Prevalence of ApoE Alleles in a Spanish Population of Patients with a Clinical Diagnosis of Alzheimer’s Disease: An Observational Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Cohort
2.3. Inclusion and Exclusion Criteria
2.4. Procedures
2.4.1. Biological Samples for ApoE Polymorphism Analysis
Sample Collection
Processing of Biological Samples
PCR Amplification
2.5. Statistical Analysis
3. Results
3.1. Descriptive Data of the Sample
3.1.1. Socio-Demographic Data
3.1.2. Clinical Data
3.2. Allele and Genotype Frequencies of ApoE in the Community of Castilla y León (Spain)
3.3. The ApoE4 Variant in the Population of the Community of Castilla y León
4. Discussion
4.1. Allele and Genotypic Frequencies at a European Level
4.2. Allele and Genotypic Frequencies in Spain
4.3. ApoE Polymorphism and Alzheimer’s Disease
4.4. APOE Polymorphism and Potential Therapeutic Approaches
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Barragán Martínez, D.; Soldevilla, M.A.G.; Santiago, A.P.; Tejeiro Martínez, J. Enfermedad de Alzheimer. Medicine 2019, 12, 4338–4384. [Google Scholar] [CrossRef]
- Toodayan, N. Professor Alois Alzheimer (1864–1915): Lest we forget. J. Clin. Neurosci. 2016, 31, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Tahami Monfared, A.A.; Byrnes, M.J.; White, L.A.; Zhang, Q. Alzheimer’s disease: Epidemiology and clinical progression. Neurol. Ther. 2022, 11, 553–569. [Google Scholar] [CrossRef] [PubMed]
- Porsteinsson, A.P.; Isaacson, R.S.; Knox, S.; Sabbagh, M.N.; Rubino, I. Diagnosis of Early Alzheimer’s Disease: Clinical Practice in 2021. J. Prev. Alzheimer’s Dis. 2021, 8, 371–386. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef]
- Brecht, W.J.; Harris, F.M.; Chang, S.; Tesseur, I.; Yu, G.-Q.; Xu, Q.; Dee Fish, J.; Wyss-Coray, T.; Buttini, M.; Mucke, L.; et al. Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J. Neurosci. 2004, 24, 2527–2534. [Google Scholar] [CrossRef]
- Soria Lopez, J.A.; González, H.M.; Léger, G.C. Alzheimer’s disease. Handb. Clin. Neurol. 2019, 167, 231–255. [Google Scholar] [CrossRef]
- Calsolaro, V.; Edison, P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement. 2016, 12, 719–732. [Google Scholar] [CrossRef]
- Khanahmadi, M.; Farhud, D.D.; Malmir, M. Genetic of Alzheimer’s Disease: A Narrative Review Article. Iran. J. Public Health 2015, 44, 892–901. [Google Scholar]
- Reitz, C.; Mayeux, R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol. 2014, 88, 640–651. [Google Scholar] [CrossRef]
- Dubois, B.; Hampel, H.; Feldman, H.H.; Scheltens, P.; Aisen, P.; Andrieu, S.; Bakardjian, H.; Benali, H.; Bertram, L.; Blennow, K.; et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016, 12, 292–323. [Google Scholar] [CrossRef]
- Das, H.K.; McPherson, J.; Bruns, G.A.; Karathanasis, S.K.; Breslow, J.L. Isolation, characterization, and mapping to chromosome 19 of the human apolipoprotein E gene. J. Biol. Chem. 1985, 260, 6240–6247. [Google Scholar] [CrossRef] [PubMed]
