Optimizing Scan Range in Computed Tomography of Kidneys, Ureters, and Bladder: A Retrospective Study on Reducing Overscanning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overscanning Percentage Calculation
2.2. Cancer Risk Assessment
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsiotras, A.; Smith, R.D.; Pearce, I.; O’Flynn, K.; Wiseman, O. British Association of Urological Surgeons standards for management of acute ureteric colic. J. Clin. Urol. 2017, 11, 58–61. [Google Scholar] [CrossRef]
- Ghoshal, N.; Gaikstas, G. CT KUB scans for renal colic: Optimisation of scan range to reduce patient radiation burden. Radiography 2021, 27, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Patatas, K.; Panditaratne, N.; Wah, T.M.; Weston, M.J.; Irving, H.C. Emergency department imaging protocol for suspected acute renal colic: Re-evaluating our service. Br. J. Radiol. 2012, 85, 1118–1122. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.; Ather, M.H.; Jamshaid, A.; Zaigham, S.; Mirza, R.; Salam, B. Rationale use of unenhanced multi-detector CT (CT KUB) in evaluation of suspected renal colic. Int. J. Surg. 2012, 10, 634–637. [Google Scholar] [CrossRef] [PubMed]
- Lew, H.B.M.; Seow, J.H.S.; Hewavitharana, C.P.; Burrows, S. Alternatives to the baseline KUB for CTKUB-detected calculi: Evaluation of CT scout and average and maximum intensity projection images. Abdom. Radiol. 2017, 42, 1459–1463. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Chan, M.; Brown, V.; Huo, Y.R.; Chan, L.; Ridley, L. Systematic review and meta-analysis of the diagnostic accuracy of low-dose computed tomography of the kidneys, ureters and bladder for urolithiasis. J. Med. Imaging Radiat. Oncol. 2017, 61, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Smith-Bindman, R.; Aubin, C.; Bailitz, J.; Bengiamin, R.N.; Camargo, C.A., Jr.; Corbo, J.; Dean, A.J.; Goldstein, R.B.; Griffey, R.T.; Jay, G.D.; et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. N. Engl. J. Med. 2014, 371, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Rob, S.; Bryant, T.; Wilson, I.; Somani, B.K. Ultra-low-dose, low-dose, and standard-dose CT of the kidney, ureters, and bladder: Is there a difference? Results from a systematic review of the literature. Clin. Radiol. 2017, 72, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Bashier, E.H. Suliman II: Radiation Dose Determination in Abdominal Ct Examinations of Children at Sudanese Hospitals Using Size-Specific Dose Estimates. Radiat. Prot. Dosim. 2019, 183, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Quinn, B.; Pandit-Taskar, N.; Behr, G.; Mahmood, U.; Long, D.; Xu, X.G.; Germain, J.S.; Dauer, L.T. Patient-specific organ and effective dose estimates in pediatric oncology computed tomography. Phys. Med. 2018, 45, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Kaynar, M.; Tekinarslan, E.; Keskin, S.; Buldu, İ.; Sönmez, M.G.; Karatag, T.; Istanbulluoglu, M.O. Effective radiation exposure evaluation during a one year follow-up of urolithiasis patients after extracorporeal shock wave lithotripsy. Cent. Eur. J. Urol. 2015, 68, 348. [Google Scholar] [CrossRef] [PubMed]
- Baralo, B.; Samson, P.; Hoenig, D.; Smith, A. Percutaneous kidney stone surgery and radiation exposure: A review. Asian J. Urol. 2020, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Karim, M.K.A.; Hashim, S.; Bakar, K.A.; Bradley, D.A.; Ang, W.C.; Bahrudin, N.A.; Mhareb, M.H.A. Estimation of radiation cancer risk in CT-KUB. Radiat. Phys. Chem. 2017, 137, 130–134. [Google Scholar] [CrossRef]
- Tahiri, Z.; Jroundi, L.; Laamarni, F.Z.; Mkimel, M. Radiation Dose and Lifetime Risk of Cancer Incidence and Mortality in Patients Undergoing 16 Slice CT Emergency Examinations. Int. J. Recent Technol. Eng. (IJRTE) 2019, 8, 5821–5825. [Google Scholar] [CrossRef]
- Smith-Bindman, R.; Lipson, J.; Marcus, R.; Kim, K.P.; Mahesh, M.; Gould, R.; De González, A.B.; Miglioretti, D.L. Radiation Dose Associated With Common Computed Tomography Examinations and the Associated Lifetime Attributable Risk of Cancer. Arch. Intern. Med. 2009, 169, 2078–2086. [Google Scholar] [CrossRef] [PubMed]
- RCR. Audit to Optimise CT KUB Imaging in Investigation of Renal Colic|The Royal College of Radiologists. 2015. Available online: https://www.rcr.ac.uk/career-development/audit-quality-improvement/auditlive-radiology/audit-to-optimise-ct-kub-imaging-in-investigation-of-renal-colic/ (accessed on 14 October 2023).
