Non-Invasive Cardiac and Vascular Monitoring in Systemic Sclerosis: Impact of Therapy on Subclinical Dysfunction
Abstract
:1. Introduction
2. Materials and Methods
- 1.
- Conventional echocardiography was used for the assessment of the cardiac structure and function.
- 1.1.
- For the left ventricle systolic function, we measured LVEF from the 4 and 2 chamber views using a biplane method of disks summation and lateral mitral annular plane systolic excursion measured by M-mode (MAPSE).
- 1.2.
- For the left atrium structure and function, we measured the maximum and minimum volumes indexes using the area–length method.
- 1.3.
- For the right ventricle function, we measured the RV systolic and diastolic areas by manual tracing of the endocardial border in order to calculate the fractional change area (FAC %), tricuspid annular plane systolic excursion measured by M-mode (TAPSE); pulmonary peak systolic pressure using tricuspid regurgitant jet velocity envelope (when feasible) and inferior vena cava (IVC) dimensions.
- 1.4.
- For the right atrium structure and function: transversal diameter and volume index using area–length method in apical 4-chamber view.
- 2.
- On-line tissue Doppler echocardiography was used to measure the RV peak systolic velocity (S’) at the lateral tricuspid annulus level.
- 3.
- Two-dimensional speckle tracking echocardiography was used to calculate the percent of deformation (strain) for all cardiac chambers.
- 3.1.
- After optimizing the frame rate, we manually traced the endocardial borders at the end-systole. LV peak systolic global longitudinal strain (LV GLS) was automatically calculated as the average of 18 segments from the 4-, 2- and 3-chamber views. We excluded from the analysis images with more than two inadequately visualized segments.
- 3.2.
- RV longitudinal strain (RV GLS) was calculated as the average of the three segment deformations of the RV free wall in the apical 4-chamber view.
- 3.3.
- Left and right atrial deformation were also assessed using a manual tracing of the endocardial border at the atrial end-systole in apical 4-chamber view. We calculated for both atria the peak negative strain (PNS), as marker of the active atrial function; peak positive strain (PPS), as marker of conduit function; and global strain (GS), as a marker of reservoir function.
- 3.4.
- The left ventricular myocardial work parameters were automatically calculated during mechanical systole and isovolumetric relaxation (IVR): global constructive work (GCW), performed during shortening in systole adding negative work during lengthening in IVR; global wasted work (GWW), performed during lengthening in systole adding work performed during shortening in IVR; global work efficiency (GWE) as GCW/(GCW + GWW); and global work index (GWI), as the GCW + GWW.
- 4.
- Real-time 3D echocardiography was used to assess the left ventricular ejection fraction and left ventricular strain using the software 4DLVQ (“4D left ventricle quantification”) (EchoPAC PC version 108.1.4). The apical views were corrected to display standard 2-, 3-, and 4-chamber views. The end-diastolic frame was automatically detected from the ECG, and three points (two for the mitral plane and one for the left ventricular apex) were defined manually for each of the three views. The endocardial border was automatically traced and then manually adjusted for optimal tracing. Time–volume curves were generated.
