid leukemia and facilitates disease progression by upregulating VEGFA expression. Open Med. 2024, 19, 20230840. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, M.; Li, J.; Ye, C.; Wu, W.; Cheng, Y. miR-200a-3p predicts prognosis and inhibits bladder cancer cell proliferation by targeting STAT4. Arch. Med Sci. 2019, 15, 724–735. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, Y.; Lei, Y.; Zhang, H.; Zhang, M.; Dayton, A. Interleukin-12 treatment down-regulates STAT4 and induces apoptosis with increasing ROS production in human natural killer cells. J. Leukoc. Biol. 2011, 90, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Ma, L.; Li, G.; Li, G.; Su, Y.; Su, Y.; He, Q.; He, Q.; Zhang, C.; Zhang, C.; et al. The soluble major histocompatibility complex class I-related chain A protein reduced NKG2D expression on natural killer and T cells from patients with prolactinoma and non-secreting pituitary adenoma. J. Clin. Neurosci. 2010, 17, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Lamana, A.; López-Santalla, M.; Castillo-González, R.; Ortiz, A.M.; Martín, J.; García-Vicuña, R.; González-Álvaro, I. The Minor Allele of rs7574865 in the STAT4 Gene Is Associated with Increased mRNA and Protein Expression. PLoS ONE 2015, 10, e0142683. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blekeris, T.; Gedvilaite, G.; Kaikaryte, K.; Kriauciuniene, L.; Zaliuniene, D.; Liutkevciene, R. Association of STAT4 Gene Polymorphisms (rs10181656, rs7574865, rs7601754, rs10168266) and Serum STAT4 Levels in Age-Related Macular Degeneration. Biomedicines 2023, 12, 18. [Google Scholar] [CrossRef]
- Bruzaite, A.; Gedvilaite, G.; Balnyte, R.; Kriauciuniene, L.; Liutkeviciene, R. Influence of STAT4 Genetic Variants and Serum Levels on Multiple Sclerosis Occurrence in the Lithuanian Population. J. Clin. Med. 2024, 13, 2385. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheok, Y.Y.; Abdullah, S.; Wong, W.F. Transcriptional regulatory network associated with multiple sclerosis pathogenesis. In Transcription and Translation in Health and Disease; Academic Press: Cambridge, MA, USA, 2023; pp. 359–368. [Google Scholar]
Characteristics | Group | p-Value | ||
---|---|---|---|---|
PA Group | Reference Group | |||
Gender | Females, n (%) | 82 (59.0) | 221 (61.9) | 0.550 * |
Males, n (%) | 57 (41.0) | 136 (38.1) | ||
Age, mean (SD) | 54.4 (20.5) | 53.9 (14.0) | 0.763 ** | |
Size: Micro/Macro | 50/89 | Not Applicable | Not Applicable | |
Relapse: PA with relapse/PA without relapse | 32/107 | Not Applicable | Not Applicable |
Polymorphism | PA, n (%) | Reference Group, n (%) | p-Value |
---|---|---|---|
STAT4 rs10181656 | |||
CC | 65 (46.8) | 208 (58.3) | 0.067 |
CG | 62 (44.6) | 123 (34.5) | |
GG | 12 (8.6) | 26 (7.3) | |
Total | 139 (100) | 357 (100) | |
Allele | |||
C | 192 (69.1) | 539 (75.5) | 0.039 |
G | 86 (30.9) | 175 (25.5) | |
STAT4 rs7574865 | |||
GG | 64 (46.0) 1 | 209 (58.5) 1 | 0.042 |
GT | 62 (35.0) | 121 (33.9) | |