- Anoop, S.; Misra, A.; Meena, K.; Luthra, K. Apolipoprotein E polymorphism in cerebrovascular & coronary heart diseases. Indian J. Med. Res. 2010, 132, 363–378. [Google Scholar] [PubMed]
- Kim, J.; Basak, J.M.; Holtzman, D.M. The role of apolipoprotein E in Alzheimer’s disease. Neuron 2009, 63, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Mahley, R.W. Apolipoprotein E: Structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol. Dis. 2014, 72 Pt A, 3–12. [Google Scholar] [CrossRef]
- Roses, A.D.; Saunders, A.M. APOE is a major susceptibility gene for Alzheimer’s disease. Curr. Opin. Biotechnol. 1994, 5, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.C.; Roe, C.M.; Xiong, C.; Fagan, A.M.; Goate, A.M.; Holtzman, D.M.; Mintun, M.A. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann. Neurol. 2010, 67, 122–131. [Google Scholar] [CrossRef]
- Fleisher, A.S.; Chen, K.; Liu, X.; Ayutyanont, N.; Roontiva, A.; Thiyyagura, P.; Protas, H.; Joshi, A.D.; Sabbagh, M.; Sadowsky, C.H.; et al. Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol. Aging 2013, 34, 1–12. [Google Scholar] [CrossRef]
- Conejero-Goldberg, C.; Hyde, T.M.; Chen, S.; Dreses-Werringloer, U.; Herman, M.M.; Kleinman, J.E.; Davies, P.; Goldberg, T.E. Molecular signatures in post-mortem brain tissue of younger individuals at high risk for Alzheimer’s disease as based on APOE genotype. Mol. Psychiatry 2011, 16, 836–847. [Google Scholar] [CrossRef]
- Reiman, E.M.; Caselli, R.J.; Chen, K.; Alexander, G.E.; Bandy, D.; Frost, J. Declining brain activity in cognitively normal apolipoprotein E 4 heterozygotes: A foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2001, 98, 3334–3339. [Google Scholar] [CrossRef]
- Pantelidis, P.; Lambert-Hammill, M.; Wierzbicki, A.S. Simple Sequence-specific-Primer-PCR Method To Identify the Three Main Apolipoprotein E Haplotypes. Clin. Chem. 2003, 49, 1945–1948. [Google Scholar] [CrossRef] [PubMed]
- Papastefanopoulou, V.; Stanitsa, E.; Koros, C.; Simoudis, A.; Florou-Hatziyiannidou, C.; Beratis, I.; Antonelou, R.; Andronas, N.; Voskou, P.; Angelopoulou, E.; et al. ApoE allele frequency in Southern Greece: Exploring the role of geographical gradient in the Greek population. Geriatrics 2023, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Panza, F.; Solfrizzi, V.; Colacicco, A.M.; Basile, A.M.; D’introno, A.; Capurso, C.; Sabba, M.; Capurso, S.; Capurso, A. Apolipoprotein E (ApoE) polymorphism influences serum ApoE levels in Alzheimer’s disease patients and centenarians. Neuroreport 2003, 14, 605–608. [Google Scholar] [CrossRef] [PubMed]
- González, R.D.; Gomes, I.; Gomes, C.; Rocha, R.; Durães, L.; Sousa, P.; Figueruelo, M.; Rodríguez, M.; Pita, C.; Hornero, R.; et al. Apoe variants in an Iberian Alzheimer cohort detected through an optimized sanger sequencing protocol. Genes 2021, 12, 4. [Google Scholar] [CrossRef]
- Clair, A.D.; Norrman, J.; Perry, R.; Yates, C.; Wilcock, G.; Brookes, A. Apolipoprotein E e4 allele frequency in patients with Lewy body dementia, Alzheimer’s disease and age-matched controls. Neurosci. Lett. 1994, 176, 45–46. [Google Scholar] [CrossRef]