3. Results
3.1. Transversal Study: Left Ventricular Systolic Function in SSc Patients vs. Matched Controls
3.2. Longitudinal Study: Echocardiograhic and Vascular Follow-Up at One and Two Years
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ingegnoli, F.; Ughi, N.; Mihai, C. Update on the epidemiology, risk factors, and disease outcomes of systemic sclerosis. Best. Pract. Res. Clin. Rheumatol. 2018, 32, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Adigun, R.; Goyal, A.; Hariz, A. Systemic Sclerosis (Scleroderma). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Steen, V.D.; Medsger, T.A. Severe organ involvement in systemic sclerosis with diffuse scleroderma. Arthritis Rheum. 2000, 43, 2437–2444. [Google Scholar] [CrossRef]
- Nicola, M.; Rednic, S.; Damian, L.; Muntean, L.; Băiescu, L.M.; Boloșiu, H.D. Cardio-pulmonary involvement in asymptomatic patients with systemic sclerosis. Rom. J. Rheumatol. 2006, 4, 164–167. [Google Scholar]
- Champion, H.C. The heart in scleroderma. Rheum. Dis. Clin. N. Am. 2008, 34, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Perera, A.; Fertig, N.; Lucas, M.; Rodriguez-Reyna, T.S.; Hu, P.; Steen, V.D.; Medsger, T.A. Clinical subsets, skin thickness progression rate, and serum antibody levels in systemic sclerosis patients with anti-topoisomerase I antibody. Arthritis Rheum. 2007, 56, 2740–2746. [Google Scholar] [CrossRef] [PubMed]
- Follansbee, W.P.; Zerbe, T.R.; Medsger, T.A. Cardiac and skeletal muscle disease in systemic sclerosis (scleroderma): A high risk association. Am. Heart J. 1993, 125, 194–203. [Google Scholar] [CrossRef]
- Ferri, C.; Emdin, M.; Nielsen, H.; Bruhlmann, P. Assessment of heart involvement. Clin. Exp. Rheumatol. 2003, 21, S24–S28. [Google Scholar]
- Kahan, A.; Allanore, Y. Primary myocardial involvement in systemic sclerosis. Rheumatology 2006, 45 (Suppl. S4), iv14–iv17. [Google Scholar] [CrossRef] [PubMed]
- Meune, C.; Vignaux, O.; Kahan, A.; Allanore, Y. Heart involvement in systemic sclerosis: Evolving concept and diagnostic methodologies. Arch. Cardiovasc. Dis. 2010, 103, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Hachulla, A.L.; Launay, D.; Gaxotte, V.; de Groote, P.; Lamblin, N.; Devos, P.; Hatron, P.Y.; Beregi, J.P.; Hachulla, E. Cardiac magnetic resonance imaging in systemic sclerosis: A cross-sectional observational study of 52 patients. Ann. Rheum. Dis. 2009, 68, 1878–1884. [Google Scholar] [CrossRef] [PubMed]
- Trimarchi, G.; Pizzino, F.; Paradossi, U.; Gueli, I.A.; Palazzini, M.; Gentile, P.; Di Spigno, F.; Ammirati, E.; Garascia, A.; Tedeschi, A.; et al. Charting the Unseen: How Non-Invasive Imaging Could Redefine Cardiovascular Prevention. J. Cardiovasc. Dev. Dis. 2024, 11, 245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flohr, T.; Schmidt, B.; Ulzheimer, S.; Alkadhi, H. Cardiac imaging with photon counting CT. Br. J. Radiol. 2023, 96, 20230407. [Google Scholar] [CrossRef] [PubMed]
