Graft Selection in Anterior Cruciate Ligament Reconstruction: A Comprehensive Review of Current Trends
Abstract
:1. Introduction
2. Graft Selection
2.1. Bone-Patellar Tendon-Bone Autograft
2.2. Hamstring Tendon Autograft
2.3. Quadriceps Tendon Autograft
2.4. Peroneus Longus Tendon Autograft
2.5. Allografts
2.6. Xenografts, Synthetics, and Scaffolds
3. Discussion: Current Trends and Controversies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashy, C.; Bailey, E.; Hutchinson, J.; Brennan, E.; Bailey, R.; Michael Pullen, W.; Xerogeanes, J.W.; Slone, H.S. Quadriceps tendon autograft has similar clinical outcomes when compared to hamstring tendon and bone-patellar tendon-bone autografts for revision ACL reconstruction: A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 5463–5476. [Google Scholar] [CrossRef]
- Zegzdryn, M.; Moatshe, G.; Engebretsen, L.; Drogset, J.O.; Lygre, S.H.L.; Visnes, H.; Persson, A. Increased risk for early revision with quadriceps graft compared with patellar tendon graft in primary ACL reconstructions. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 656–665. [Google Scholar] [CrossRef]
- Rahr-Wagner, L.; Thillemann, T.M.; Pedersen, A.B.; Lind, M. Comparison of hamstring tendon and patellar tendon grafts in anterior cruciate ligament reconstruction in a nationwide population-based cohort study: Results from the danish registry of knee ligament reconstruction. Am. J. Sports Med. 2014, 42, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Della Villa, F.; Hägglund, M.; Della Villa, S.; Ekstrand, J.; Waldén, M. Infographic. High rate of second ACL injury following ACL reconstruction in male professional footballers: An updated longitudinal analysis from 118 players in the UEFA Elite Club Injury Study. Br. J. Sports Med. 2021, 55, 1379–1380. [Google Scholar] [CrossRef] [PubMed]
- Csapo, R.; Runer, A.; Hoser, C.; Fink, C. Contralateral ACL tears strongly contribute to high rates of secondary ACL injuries in professional ski racers. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Tomihara, T.; Hashimoto, Y.; Okazaki, S.; Nishino, K.; Taniuchi, M.; Takigami, J.; Tsumoto, S.; Katsuda, H. Bone-patellar tendon-bone autograft is associated with a higher rate of return to preinjury levels of performance in high-level athletes than anterior cruciate ligament reconstruction using hamstring autograft. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 1384–1395. [Google Scholar] [CrossRef] [PubMed]
- Runer, A.; Keeling, L.; Wagala, N.; Nugraha, H.; Özbek, E.A.; Hughes, J.D.; Musahl, V. Current trends in graft choice for anterior cruciate ligament reconstruction—part I: Anatomy, biomechanics, graft incorporation and fixation. J. Exp. Orthop. 2023, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Runer, A.; Keeling, L.; Wagala, N.; Nugraha, H.; Özbek, E.A.; Hughes, J.D.; Musahl, V. Current trends in graft choice for primary anterior cruciate ligament reconstruction—part II: In-vivo kinematics, patient reported outcomes, re-rupture rates, strength recovery, return to sports and complications. J. Exp. Orthop. 2023, 10, 40. [Google Scholar] [CrossRef]
- Vivekanantha, P.; Kahlon, H.; Hassan, Z.; Slawaska-Eng, D.; Abdel-Khalik, H.; Johnson, J.; de Sa, D. Hamstring autografts demonstrate either similar or inferior outcomes to quadriceps or bone-patellar tendon-bone autografts in revision anterior cruciate ligament reconstruction: A systematic review of comparative studies. Knee Surg. Sports Traumatol. Arthrosc. 2024, 1–15. [Google Scholar] [CrossRef]
- Arnold, M.P.; Calcei, J.G.; Vogel, N.; Magnussen, R.A.; Clatworthy, M.; Spalding, T.; Campbell, J.D.; Bergfeld, J.A.; Sherman, S.L. ACL Study Group survey reveals the evolution of anterior cruciate ligament reconstruction graft choice over the past three decades. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 3871–3876. [Google Scholar] [CrossRef] [PubMed]
- Musahl, V.; Nazzal, E.M.; Lucidi, G.A.; Serrano, R.; Hughes, J.D.; Margheritini, F.; Zaffagnini, S.; Fu, F.H.; Karlsson, J. Current trends in the anterior cruciate ligament part 1: Biology and biomechanics. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Koga, H.; Zaffagnini, S.; Getgood, A.; Muneta, T. ACL graft selection: State of the art. J. ISAKOS Jt. Disord. Orthop. Sports Med. 2018, 3, 177–184. [Google Scholar] [CrossRef]