- Netke, T.; Spurr, M.; Vosough, A. It is time to think inside the (collimation) box; a quality improvement project to reduce over-scanning in CT scanning of the kidneys, ureters and bladder. Br. J. Radiol. 2020, 93, 20200068. [Google Scholar] [CrossRef] [PubMed]
- Uldin, H.; McGlynn, E.; Cleasby, M. Using the T11 vertebra to minimise the CT-KUB scan field. Br. J. Radiol. 2020, 93, 20190771. [Google Scholar] [CrossRef] [PubMed]
- McCollough, C.; Cody, D.; Edyvean, S.; Geise, R.; Gould, B.; Keat, N.; Huda, W.; Judy, P.; Kalender, W.; McNitt-Gray, M.; et al. The Measurement, Reporting, and Management of Radiation Dose in CT; American Association of Physicists in Medicine: College Park, MD, USA, 2008. [Google Scholar] [CrossRef]
- International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection; ICRP Publication 103; International Commission on Radiological Protection: Ottawa, ON, Canada, 2007. [Google Scholar]
- Sung, M.K.; Singh, S.; Kalra, M.K. Current status of low dose multi-detector CT in the urinary tract. World J. Radiol. 2011, 3, 256. [Google Scholar] [CrossRef] [PubMed]
- Cavenagh, T.T.C.; Seager, M.J.; Barber, J. A dynamic approach to CT KUB scanning field—An audit to minimise radiation dose. In Proceedings of the European Congress of Radiology, Vienna, Austria, 1–5 March 2017. [Google Scholar] [CrossRef]
- Maguire, J.; Gray, K. Computed tomography (CT) kidneys, ureters and bladder (KUB)—How low can you go? Clin. Radiol. 2015, 70, S12. [Google Scholar] [CrossRef]
- Corwin, M.T.; Bekele, W.; Lamba, R. Bony landmarks on computed tomographic localizer radiographs to prescribe a reduced scan range in patients undergoing multidetector computed tomography for suspected urolithiasis. J. Comput. Assist. Tomogr. 2014, 38, 404–407. [Google Scholar] [CrossRef] [PubMed]
Gender | No. of Exam | Age | Tube Potential (kVp) | Tube Current (mA) | Slice Thickness (mm) | CTDIvol (mGy) | DLP (mGy·cm) |
---|---|---|---|---|---|---|---|
Female | 144 | 43 ± 16 | 117.3 ± 11.1 | 620.1 ± 94.7 | 1.25 | 8.5 ± 2.7 | 390.5 ± 163.7 |
Male | 155 | 44 ± 17 | 116.7 ± 12.1 | 628.4 ± 90.7 | 1.25 | 8.0 ± 2.5 | 376.7 ± 120.7 |
No. of Exams | Percentage % | |
---|---|---|
Compliance with both borders | 93 | 31.1 |
Noncompliance with both borders | 0 | 0 |
Noncompliance with one border: | ||
• Superior | 205 | 68.6 |
• Inferior | 1 | 0.3 |
Total | 299 | 100 |
CT Vertebral Level | E (mSv) | Cancer Risk (Cases per 10,000) |
---|---|---|
T12 | 5.6 | 3.1 |
T11 | 5.2 | 2.8 |
T10 | 5.7 | 3.1 |
T9 | 6.4 | 3.5 |
T8 | 6.9 | 3.8 |
T7 | 10.1 | 5.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bin Owien, A.; Alenazi, K.; Abanomy, A.; Almanaa, M.; Alarifi, M.; Alahmad, H. Optimizing Scan Range in Computed Tomography of Kidneys, Ureters, and Bladder: A Retrospective Study on Reducing Overscanning. Medicina 2024, 60, 1952. https://doi.org/10.3390/medicina60121952
Bin Owien A, Alenazi K, Abanomy A, Almanaa M, Alarifi M, Alahmad H. Optimizing Scan Range in Computed Tomography of Kidneys, Ureters, and Bladder: A Retrospective Study on Reducing Overscanning. Medicina. 2024; 60(12):1952. https://doi.org/10.3390/medicina60121952
Chicago/Turabian StyleBin Owien, Ali, Khaled Alenazi, Ahmad Abanomy, Mansour Almanaa, Mohammad Alarifi, and Haitham Alahmad. 2024. "Optimizing Scan Range in Computed Tomography of Kidneys, Ureters, and Bladder: A Retrospective Study on Reducing Overscanning" Medicina 60, no. 12: 1952. https://doi.org/10.3390/medicina60121952
APA StyleBin Owien, A., Alenazi, K., Abanomy, A., Almanaa, M., Alarifi, M., & Alahmad, H. (2024). Optimizing Scan Range in Computed Tomography of Kidneys, Ureters, and Bladder: A Retrospective Study on Reducing Overscanning. Medicina, 60(12), 1952. https://doi.org/10.3390/medicina60121952