- Trimachi, G.; Carerj, S.; Di Bella, G.; Manganaro, R.; Pizzino, F.; Restelli, D.; Pelaggi, G.; Lofrumento, F.; Licordari, R.; Taverna, G.; et al. Clinical Applications of Myocardial Work in Echocardiography: A Comprehensive Review. J. Cardiovasc. Echogr. 2024, 34, 99–113. [Google Scholar] [CrossRef]
- de Groote, P.; Gressin, V.; Hachulla, E.; Carpentier, P.; Guillevin, L.; Kahan, A.; Cabane, J.; Francès, C.; Lamblin, N.; Diot, E.; et al. ItinerAIR-Scleroderma Investigators. Evaluation of cardiac abnormalities by Doppler echocardiography in a large nationwide multicentric cohort of patients with systemic sclerosis. Ann. Rheum. Dis. 2008, 67, 31–36. [Google Scholar] [CrossRef]
- Mahmud, M.; Champion, H.C. Right ventricular failure complicating heart failure: Pathophysiology, significance, and management strategies. Curr. Cardiol. Rep. 2007, 9, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Hinchcliff, M.; Desai, C.S.; Varga, J.; Shah, S.J. Prevalence, prognosis, and factors associated with left ventricular diastolic dysfunction in systemic sclerosis. Clin. Exp. Rheumatol. 2012, 30, S30–S37. [Google Scholar] [PubMed]
- Perugino, C.; Stephens, J.; O’Rourke, C.; Chatterjee, S. Diastolic dysfunction amongst autoantibody subgroups of patients with diffuse scleroderma. In Proceedings of the 2013 ACR/ARHP Annual Meeting, San Diego, CA, USA, 25–30 October 2013. [Google Scholar]
- Fox, B.D.; Shimony, A.; Langleben, D.; Hirsch, A.; Rudski, L.; Schlesinger, R.; Eisenberg, M.J.; Joyal, D.; Hudson, M.; Boutet, K.; et al. High prevalence of occult left heart disease in scleroderma-pulmonary hypertension. Eur. Respir. J. 2013, 42, 1083–1091. [Google Scholar] [CrossRef]
- Ciurzyński, M.; Bienias, P.; Irzyk, K.; Kostrubiec, M.; Szewczyk, A.; Demkow, U.; Siwicka, M.; Kurnicka, K.; Lichodziejewska, B.; Pruszczyk, P. Heart diastolic dysfunction in patients with systemic sclerosis. Arch. Med. Sci. 2014, 10, 445–454. [Google Scholar] [CrossRef]
- Jurisic, Z.; Martinovic-Kaliterna, D.; Marasovic-Krstulovic, D.; Perkovic, D.; Tandara, L.; Salamunic, I.; Carevic, V. Relationship between interleukin-6 and cardiac involvement in systemic sclerosis. Rheumatology 2013, 52, 1298–1302. [Google Scholar] [CrossRef] [PubMed]
- Vemulapalli, S.; Cohen, L.; Hsu, V. Prevalence and risk factors for left ventricular diastolic dysfunction in a scleroderma cohort. Scand. J. Rheumatol. 2017, 46, 281–287. [Google Scholar] [CrossRef]
- Muresan, L.; Petcu, A.; Oancea, I.; Mada, R.; Muresan, C.; Pamfil, C.; Rinzis, M.; Gusetu, G.; Pop, D.; Zdrenghea, D.; et al. Impact of myocardial fibrosis on left ventricular diastolic function in patients with systemic sclerosis. Int. J. Clin. Exp. Med. 2016, 9, 14271–14282. [Google Scholar]
- Meune, C.; Avouac, J.; Wahbi, K.; Cabanes, L.; Wipff, J.; Mouthon, L.; Guillevin, L.; Kahan, A.; Allanore, Y. Cardiac involvement in systemic sclerosis assessed by tissue-doppler echocardiography during routine care: A controlled study of 100 consecutive patients. Arthritis Rheum. 2008, 58, 1803–1809. [Google Scholar] [CrossRef] [PubMed]