TT | 13 (2.5) | 27 (7.6) | |
Total | 139 (100) | 357 (100) | |
Allele | |||
G | 190 (68.3) | 539 (75.5) | 0.022 |
T | 88 (31.7) | 175 (25.5) | |
STAT4 rs7601754 | |||
AA | 117 (84.2) | 270 (75.6) | 0.118 |
AG | 20 (14.4) | 80 (22.4) | |
GG | 2 (1.4) | 7 (2.0) | |
Total | 139 (100) | 357 (100) | |
Allele | |||
A | 254 (91.4) | 620 (86.8) | 0.048 |
G | 24 (8.6) | 94 (13.2) | |
STAT4 rs10168266 | |||
CC | 81 (58.3) | 238 (66.7) | 0.182 |
CT | 50 (36.0) | 106 (29.7) | |
TT | 8 (5.8) | 13 (3.6) | |
Total | 139 (100) | 357 (100) | |
Allele | |||
C | 212 (76.3) | 582 (81.5) | 0.063 |
T | 66 (23.7) | 132 (18.5) |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
STAT4 rs10181656 | ||||
Co-dominant | CG vs. GG CC vs. GG | 1.613 (1.613–2.438) 1.477 (0.706–3.091) | 0.023 0.301 | 587.053 |
Dominant | CG + CC vs. GG | 1.589 (1.072–2.357) | 0.021 | 585.106 |
Recessive | CC vs. GG + CG | 1.203 (0.589–2.456) | 0.612 | 560.184 |
Overdominant | CG vs. CC + GG | 1.532 (1.027–2.284) | 0.036 | 586.085 |
Additive | G | 1.365 (1.009–1.846) | 0.044 | 586.409 |
STAT4 rs7574865 | ||||
Co-dominant | GT vs. TT GG vs. TT | 1.673 (1.105–2.534) 1.572 (0.767–3.225) | 0.015 0.217 | 586.111 |
Dominant | GT + GG vs. TT | 1.655 (1.115–2.455) | 0.012 | 584.139 |
Recessive | GG vs. TT + GT | 1.261 (0.631–2.521) | 0.512 | 590.016 |
Overdominant | GT vs. GG + TT | 1.570 (1.053–2.342) | 0.027 | 585.575 |
Additive | T | 1.403 (1.040–1.892) | 0.026 | 585.560 |
STAT4 rs7601754 | ||||
Co-dominant | AG vs. GG AA vs. GG | 0.577 (0.338–0.986) 0.659 (0.135–3.222) | 0.044 0.607 | 587.939 |
Dominant | AG + AA vs. GG | 0.584 (0.348–0.977) | 0.041 | 585.964 |
Recessive | AA vs. GG + AG | 0.730 (0.150–3.557) | 0.697 | 590.276 |
Overdominant | AG vs. AA + GG | 0.582 (0.341–0.994) | 0.047 | 586.223 |
Additive | G | 0.632 (0.396–1.008) | 0.054 | 586.423 |
STAT4 rs10168266 | ||||
Co-dominant | CT vs. TT CC vs. TT | 1.386 (0.910–2.110) 1.808 (0.723–4.520) | 0.128 0.205 | 587.104 |
Dominant | CT + CC vs. TT | 1.432 (0.957–2.142) | 0.080 | 587.405 |
Recessive | CC vs. TT + AT | 1.616 (0.655 -3.988) | 0.298 | 589.396 |
Overdominant | CT vs. CC + TT | 0.863 (0.559–1.333) | 0.177 | 588.632 |
Additive | T | 1.367 (0.979–1.909) | 0.066 | 587.115 |
Polymorphism | PA, N (%) | Reference Group, N (%) | p-Value |
---|---|---|---|
STAT4 rs10181656 | |||
CC | 27 (47.4) | 83 (61.0) | 0.215 |
CG | 24 (42.1) | 43 (31.6) | |
GG | 6 (10.5) | 10 (7.4) | |
Total | 57 (100) | 136 (100) | |
Allele | |||
C | 78 (68.4) | 209 (76.8) | 0.084 |
G | 36 (31.6) | 63 (23.2) | |
STAT4 rs7574865 | |||
GG | 26 (45.6) | 85 (62.5) | 0.091 |
GT | 24 (42.1) | 41 (30.1) | |
TT | 7 (12.3) | 10 (7.4) | |
Total | 57 (100) | 136 (100) | |
Allele | |||
G | 76 (66.7) | 211 (77.6) | 0.033 |
T | 38 (33.3) | 61 (22.4) | |
STAT4 rs7601754 | |||
AA | 48 (84.2) | 105 (77.2) | 0.450 |
AG | 7 (12.3) | 27 (19.9) | |
GG | 2 (3.5) | 4 (2.9) | |
Total | 57 (100) | 136 (100) | |
Allele | |||
A | 103 (90.4) | 237 (87.1) | 0.373 |