- Gustafson, L.; Abrahamson, M.; Grubb, A.; Nilsson, K.; Fex, G. Apolipoprotein-E genotyping in Alzheimer’s disease and Frontotemporal dementia. Dement. Geriatr. Cogn. Disord. 1997, 8, 240–243. [Google Scholar] [CrossRef]
- Lalowski, M.M.; Czyzewski, K.; Pfeffer, A.; Barcikowska, M.; Kwiecinski, H. ApoE polymorphism in Polish patients with Alzheimer’s disease. Acta Neurobiol. Exp. 1998, 58, 65–68. [Google Scholar] [CrossRef]
- Corb, R.M.; Scacch, R.; Mureddu, L.; Mulas, G.; Alfan, G.; Sapienza, L. Apolipoprotein E polymorphism in Italy investigated in native plasma by a simple polyacrylamide gel isoelectric focusing technique. Comparison with frequency data of other European populations. Ann. Hum. Genet. 1995, 59, 197–209. [Google Scholar] [CrossRef]
- Ibarreta, D.; Gómez-Isla, T.; Portera-Sánchez, A.; Parrilla, R.; Ayuso, M.S. Apolipoprotein E genotype in Spanish patients of Alzheimer’s or Parkinson’s disease. J. Neurol. Sci. 1995, 134, 146–149. [Google Scholar] [CrossRef]
- Bycroft, C.; Fernandez-Rozadilla, C.; Ruiz-Ponte, C.; Quintela-García, I.; Carracedo, Á.; Donnelly, P.; Myers, S. Patterns of genetic differentiation and the footprints of historical migrations in the Iberian Peninsula. Nat. Commun. 2019, 10, 551. [Google Scholar] [CrossRef]
- Nunomura, A.; Chiba, S.; Eto, M.; Saito, M.; Makino, I.; Miyagishi, T. Apolipoprotein E polymorphism and susceptibility to early-and late-onset sporadic Alzheimer’s disease in Hokkaido, the northern part of Japan. Neurosci. Lett. 1996, 206, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Castillo Reyes, H.E.; López Contreras, J.R.; Soto Maravilla, M.C.; Vega Romero, C.G. Apolipoproteína épsilon cuatro y enfermedad de alzheimer en pacientes del instituto salvadoreño del seguro social. Crea Cienc. 2021, 13, 33–46. [Google Scholar] [CrossRef]
- Castellano, J.M.; Kim, J.; Stewart, F.R.; Jiang, H.; DeMattos, R.B.; Patterson, B.W.; Fagan, A.M.; Morris, J.C.; Mawuenyega, K.G.; Cruchaga, C.; et al. Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci. Transl. Med. 2011, 3, 89ra57. [Google Scholar] [CrossRef] [PubMed]
- Hudry, E.; Dashkoff, J.; Roe, A.D.; Takeda, S.; Koffie, R.M.; Hashimoto, T.; Scheel, M.; Spires-Jones, T.; Arbel-Ornath, M.; Betensky, R.; et al. Gene transfer of human Apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain. Sci. Transl. Med. 2013, 5, 212ra161. [Google Scholar] [CrossRef]
- Riddell, D.R.; Zhou, H.; Atchison, K.; Warwick, H.K.; Atkinson, P.J.; Jefferson, J.; Xu, L.; Aschmies, S.; Kirksey, Y.; Hu, Y.; et al. Impact of apolipoprotein E (ApoE) polymorphism on brain ApoE levels. J. Neurosci. 2008, 28, 11445–11453. [Google Scholar] [CrossRef]
- Aleshkov, S.; Abraham, C.R.; Zannis, V.I. Interaction of nascent ApoE2, ApoE3, and ApoE4 isoforms expressed in mammalian cells with amyloid peptide beta (1–40). Relevance to Alzheimer’s disease. Biochemistry 1997, 36, 10571–10580. [Google Scholar] [CrossRef]