- Nussinovitch, U.; Shoenfeld, Y. Atherosclerosis and macrovascular involvement in systemic sclerosis: Myth or reality. Autoimmun. Rev. 2011, 5, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Magda, S.L.; Mincu, R.I.; Mihai, C.M.; Cinteza, M.; Vinereanu, D. Atherosclerosis in Systemic Sclerosis: A modern controversy. Maedica 2015, 10, 248–256. [Google Scholar]
- Wig, S.; Wilkinson, J.; Moore, T.; Manning, J.; Chevance, A.; Vail, A.; Herrick, A.L. A longitudinal study of ankle brachial pressure indices in a cohort of patients with systemic sclerosis. Rheumatology 2014, 53, 2009–2013. [Google Scholar] [CrossRef]
- Townsend, R.R.; Wilkinson, I.B.; Schiffrin, E.L.; Avolio, A.P.; Chirinos, J.A.; Cockcroft, J.R.; Heffernan, K.S.; Lakatta, E.G.; McEniery, C.M.; Mitchell, G.F.; et al. American Heart Association Council on Hypertension. Recommendations for Improving and Standardizing Vascular Research on Arterial Stiffness: A Scientific Statement From the American Heart Association. Hypertension 2015, 66, 698–722. [Google Scholar] [CrossRef]
- Matsushita, K.; Ding, N.; Kim, E.D.; Budoff, M.; Chirinos, J.A.; Fernhall, B.; Hamburg, N.M.; Kario, K.; Miyoshi, T.; Tanaka, H.; et al. Cardio-ankle vascular index and cardiovascular disease: Systematic review and meta-analysis of prospective and cross-sectional studies. J. Clin. Hypertens. 2019, 21, 16–24. [Google Scholar] [CrossRef]
- van den Hoogen, F.; Khanna, D.; Fransen, J.; Johnson, S.R.; Baron, M.; Tyndall, A.; Matucci-Cerinic, M.; Naden, R.P.; Medsger, T.A., Jr.; Carreira, P.E.; et al. 2013 classification criteria for systemic sclerosis: An American college of rheumatology/European league against rheumatism collaborative initiative. Ann. Rheum. Dis. 2013, 72, 1747–1755. [Google Scholar] [CrossRef]
- Allanore, Y.; Meune, C.; Vonk, M.C.; Airo, P.; Hachulla, E.; Caramaschi, P.; Riemekasten, G.; Cozzi, F.; Beretta, L.; Derk, C.T.; et al. Prevalence and factors associated with left ventricular dysfunction in the EULAR Scleroderma Trial and Research group (EUSTAR) database of patients with systemic sclerosis. Ann. Rheum. Dis. 2010, 69, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Fairley, J.L.; Hansen, D.; Proudman, S.; Sahhar, J.; Ngian, G.S.; Walker, J.; Host, L.V.; La Gerche, A.; Prior, D.; Burns, A.; et al. Prognostic and functional importance of both overt and subclinical left ventricular systolic dysfunction in systemic sclerosis. Semin. Arthritis Rheum. 2024, 66, 152443. [Google Scholar] [CrossRef]
- Berger, S.G.; Witczak, B.N.; Reiseter, S.; Schwartz, T.; Andersson, H.; Hetlevik, S.O.; Berntsen, K.S.; Sanner, H.; Lilleby, V.; Gunnarsson, R.; et al. Cardiac dysfunction in mixed connective tissue disease: A nationwide observational study. Rheumatol. Int. 2023, 43, 1055–1065. [Google Scholar] [CrossRef]
- Giucă, A.; Gegenava, T.; Mihai, C.M.; Jurcuţ, C.; Săftoiu, A.; Gȋrniţă, D.M.; Popescu, B.A.; Ajmone-Marsan, N.; Jurcuț, R. Sclerodermic Cardiomyopathy—A State-of-the-Art Review. Diagnostics 2022, 12, 669. [Google Scholar] [CrossRef] [PubMed]