G | 11 (9.6) | 35 (12.9) | |
STAT4 rs10168266 | |||
CC | 29 (50.9) 1 | 98 (72.1) 1 | 0.016 |
CT | 24 (42.1) | 34 (25.0) | |
TT | 4 (7.0) | 4 (2.9) | |
Total | 57 (100) | 136 (100) | |
Allele | |||
C | 82 (71.9) | 230 (84.6) | 0.004 |
T | 32 (28.1) | 42 (15.4) |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
STAT4 rs10181656 | ||||
Co-dominant | CG vs. GG CC vs. GG | 1.716 (0.885–3.326) 1.844 (0.613–5.548) | 0.110 0.276 | 235.192 |
Dominant | CG + CC vs. GG | 1.740 (0.933–3.247) | 0.082 | 233.208 |
Recessive | CC vs. GG + CG | 1.482 (0.512–4.292) | 0.468 | 235.738 |
Overdominant | CG vs. CC + GG | 1.573 (0.831–2.977) | 0.164 | 234.329 |
Additive | G | 1.481 (0.927–2.366) | 0.100 | 233.573 |
STAT4 rs7574865 | ||||
Co-dominant | GT vs. TT GG vs. TT | 1.914 (0.981–3.734) 2.288 (0.792–6.612) | 0.057 0.126 | 231.490 |
Dominant | GT + GG vs. TT | 1.987 (1.062–3.717) | 0.032 | 231.593 |
Recessive | GG vs. TT + GT | 1.764 (0.636–4.892) | 0.275 | 235.100 |
Overdominant | GT vs. GG + TT | 1.685 (0.888–3.198) | 0.110 | 233.724 |
Additive | T | 1.639 (1.032–2.603) | 0.036 | 231.886 |
STAT4 rs7601754 | ||||
Co-dominant | AG vs. GG AA vs. GG | 0.567 (0.231–1.393) 1.094 (0.194–6.178) | 0.216 0.919 | 236.560 |
Dominant | AG + AA vs. GG | 0.635 (0.281–1.438) | 0.276 | 235.000 |
Recessive | AA vs. GG + AG | 1.200 (0.214–6.744) | 0.836 | 236.206 |
Overdominant | AG vs. AA + GG | 0.565 (0.231–1.385) | 0.212 | 234.570 |
Additive | G | 0.755 (0.386–1.476) | 0.411 | 235.537 |
STAT4 rs10168266 | ||||
Co-dominant | CT vs. TT CC vs. TT | 2.385 (1.224–4.647) 3.379 (0.795–14.356) | 0.011 0.099 | 230.229 |
Dominant | CT + CC vs. TT | 2.490 (1.313–4.724) | 0.005 | 228.441 |
Recessive | CC vs. TT + AT | 2.491 (0.601–10.325) | 0.209 | 234.711 |
Overdominant | CT vs. CC + TT | 2.182 (1.135–4.194) | 0.019 | 230.833 |
Additive | T | 2.122 (1.244–3.620) | 0.006 | 228.556 |
Polymorphism | Reference Group, n (%) | Micro PA, n (%) | Macro PA, n (%) | p-Value |
---|---|---|---|---|
STAT4 rs10181656 | ||||
CC | 208 (58.3) | 26 (52.0) | 39 (43.8) | 0.575 * |
CG | 123 (34.5) | 21 (42.0) | 41 (46.1) | 0.049 ** |
GG | 26 (7.3) | 3 (6.0) | 9 (10.1) | |
Total | 357 (100) | 50 (100) | 89 (100) | |
Allele | ||||
C | 539 (75.5) | 73 (73.0) | 119 (66.9) | 0.589 * |
G | 175 (25.5) | 27 (37.0) | 59 (33.1) | 0.019 ** |
STAT4 rs7574865 | ||||
GG | 209 (58.5) 1 | 25 (50.0) | 39 (43.8) 1 | 0.372 * |
GT | 121 (33.9) | 22 (44.0) | 40 (44.9) | 0.042 ** |
TT | 27 (7.6) | 3 (6.0) | 10 (11.2) | |
Total | 357 (100) | 50 (100) | 89 (100) | |
Allele | ||||
G | 539 (75.5) | 72 (72.0) | 118 (66.3) | 0.450 * |
T | 175 (25.5) | 28 (28.0) | 60 (33.7) | 0.013 ** |
STAT4 rs7601754 | ||||
AA | 270 (75.6) | 40 (80.0) | 77 (86.5) | 0.413 * |
AG | 80 (22.4) | 8 (16.0) | 12 (13.5) | 0.061 ** |
GG | 7 (2.0) | 2 (4.0) | 0 (0.0) | |
Total | 357 (100) | 50 (100) | 89 (100) | |
Allele | ||||
A | 620 (86.8) | 88 (88.0) | 166 (93.3) | 0.745 * |
G | 94 (13.2) | 12 (12.0) | 12 (6.7) | 0.018 ** |
STAT4 rs10168266 | ||||