- Deane, R.; Sagare, A.; Hamm, K.; Parisi, M.; Lane, S.; Finn, M.B.; Holtzman, D.M.; Zlokovic, B.V. apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J. Clin. Investig. 2008, 118, 4002–4013. [Google Scholar] [CrossRef]
- Huang, Y.-W.A.; Zhou, B.; Wernig, M.; Südhof, T.C. ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and Aβ Secretion. Cell 2017, 168, 427–441.e21. [Google Scholar] [CrossRef]
- Conejero-Goldberg, C.; Gomar, J.J.; Bobes-Bascaran, T.; Hyde, T.M.; Kleinman, J.E.; Herman, M.M.; Chen, S.; Davies, P.; Goldberg, T.E. APOE2 enhances neuroprotection against Alzheimer’s disease through multiple molecular mechanisms. Mol. Psychiatry 2014, 19, 1243–1250. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, X.Q.; Wyss-Coray, T.; Brecht, W.J.; Sanan, D.A.; Mahley, R.W. Apolipoprotein E fragments present in Alzheimer’s disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc. Natl. Acad. Sci. USA 2001, 98, 8838–8843. [Google Scholar] [CrossRef]
- Harris, F.M.; Brecht, W.J.; Xu, Q.; Tesseur, I.; Kekonius, L.; Wyss-Coray, T.; Fish, J.D.; Masliah, E.; Hopkins, P.C.; Scearce-Levie, K.; et al. Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc. Natl. Acad. Sci. USA 2003, 100, 10966–10971. [Google Scholar] [CrossRef] [PubMed]
- Ljungberg, M.C.; Dayanandan, R.; Asuni, A.; Rupniak, T.H.; Anderton, B.H.; Lovestone, S. Truncated apoE forms tangle-like structures in a neuronal cell line. Neuroreport 2002, 13, 867–870. [Google Scholar] [CrossRef] [PubMed]
- Strittmatter, W.J.; Saunders, A.M.; Goedert, M.; Weisgraber, K.H.; Dong, L.M.; Jakes, R.; Huang, D.Y.; Pericak-Vance, M.; Schmechel, D.; Roses, A.D. Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: Implications for Alzheimer disease. Proc. Natl. Acad. Sci. USA 1994, 91, 11183–11186. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Ran Ma, T.; Miranda, R.D.; Balestra, M.E.; Mahley, R.W.; Huang, Y. Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc. Natl. Acad. Sci. USA 2005, 102, 18694–18699. [Google Scholar] [CrossRef]
- Lynch, J.R.; Morgan, D.; Mance, J.; Matthew, W.D.; Laskowitz, D.T. Apolipoprotein E modulates glial activation and the endogenous central nervous system inflammatory response. J. Neuroimmunol. 2001, 114, 107–113. [Google Scholar] [CrossRef]
- Barger, S.W.; Harmon, A.D. Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 1997, 388, 878–881. [Google Scholar] [CrossRef]
- Guo, L.; LaDu, M.J.; Van Eldik, L.J. A dual role for apolipoprotein e in neuroinflammation: Anti- and pro-inflammatory activity. J. Mol. Neurosci. 2004, 23, 205–212. [Google Scholar] [CrossRef]
- Parhizkar, S.; Holtzman, D.M. APOE mediated neuroinflammation and neurodegeneration in Alzheimer’s disease. Semin. Immunol. 2022, 59, 101594. [Google Scholar] [CrossRef]
- Quiroga, P.; Calvo, C.; Albala, C.; Urquidi, J.; Santos, J.L.; Pérez, H.; Klaassen, G. Apolipoprotein E polymorphism in elderly Chilean people with Alzheimer’s disease. Neuroepidemiology 1999, 18, 48–52. [Google Scholar] [CrossRef]