- Guerra, F.; Stronati, G.; Fischietti, C.; Ferrarini, A.; Zuliani, L.; Pomponio, G.; Capucci, A.; Danieli, M.G.; Gabrielli, A. Global longitudinal strain measured by speckle tracking identifies subclinical heart involvement in patients with systemic sclerosis. Eur. J. Prev. Cardiol. 2018, 25, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Tennøe, A.H.; Murbræch, K.; Andreassen, J.C.; Fretheim, H.; Midtvedt, Ø.; Garen, T.; Dalen, H.; Gude, E.; Andreassen, A.; Aakhus, S.; et al. Systolic Dysfunction in Systemic Sclerosis: Prevalence and Prognostic Implications. ACR Open Rheumatol. 2019, 1, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Marzlin, N.; Hays, A.G.; Peters, M.; Kaminski, A.; Roemer, S.; O’Leary, P.; Kroboth, S.; Harland, D.R.; Khandheria, B.K.; Tajik, A.J.; et al. Myocardial Work in Echocardiography. Circ. Cardiovasc. Imaging 2023, 16, e014419. [Google Scholar] [CrossRef]
- Galli, E.; Vitel, E.; Schnell, F.; Le Rolle, V.; Hubert, A.; Lederlin, M.; Donal, E. Myocardial constructive work is impaired in hypertrophic cardiomyopathy and predicts left ventricular fibrosis. Echocardiography 2019, 36, 74–82. [Google Scholar] [CrossRef]
- Hromádka, M.; Seidlerová, J.; Suchý, D.; Rajdl, D.; Lhotský, J.; Ludvík, J.; Rokyta, R.; Baxa, J. Myocardial fibrosis detected by magnetic resonance in systemic sclerosis patients—Relationship with biochemical and echocardiography parameters. Int. J. Cardiol. 2017, 249, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Vignaux, O.; Allanore, Y.; Meune, C.; Pascal, O.; Duboc, D.; Weber, S.; Legmann, P.; Kahan, A. Evaluation of the effect of nifedipine upon myocardial perfusion and contractility using cardiac magnetic resonance imaging and tissue Doppler echocardiography in systemic sclerosis. Ann. Rheum. Dis. 2005, 64, 1268–1273. [Google Scholar] [CrossRef] [PubMed]
- Durmus, E.; Sunbul, M.; Tigen, K.; Kivrak, T.; Ozen, G.; Sari, I.; Direskeneli, H.; Basaran, Y. Right ventricular and atrial functions in systemic sclerosis patients without pulmonary hypertension. Speckle-tracking echocardiographic study. Herz 2015, 40, 709–715. [Google Scholar] [CrossRef]
- Mukherjee, M.; Chung, S.E.; Ton, V.K.; Tedford, R.J.; Hummers, L.K.; Wigley, F.M.; Abraham, T.P.; Shah, A.A. Unique Abnormalities in Right Ventricular Longitudinal Strain in Systemic Sclerosis Patients. Circ. Cardiovasc. Imaging. 2016, 9, e003792. [Google Scholar] [CrossRef]
- Kepez, A.; Akdogan, A.; Sade, L.E.; Deniz, A.; Kalyoncu, U.; Karadag, O.; Hayran, M.; Aytemir, K.; Ertenli, I.; Kiraz, S.; et al. Detection of subclinical cardiac involvement in systemic sclerosis by echocardiographic strain imaging. Echocardiography 2008, 25, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Giucă, A.; Galloo, X.; Meucci, M.C.; Butcher, S.C.; Popescu, B.A.; Jurcuț, R.; Săftoiu, A.; Jurcuț, C.; Groșeanu, L.; Mușetescu, A.E.; et al. Association between Left Atrial Function and Survival in Systemic Sclerosis. J. Cardiovasc. Dev. Dis. 2024, 11, 310. [Google Scholar] [CrossRef] [PubMed]