CC | 238 (66.7) | 27 (54.0) | 54 (60.7) | 0.199 * |
CT | 106 (29.7) | 21 (42.0) | 29 (32.6) | 0.334 ** |
TT | 13 (3.6) | 2 (4.0) | 6 (6.7) | |
Total | 357 (100) | 50 (100) | 89 (100) | |
Allele | ||||
C | 582 (81.5) | 75 (75.0) | 137 (77.0) | 0.122 * |
T | 132 (18.5) | 25 (25.0) | 41 (23.0) | 0.170 ** |
Polymorphism | Reference Group, n (%) | PA Without Relapse, n (%) | PA with Relapse, n (%) | p-Value |
---|---|---|---|---|
STAT4 rs10181656 | ||||
CC | 208 (58.3) | 48 (44.9) | 17 (53.8) | 0.050 * |
CG | 123 (34.5) | 49 (45.8) | 13 (40.6) | 0.780 ** |
GG | 26 (7.3) | 10 (9.3 | 2 (6.3) | |
Total | 357 (100) | 107 (100) | 32 (100) | |
Allele | ||||
C | 539 (75.5) | 145 (67.8) | 47 (73.4) | 0.024 * |
G | 175 (25.5) | 69 (32.2) | 17 (26.6) | 0.715 ** |
STAT4 rs7574865 | ||||
GG | 209 (58.5) | 47 (43.9) | 17 (53.8) | 0.029 * |
GT | 121 (33.9) | 49 (45.8) | 13 (40.6) | 0.740 ** |
TT | 27 (7.6) | 11 (10.3) | 2 (6.3) | |
Total | 357 (100) | 107 (100) | 32 (100) | |
Allele | ||||
G | 539 (75.5) | 143 (66.8) | 47 (73.4) | 0.012 * |
T | 175 (25.5) | 71 (33.2) | 17 (26.6) | 0.715 ** |
STAT4 rs7601754 | ||||
AA | 270 (75.6) | 89 (83.2) | 28 (87.5) | 0.244 * |
AG | 80 (22.4) | 16 (15.0) | 4 (12.5) | 0.286 ** |
GG | 7 (2.0) | 2 (1.9) | 0 (0.0) | |
Total | 357 (100) | 107 (100) | 32 (100) | |
Allele | ||||
A | 620 (86.8) | 194 (90.7) | 60 (93.8) | 0.135 * |
G | 94 (13.2) | 20 (9.3) | 4 (6.2) | 0.110 ** |
STAT4 rs10168266 | ||||
CC | 238 (66.7) | 61 (57.0) | 20 (62.5) | 0.135 * |
CT | 106 (29.7) | 39 (36.4) | 11 (34.4) | 0.855 ** |
TT | 13 (3.6) | 7 (6.5) | 1 (3.1) | |
Total | 357 (100) | 107 (100) | 32 (100) | |
Allele | ||||
C | 582 (81.5) | 161 (75.2) | 51 (79.7) | 0.044 * |
T | 132 (18.5) | 53 (24.8) | 13 (20.3) | 0.719 ** |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
PA with relapse | ||||
STAT4 rs10181656 | ||||
Co-dominant | CG vs. GG CC vs. GG | 1.293 (0.607–2.753) 0.941 (0.206–4.307) | 0.505 0.938 | 224.666 |
Dominant | CG + CC vs. GG | 1.232 (0.596–2.544) | 0.573 | 222.839 |
Recessive | CC vs. GG + CG | 0.849 (0.192–3.751) | 0.829 | 223.106 |
Overdominant | CG vs. CC + GG | 1.302 (0.622–2.724) | 0.484 | 222.672 |
Additive | G | 1.107 (0.630–1.945) | 0.723 | 223.031 |
STAT4 rs7574865 | ||||
Co-dominant | GT vs. TT GG vs. TT | 1.321 (0.620–2.813) 0.911 (0.199–4.160) | 0.471 0.904 | 224.563 |
Dominant | GT + GG vs. TT | 1.246 (0.603–2.574) | 0.552 | 222.803 |
Recessive | GG vs. TT + GT | 0.815 (0.185–3.594) | 0.787 | 223.077 |
Overdominant | GT vs. GG + TT | 1.334 (0.638–2793) | 0.444 | 222.578 |
Additive | T | 1.106 (0.632–1.935) | 0.725 | 223.032 |
STAT4 rs7601754 | ||||
Co-dominant | AG vs. GG AA vs. GG | 0.482 (0.164–1.415) - | 0.184 - | 221.879 |
Dominant | AG + AA vs. GG | 0.443 (0.151–1.299) | 0.138 | 220.534 |
Recessive | AA vs. GG + AG | - | - | - |
Overdominant | AG vs. AA + GG | 0.495 (0.169–1.452) | 0.200 | 221.244 |
Additive | G | 0.444 (0.158–1.247) | 0.123 | 220.187 |
STAT4 rs10168266 | ||||