- Souza, D.R.S.; De Godoy, M.R.; Hotta, J.; Tajara, E.H.; Brandão, A.C.; Júnior, S.P.; Tognola, W.A.; dos Santos, J.E. Association of apolipoprotein E polymorphism in late-onset Alzheimer’s disease and vascular dementia in Brazilians. Braz. J. Med. Biol. Res. 2003, 36, 919–923. [Google Scholar] [CrossRef]
- Wu, P.; Li, H.L.; Liu, Z.J.; Tao, Q.Q.; Xu, M.; Guo, Q.H.; Hong, Z.; Sun, Y.M. Associations between apolipoprotein e gene polymorphisms and Alzheimer’s disease risk in a large Chinese Han population. Clin. Interv. Aging 2015, 10, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, T.E.; Huey, E.D.; Devanand, D.P. Association of APOE e2 genotype with Alzheimer’s and non-Alzheimer’s neurodegenerative pathologies. Nat. Commun. 2020, 11, 4727. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Lin, S.; Bales, K.R.; Gelfanova, V.; Koger, D.; Delong, C.; Hale, J.; Liu, F.; Hunter, J.M.; Paul, S.M. Macrophage-mediated degradation of beta-amyloid via an apolipoprotein E isoform-dependent mechanism. J. Neurosci. 2009, 29, 3603–3612. [Google Scholar] [CrossRef] [PubMed]
- Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.-C.; Wu, Y.-T.; Prina, M. World Alzheimer Report 2015 The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends; Alzheimer’s Disease International: London, UK, 2015. [Google Scholar]
- Zhang, X.-X.; Tian, Y.; Wang, Z.-T.; Ma, Y.-H.; Tan, L.; Yu, J.-T. The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. J. Prev. Alzheimers Dis. 2021, 8, 313–321. [Google Scholar] [CrossRef]
- Parra, M.A.; Baez, S.; Allegri, R.; Nitrini, R.; Lopera, F.; Slachevsky, A.; Custodio, N.; Lira, D.; Piguet, O.; Kumfor, F.; et al. Dementia in Latin America: Assessing the present and envisioning the future. Neurology 2018, 90, 222–231. [Google Scholar] [CrossRef]
- Pais, M.; Martinez, L.; Ribeiro, O.; Loureiro, J.; Fernandez, R.; Valiengo, L.; Canineu, P.; Stella, F.; Talib, L.; Radanovic, M.; et al. Early diagnosis and treatment of Alzheimer’s disease: New definitions and challenges. Braz. J. Psychiatry 2020, 42, 431–441. [Google Scholar] [CrossRef]
- Serrano-Pozo, A.; Das, S.; Hyman, B.T. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021, 20, 68–80. [Google Scholar] [CrossRef]
- Ghosal, K.; Haag, M.; Verghese, P.B.; West, T.; Veenstra, T.; Braunstein, J.B.; Bateman, R.J.; Holtzman, D.M.; Landreth, G.E. A randomized controlled study to evaluate the effect of bexarotene on amyloid-β and apolipoprotein E metabolism in healthy subjects. Alzheimers Dement. 2016, 2, 110–120. [Google Scholar] [CrossRef]
- Suon, S.; Zhao, J.; Villarreal, S.A.; Anumula, N.; Liu, M.; Carangia, L.M.; Renger, J.J.; Zerbinatti, C.V. Systemic treatment with liver X receptor agonists raises apolipoprotein E.; cholesterol, and amyloid-β peptides in the cerebral spinal fluid of rats. Mol. Neurodegener. 2010, 5, 44. [Google Scholar] [CrossRef]
- Riddell, D.R.; Zhou, H.; Comery, T.A.; Kouranova, E.; Lo, C.F.; Warwick, H.K.; Ring, R.H.; Kirksey, Y.; Aschmies, S.; Xu, J.; et al. The LXR agonist TO901317 selectively lowers hippocampal Abeta42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease. Mol. Cell. Neurosci. 2007, 34, 621–628. [Google Scholar] [CrossRef]