- Sakai, A.; Nagao, M.; Yamamoto, A.; Nakao, R.; Sakai, S.; Yamaguchi, J. Prognostic value of right atrial strain in systemic sclerosis based on tissue tracking analysis using cine cardiac magnetic resonance imaging: A retrospective observational study. Heart Vessel. 2024, 39, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Rico Martín, S.; Vassilenko, V.; de Nicolás Jiménez, J.M.; Rey Sánchez, P.; Serrano, A.; Martínez Alvarez, M.; Calderón García, J.F.; Sánchez Muñoz-Torrero, J.F. Cardio-ankle vascular index (CAVI) measured by a new device: Protocol for a validation study. BMJ Open 2020, 10, e038581. [Google Scholar] [CrossRef] [PubMed]
- Youssef, P.; Brama, T.; Englert, H.; Bertouch, J. Limited scleroderma is associated with increased prevalence of macrovascular disease. J. Rheumatol. 1995, 22, 469–472. [Google Scholar] [PubMed]
- Ho, M.; Veale, D.; Eastmond, C.; Nuki, G.; Belch, J. Macrovascular disease and systemic sclerosis. Ann. Rheum. Dis. 2000, 59, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Pussadhamma, B.; Suwannakrua, W.; Toparkngarm, P.; Wongvipaporn, C.; Foocharoen, C.; Nanagara, R. Relationship between Peripheral Arterial Stiffness and Estimated Pulmonary Pressure by Echocardiography in Systemic Sclerosis. Acta Cardiol. Sin. 2017, 33, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Iaquinta, F.S.; Grosso, R.; Di Napoli, S.; Cassano, V.; Naty, S.; Armentaro, G.; Massimino, M.; Condoleo, V.; Barbara, K.; Crescibene, D.; et al. Decreased Pulse Wave Velocity in a Systemic Sclerosis Population: Preliminary Results from a Cross-Sectional Study. J. Pers. Med. 2022, 12, 1952. [Google Scholar] [CrossRef] [PubMed]
- Magda, S.L.; Gheorghiu, A.M.; Constantinescu, T.; Mihai, C.; Cinteza, M.; Vinereanu, D. Two year echocardiographic follow up in systemic sclerosis patients on standard therapy. In Proceedings of the 22nd Annual Congress of the European Association of Cardiovascular Imaging, Milan, Italy, 5–8 December 2018. [Google Scholar]
Parameter | SSc (n = 30) | Controls (n = 30) |
---|---|---|
Age (yrs) | 52.1 ± 9.5 | 51.6 ± 7.8 |
Female sex | 1/30 | 1/30 |
BMI (kg/m2) | 24.1 ± 3.7 | 26.7 ± 4.1 |
NYHA class | I | I |
Systolic BP (mmHg) | 123 ± 19 | 124 ± 16 |
Diastolic BP (mmHg) | 75 ± 17 | 75 ± 12 |
HR (bpm) | 68 ± 9 | 73 ± 11 |
Diabetes mellitus | 0 | 0 |
Smoking (%) | 10 | 10 |
Total cholesterol > 190 mg/dL (%) | 20 | 20 |
Parameter | SSc (n = 30) | Controls (n = 30) | p Value |
---|---|---|---|
Aortic annulus (mm) | 23 ± 2.3 | 20.9 ± 2.1 | NS |
LA diameter (mm) | 35.6 ± 6.5 | 34.1 ± 4.3 | NS |
IVS diastole (mm) | 11.3 ± 1.4 | 11.2 ± 2.0 | NS |
LVPW diastole (mm) | 11.2 ± 1.2 | 10.9 ± 1.8 | NS |
Indexed LVEDD (mm/m2) | 22.9 ± 1.6 | 23.1 ± 2.1 | NS |
RA diameter (mm) | 42.1 ± 7.6 | 44.4 ± 2.9 | NS |
RV diameter (mm) | 22.7 ± 1.8 | 23.4 ± 2.0 | NS |
TAPSE (mm) | 23.9 ± 4.2 | 24.2 ± 2.8 | NS |
SPAP (mmHg) | 24.0 ± 7.5 | 22.9 ± 4.0 | NS |
2D LVEF (%) | 57.4 ± 7.6 | 60.5 ± 5.1 | NS |
MAPSE (mm) | 15.5 ± 3.3 | 15.7 ± 4 | NS |
Parameter | SSc (n = 30) | Controls (n = 30) | p Value |
---|---|---|---|
2D GLS (%) | −17.1 ± 2.1 | −21.4 ± 1.8 | ≤0.01 |
4D LVEF (%) | 54.5 ± 8.5 | 63.8 ± 3.1 | ≤0.01 |
4D GLS (%) | −14.2 ± 2.4 | −22.0 ± 2.7 | ≤0.01 |
GCW (mmHg %) | 2124.2 ± 449.5 | 3102.8 ± 337.5 | 0.02 |
GWW (mmHg %) | 81.0 ± 51.3 | 73.5 ± 38.9 | NS |