Co-dominant | CT vs. TT CC vs. TT | 1.235 (0.571–2.668) 0.915 (0.114–7.360) | 0.591 0.934 | 224.848 |
Dominant | CT + CC vs. TT | 1.200 (0.568–2.537) | 0.633 | 222.930 |
Recessive | CC vs. TT + AT | 0.854 (0.108–6.744) | 0.881 | 223.131 |
Overdominant | CT vs. CC + TT | 1.240 (0.578–2.663) | 0.581 | 222.855 |
Additive | T | 1.123 (0.595–2.119) | 0.721 | 223.029 |
PA without relapse | ||||
STAT4 rs10181656 | ||||
Co-dominant | CG vs. GG CC vs. GG | 1.726(1.094–2.724) 1.667 (0.753–3.687) | 0.019 0.207 | 499.163 |
Dominant | CG + CC vs. GG | 1.716 (1.110–2.651) | 0.015 | 497.170 |
Recessive | CC vs. GG + CG | 1.312 (0.612–2.817) | 0.485 | 502.654 |
Overdominant | CG vs. CC + GG | 1.607 (1.037–2.492) | 0.034 | 498.665 |
Additive | G | 1.444 (1.040–2.006) | 0.028 | 498.392 |
STAT4 rs7574865 | ||||
Co-dominant | GT vs. TT GG vs. TT | 1.801 (1.138–2.848) 1.812 (0.840–3.909) | 0.012 0.130 | 498.041 |
Dominant | GT + GG vs. TT | 1.803 (1.166–2.788) | 0.008 | 496.041 |
Recessive | GG vs. TT + GT | 1.400 (0.670–2.926) | 0.370 | 502.354 |
Overdominant | GT vs. GG + TT | 1.648 (1.062 -2.556) | 0.026 | 498.197 |
Additive | T | 1.495 (1.081–2.069) | 0.015 | 497.314 |
STAT4 rs7601754 | ||||
Co-dominant | AG vs. GG AA vs. GG | 0.607 (0.337–1.092) 0.860 ((0.177–4.249) | 0.096 0.860 | 502.143 |
Dominant | AG + AA vs. GG | 0.628 (0.358–1.100) | 0.104 | 500.311 |
Recessive | AA vs. GG + AG | 0.952 (0.195–4.654) | 0.952 | 503.120 |
Overdominant | AG vs. AA + GG | 0.609 (0.339–1.095) | 0.097 | 500.175 |
Additive | G | 0.689 (0.417–1.138) | 0.146 | 500.854 |
STAT4 rs10168266 | ||||
Co-dominant | CT vs. TT CC vs. TT | 1.436 (0.904–2.280) 2.101 (0.804–5.492) | 0.125 0.130 | 501.282 |
Dominant | CT + CC vs. TT | 1.508 (0.970–2.345) | 0.068 | 499.833 |
Recessive | CC vs. TT + AT | 1.852 (0.720–4.768) | 0.201 | 501.595 |
Overdominant | CT vs. CC + TT | 1.358 (0.862–2.139) | 0.187 | 501.407 |
Additive | T | 1.442 (1.004–2.071) | 0.047 | 499.283 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gedvilaite-Vaicechauskiene, G.; Kriauciuniene, L.; Liutkeviciene, R. Signal Transducer and Activator of Transcription 4 (STAT4) Association with Pituitary Adenoma. Medicina 2024, 60, 1871. https://doi.org/10.3390/medicina60111871
Gedvilaite-Vaicechauskiene G, Kriauciuniene L, Liutkeviciene R. Signal Transducer and Activator of Transcription 4 (STAT4) Association with Pituitary Adenoma. Medicina. 2024; 60(11):1871. https://doi.org/10.3390/medicina60111871
Chicago/Turabian StyleGedvilaite-Vaicechauskiene, Greta, Loresa Kriauciuniene, and Rasa Liutkeviciene. 2024. "Signal Transducer and Activator of Transcription 4 (STAT4) Association with Pituitary Adenoma" Medicina 60, no. 11: 1871. https://doi.org/10.3390/medicina60111871
APA StyleGedvilaite-Vaicechauskiene, G., Kriauciuniene, L., & Liutkeviciene, R. (2024). Signal Transducer and Activator of Transcription 4 (STAT4) Association with Pituitary Adenoma. Medicina, 60(11), 1871. https://doi.org/10.3390/medicina60111871