- Koldamova, R.; Lefterov, I. Role of LXR and ABCA1 in the Pathogenesis of Alzheimers Disease -Implications for a New Therapeutic Approach. Curr. Alzheimer Res. 2007, 4, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.L.; Zhong, K.; Kinney, J.W.; Heaney, C.; Moll-Tudla, J.; Joshi, A.; Pontecorvo, M.; Devous, M.; Tang, A.; Bena, J. Double-blind, placebo-controlled, proof-of-concept trial of bexarotene Xin moderate Alzheimer’s disease. Alzheimers Res. Ther. 2016, 8, 4. [Google Scholar] [CrossRef]
- Liu, S.; Breitbart, A.; Sun, Y.; Mehta, P.D.; Boutajangout, A.; Scholtzova, H.; Wisniewski, T. Blocking the apolipoprotein E/amyloid β interaction in triple transgenic mice ameliorates Alzheimer’s disease related amyloid β and tau pathology. J. Neurochem. 2014, 128, 577–591. [Google Scholar] [CrossRef]
- Sadowski, M.; Pankiewicz, J.; Scholtzova, H.; Ripellino, J.A.; Li, Y.; Schmidt, S.D.; Mathews, P.M.; Fryer, J.D.; Holtzman, D.M.; Sigurdsson, E.M.; et al. A synthetic peptide blocking the apolipoprotein E/beta-amyloid binding mitigates beta-amyloid toxicity and fibril formation in vitro and reduces beta-amyloid plaques in transgenic mice. Am. J. Pathol. 2004, 165, 937–948. [Google Scholar] [CrossRef]
- Yang, J.; Ji, Y.; Mehta, P.; Bates, K.A.; Sun, Y.; Wisniewski, T. Blocking the apolipoprotein E/amyloid-β interaction reduces fibrillar vascular amyloid deposition and cerebral microhemorrhages in TgSwDI mice. J. Alzheimers Dis. 2011, 24, 269–285. [Google Scholar] [CrossRef]
- Vagner, J.; Qu, H.; Hruby, V.J. Peptidomimetics, a synthetic tool of drug discovery. Curr. Opin. Chem. Biol. 2008, 12, 292–296. [Google Scholar] [CrossRef]
- Vecchio, F.L.; Bisceglia, P.; Imbimbo, B.P.; Lozupone, M.; Latino, R.R.; Resta, E.; Leone, M.; Solfrizzi, V.; Greco, A.; Daniele, A.; et al. Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer’s disease? Ther. Adv. Chronic. Dis. 2022, 13, 20406223221081604. [Google Scholar] [CrossRef]
- Krishnamurthy, K.; Cantillana, V.; Wang, H.; Sullivan, P.M.; Kolls, B.J.; Ge, X.; Lin, Y.; Mace, B.; Laskowitz, D.T. ApoE mimetic improves pathology and memory in a model of Alzheimer’s disease. Brain Res. 2020, 1733, 146685. [Google Scholar] [CrossRef]
- VanDusen, K.W.; Eleswarpu, S.; Moretti, E.W.; Devinney, M.J.; Crabtree, D.M.; Laskowitz, D.T.; Woldorff, M.G.; Roberts, K.C.; Whittle, J.; Browndyke, J.N.; et al. The MARBLE Study Protocol: Modulating ApoE Signaling to Reduce Brain Inflammation, DeLirium, and PostopErative Cognitive Dysfunction. J. Alzheimers Dis. 2020, 75, 1319–1328. [Google Scholar] [CrossRef]
- Liao, F.; Hori, Y.; Hudry, E.; Bauer, A.Q.; Jiang, H.; Mahan, T.E.; Lefton, K.B.; Zhang, T.J.; Dearborn, J.T.; Kim, J.; et al. Anti-ApoE antibody given after plaque onset decreases Aβ accumulation and improves brain function in a mouse model of Aβ amyloidosis. J. Neurosci. 2014, 34, 7281–7292. [Google Scholar] [CrossRef]