GWE (mmHg %) | 95.0 ± 2.8 | 95.9 ± 2.1 | NS |
GWI (mmHg %) | 1869.9 ± 410.9 | 2023.2 ± 321.7 | NS |
Parameter | SSc |
---|---|
Age (years) | 54.0 ± 11.0 |
Female sex | 58/60 |
BMI (kg/m2) | 24.1 ± 3.7 |
NYHA class | I |
Systolic BP (mmHg) | 125 ± 20 |
Diastolic BP (mmHg) | 78 ± 16 |
HR (bpm) | 69 ± 9 |
Diabetes mellitus | 0 |
Smoking (%) | 15 |
Total cholesterol > 190 mg/dL (%) | 24 |
ESR (mm) | 28 ± 18 |
Diffuse cutaneous form (%) | 26 |
Limited form (%) | 74 |
Times since onset (years) | 6.2 ± 6.7 |
Time since treatment start (years) | 2.0 ± 1.5 |
Corticosteroids | 21% |
Immunosuppressive therapy | 32% |
Bosentan | 26% |
Calcium channel blockers | 55% |
Pentoxifylline | 5% |
Parameter | BL | 1 Year | 2 Year | p Value |
---|---|---|---|---|
LV function | ||||
2D LVEF (%) | 57.3 ± 7.0 | 57.1 ± 5.5 | 58.2 ± 4.4 | NS |
MAPSE (mm) | 15.7 ± 3.3 | 15.4 ± 3.5 | 15.1 ± 3.2 | NS |
2D GLS (%) | −16.9 ± 2.7 | −18.0 ± 2.2 | −17.3 ± 3.2 | NS |
4D LVEF (%) | 61.3 ± 6.5 | 62.8 ± 6.1 | 62.8 ± 6.1 | NS |
4D GLS (%) | −11.7 ± 4.2 | −13.2 ± 3.4 | −11.9 ± 4.3 | NS |
4D GAS (%) | −21.2 ± 6.3 | −19.4 ±12.7 | −21.3 ± 7.4 | NS |
RV function | ||||
TAPSE (mm) | 22.9 ± 3.4 | 22.4 ± 4.1 | 23.0 ± 3.6 | NS |
RV FAC (%) | 35.1 ± 1.2 | 40.6 ± 1.0 | 35.8 ± 0.9 | NS |
RV GLS (%) | −21.0 ± 5.1 | −19.6 ± 5.0 | −19.2 ± 2.0 | NS |
SPAP (mmHg) | 26.0 ± 10.3 | 29.4 ± 10.9 | 26.0 ± 7.5 | NS |
Atrial function | ||||
LAVi (ml/m2) | 22.3 ± 5.3 | 20. 4 ± 6.2 | 22.2 ± 4.5 | NS |
RAVi (ml/m2) | 18.6 ± 7.0 | 19.0 ± 5.7 | 18.2 ± 6.0 | NS |
LAGS (%) | 34.3 ± 4.4 | 26.2 ± 6.7 | 23.9 ± 8.0 | NS |
RAGS (%) | 31.04 ± 9.3 | 29.5 ± 8.3 | 31.7 ± 7.8 | NS |
Vascular function | ||||
CAVI | 7.8 ± 1.0 | 7.6 ± 1.6 | 7.5 ± 1.3 | NS |
ABI | 1.0 ± 0.1 | 1.0 ± 0.2 | 1.0 ± 0.1 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magda, Ș.L.; Gheorghiu, A.M.; Mincu, R.I.; Ciobanu, A.O.; Constantinescu, T.; Popa, E.C.; Mihai, C.; Vinereanu, D. Non-Invasive Cardiac and Vascular Monitoring in Systemic Sclerosis: Impact of Therapy on Subclinical Dysfunction. Medicina 2024, 60, 2080. https://doi.org/10.3390/medicina60122080
Magda ȘL, Gheorghiu AM, Mincu RI, Ciobanu AO, Constantinescu T, Popa EC, Mihai C, Vinereanu D. Non-Invasive Cardiac and Vascular Monitoring in Systemic Sclerosis: Impact of Therapy on Subclinical Dysfunction. Medicina. 2024; 60(12):2080. https://doi.org/10.3390/medicina60122080
Chicago/Turabian StyleMagda, Ștefania Lucia, Ana Maria Gheorghiu, Raluca Ileana Mincu, Andrea Olivia Ciobanu, Tudor Constantinescu, Elisa Cristina Popa, Carina Mihai, and Dragoș Vinereanu. 2024. "Non-Invasive Cardiac and Vascular Monitoring in Systemic Sclerosis: Impact of Therapy on Subclinical Dysfunction" Medicina 60, no. 12: 2080. https://doi.org/10.3390/medicina60122080
APA StyleMagda, Ș. L., Gheorghiu, A. M., Mincu, R. I., Ciobanu, A. O., Constantinescu, T., Popa, E. C., Mihai, C., & Vinereanu, D. (2024). Non-Invasive Cardiac and Vascular Monitoring in Systemic Sclerosis: Impact of Therapy on Subclinical Dysfunction. Medicina, 60(12), 2080. https://doi.org/10.3390/medicina60122080