- Kim, J.; Eltorai, A.E.M.; Jiang, H.; Liao, F.; Verghese, P.B.; Kim, J.; Stewart, F.R.; Basak, J.M.; Holtzman, D.M. Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Aβ amyloidosis. J. Exp. Med. 2012, 209, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- Litvinchuk, A.; Huynh, T.-P.V.; Shi, Y.; Jackson, R.J.; Finn, M.B.; Manis, M.; Francis, C.M.; Tran, A.C.; Sullivan, P.M.; Ulrich, J.D.; et al. Apolipoprotein E4 Reduction with Antisense Oligonucleotides Decreases Neurodegeneration in a Tauopathy Model. Ann. Neurol. 2021, 89, 952–966. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.-P.V.; Liao, F.; Francis, C.M.; Robinson, G.O.; Serrano, J.R.; Jiang, H.; Roh, J.; Finn, M.B.; Sullivan, P.M.; Esparza, T.J.; et al. Age-Dependent Effects of apoE Reduction Using Antisense Oligonucleotides in a Model of β-amyloidosis. Neuron 2017, 96, 1013–1023.e4. [Google Scholar] [CrossRef]
- Wang, C.; Najm, R.; Xu, Q.; Jeong, D.-E.; Walker, D.; Balestra, M.E.; Yoon, S.Y.; Yuan, H.; Li, G.; Miller, Z.A.; et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat. Med. 2018, 24, 647–657. [Google Scholar] [CrossRef]
- Braak, H.; Braak, E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 1995, 16, 271–278, discussion 278–284. [Google Scholar] [CrossRef]
Characteristics | pAD Case Group | Control Group | p-Value | |
---|---|---|---|---|
Age mean (SD) | 76.95 (9.72) | 70.28 (6.26) | <0.0001 | |
Gender n (%) | Men | 62 (23.85) | 41 (16.33) | 0.0343 * |
Women | 198 (76.15) | 210 (83.67) | ||
Civil status n (%) | Single | 12 (5.02) | 22 (8.91) | <0.001 *** |
Married | 100 (41.84) | 157 (63.56) | ||
Widowed | 125 (52.30) | 50 (20.24) | ||
Divorced | 1 (0.42) | 13 (5.26) | ||
Separated | 1 (0.42) | 5 (2.02) | ||
Not available | 21 (-) | 4 (-) | ||
Educational level n (%) | Without studies | 7 (3.68) | 0 (0) | <0.001 *** |
Primary | 142 (74.74) | 54 (22.98) | ||
Secondary | 16 (8.42) | 98 (41.70) | ||
Higher | 25 (13.16) | 83 (35.32) | ||
Not available | 70 (-) | 16 (-) | ||
Residential area n (%) | Rural | 65 (27.58) | 11 (4.44) | <0.001 *** |
Urban | 175 (72.92) | 237 (95.56) | ||
Not available | 20 (-) | 3 (-) | ||
Family history of AD n (%) | Yes | 88 (45.60) | 65 (26.75) | 0.002 ** |
No | 101 (52.30) | 174 (71.60) | ||
Unknown | 4 (2.10) | 4 (1.65) | ||
Not available | 8 (-) | 8 (-) |
Chronic Diseases | pAD Group (n = 240) | Control Group (n = 248) | p-Value | |||
---|---|---|---|---|---|---|
Frequency | % | Frequency | % | |||
High blood pressure (≥140/90 mmHg) | Yes | 94 | 39.17 | 61 | 24.60 | 0.0005 *** |
No | 146 | 60.83 | 187 | 75.40 | ||
Hypercholesterolemia (LDL-cholesterol > 190 mg/dL) | Yes | 73 | 30.42 | 91 | 36.69 | 0.1422 |
No | 167 | 69.58 | 157 | 63.31 | ||
Cardiac pathology European Society of Cardiology (ESC) criteria | Yes | 49 | 20.42 | 22 | 8.87 | 0.0003 *** |
No | 191 | 79.58 | 226 | 91.13 | ||
Diabetes mellitus blood glucose ≥ 200 mg/dL | Yes | 47 | 19.58 | 18 | 7.26 | <0.0001 *** |
No | 193 | 80.42 | 230 | 92.74 |
Allele | pAD Case Group | Control Group | ||
---|---|---|---|---|
Frequency | % | Frequency | % | |
ε2 | 17 | 3.31 | 35 | 7.11 |
ε3 | 381 | 74.12 | 421 | 85.57 |
ε4 | 116 | 22.57 | 36 | 7.32 |
Total | 514 | 100 | 492 | 100 |
Genotype | pAD Case Group | Control Group | ||
---|---|---|---|---|
Frequency | % | Frequency | % | |
ε2/ε2 | 0 | 0 | 1 | 0.41 |
ε2/ε3 | 14 | 5.45 | 32 | 13.01 |
ε2/ε4 | 3 | 1.17 | 1 | 0.41 |
ε3/ε3 | 139 | 54.09 | 177 | 71.95 |
ε3/ε4 | 89 | 34.63 | 35 | 14.23 |
ε4/ε4 | 12 | 4.67 | 0 | 0 |
Total | 257 | 100 | 246 | 100 |
ALELO | pAD Case Group | Control Group | Probability | Odds | |||
---|---|---|---|---|---|---|---|
Frequency | % | Frequency | % | pAD | Control | ||
ε4+ | 208 | 40.47 | 72 | 14.63 | 0.743 | 0.257 | 2.889 |
ε4− | 306 | 59.53 | 420 | 85.36 | 0.421 | 0.578 | 0.729 |
Total | 514 | 100 | 492 | 100 | OR | 3.965 |
Population | Group | n | Alleles | Genotypes | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E2 | E3 | E4 | E2/E2 | E2/E3 | E2/E4 | E3/E3 | E3/E4 | E4/E4 | Reference | |||
Central region | AD | 71 | 6 | 67 | 27 | - | - | - | - | - | - | [28] |
Control | 50 | 5 | 92 | 4 | - | - | - | - | - | - | ||
South region | AD | 81 | 0.6 | 80.2 | 19.1 | 0 | 1.2 | 0 | 64.2 | 30.9 | 3.7 | [23] |
Control | 29 | 8.6 | 79.3 | 12.1 | 0 | 17.2 | 0 | 65.5 | 10.3 | 6.9 | ||
Northwest region | AD | 251 | 3 | 74 | 22 | 0 | 5.4 | 1.2 | 54.1 | 34.6 | 4.6 | Our study |
Control | 250 | 7.1 | 86 | 7.3 | 0.4 | 13 | 0.4 | 71.9 | 14.2 | 0 | ||
Spain (total) | AD | 403 | 9.6 | 221.2 | 68.1 | 0 | 6.6 | 1.2 | 118.3 | 65.5 | 8.3 | |
Control | 329 | 20.7 | 257.3 | 23.4 | 0.4 | 30.2 | 0.4 | 137.4 | 24.5 | 6.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bello-Corral, L.; Seco-Calvo, J.; Molina Fresno, A.; González, A.I.; Llorente, A.; Fernández-Lázaro, D.; Sánchez-Valdeón, L. Prevalence of ApoE Alleles in a Spanish Population of Patients with a Clinical Diagnosis of Alzheimer’s Disease: An Observational Case-Control Study. Medicina 2024, 60, 1941. https://doi.org/10.3390/medicina60121941
Bello-Corral L, Seco-Calvo J, Molina Fresno A, González AI, Llorente A, Fernández-Lázaro D, Sánchez-Valdeón L. Prevalence of ApoE Alleles in a Spanish Population of Patients with a Clinical Diagnosis of Alzheimer’s Disease: An Observational Case-Control Study. Medicina. 2024; 60(12):1941. https://doi.org/10.3390/medicina60121941
Chicago/Turabian StyleBello-Corral, Laura, Jesús Seco-Calvo, Angela Molina Fresno, Ana Isabel González, Ana Llorente, Diego Fernández-Lázaro, and Leticia Sánchez-Valdeón. 2024. "Prevalence of ApoE Alleles in a Spanish Population of Patients with a Clinical Diagnosis of Alzheimer’s Disease: An Observational Case-Control Study" Medicina 60, no. 12: 1941. https://doi.org/10.3390/medicina60121941
APA StyleBello-Corral, L., Seco-Calvo, J., Molina Fresno, A., González, A. I., Llorente, A., Fernández-Lázaro, D., & Sánchez-Valdeón, L. (2024). Prevalence of ApoE Alleles in a Spanish Population of Patients with a Clinical Diagnosis of Alzheimer’s Disease: An Observational Case-Control Study. Medicina, 60(12), 1941. https://doi.org/10.3390/medicina60121941