- Wierer, G.; Gwinner, C.; Scheffler, S. Peroneus Longus Split Versus Semitendinosus Tendon Autograft Size: A Cross-sectional Study. Am. J. Sports Med. 2023, 51, 1743–1751. [Google Scholar] [CrossRef] [PubMed]
- Josipović, M.; Vlaić, J.; Serdar, J.; Šimunović, M.; Nizić, D.; Schauperl, Z.; Bojanić, I.; Jelić, M. Plantaris tendon: A novel graft for anterolateral ligament reconstruction and additional reinforcement for anterior cruciate ligament autografts in combined reconstructive procedures. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 2604–2608. [Google Scholar] [CrossRef]
- Jones, K.G. Reconstruction of the Anterior Cruciate Ligament. A Technique Using the Central One-Third of the Patellar Ligament. J. Bone Jt. Surg. Am. 1963, 45, 925–932. [Google Scholar] [CrossRef]
- Amano, H.; Tanaka, Y.; Kita, K.; Uchida, R.; Tachibana, Y.; Yonetani, Y.; Mae, T.; Shiozaki, Y.; Horibe, S. Significant anterior enlargement of femoral tunnel aperture after hamstring ACL reconstruction, compared to bone-patellar tendon-bone graft. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 461–470. [Google Scholar] [CrossRef]
- Gulotta, L.V.; Rodeo, S.A. Biology of autograft and allograft healing in anterior cruciate ligament reconstruction. Clin. Sports Med. 2007, 26, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Shanmugaraj, A.; Mahendralingam, M.; Gohal, C.; Horner, N.; Simunovic, N.; Musahl, V.; Samuelsson, K.; Ayeni, O.R. Press-fit fixation in anterior cruciate ligament reconstruction yields low graft failure and revision rates: A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 1750–1759. [Google Scholar] [CrossRef]
- Claes, S.; Verdonk, P.; Forsyth, R.; Bellemans, J. The “ligamentization” process in anterior cruciate ligament reconstruction: What happens to the human graft? A systematic review of the literature. Am. J. Sports Med. 2011, 39, 2476–2483. [Google Scholar] [CrossRef] [PubMed]
- Zaffagnini, S.; De Pasquale, V.; Marchesini Reggiani, L.; Russo, A.; Agati, P.; Bacchelli, B.; Marcacci, M. Neoligamentization process of BTPB used for ACL graft: Histological evaluation from 6 months to 10 years. Knee 2007, 14, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Musahl, V.; Engler, I.D.; Nazzal, E.M.; Dalton, J.F.; Lucidi, G.A.; Hughes, J.D.; Zaffagnini, S.; Della Villa, F.; Irrgang, J.J.; Fu, F.H.; et al. Current trends in the anterior cruciate ligament part II: Evaluation, surgical technique, prevention, and rehabilitation. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 34–51. [Google Scholar] [CrossRef]
- Matsuo, T.; Kusano, M.; Uchida, R.; Tsuda, T.; Toritsuka, Y. Anatomical rectangular tunnel anterior cruciate ligament reconstruction provides excellent clinical outcomes. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 1396–1403. [Google Scholar] [CrossRef]
- Okimura, S.; Suzuki, T.; Ikeda, Y.; Shiwaku, K.; Teramoto, A. Satisfactory outcomes after one-stage revision anterior cruciate ligament reconstruction using rectangular tunnel technique. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 5690–5697. [Google Scholar] [CrossRef] [PubMed]
- Fink, C.; Smigielski, R.; Siebold, R.; Abermann, E.; Herbort, M. Anterior Cruciate Ligament Reconstruction Using a Ribbon-Like Graft With a C-Shaped Tibial Bone Tunnel. Arthrosc. Tech. 2020, 9, e247–e262. [Google Scholar] [CrossRef] [PubMed]
- Irvine, J.N.; Arner, J.W.; Thorhauer, E.; Abebe, E.S.; D’Auria, J.; Schreiber, V.M.; Harner, C.D.; Tashman, S. Is There a Difference in Graft Motion for Bone-Tendon-Bone and Hamstring Autograft ACL Reconstruction at 6 Weeks and 1 Year? Am. J. Sports Med. 2016, 44, 2599–2607. [Google Scholar] [CrossRef] [PubMed]
- DeFazio, M.W.; Curry, E.J.; Gustin, M.J.; Sing, D.C.; Abdul-Rassoul, H.; Ma, R.; Fu, F.; Li, X. Return to Sport After ACL Reconstruction With a BTB Versus Hamstring Tendon Autograft: A Systematic Review and Meta-analysis. Orthop. J. Sports Med. 2020, 8, 2325967120964919. [Google Scholar] [CrossRef]
- Turati, M.; Caliandro, M.; Gaddi, D.; Piatti, M.; Rigamonti, L.; Zanchi, N.; Di Benedetto, P.; Boerci, L.; Catalano, M.; Zatti, G.; et al. Clinical outcomes and complications after anterior cruciate ligament reconstruction with bone-patellar tendon-bone in patient Tanner 3 and 4: A systematic review. Eur. J. Orthop. Surg. Traumatol. 2023, 33, 2191–2199. [Google Scholar] [CrossRef] [PubMed]
- Zakharia, A.; Lameire, D.L.; Abdel Khalik, H.; Kay, J.; Uddandam, A.; Nagai, K.; Hoshino, Y.; de Sa, D. Quadriceps tendon autograft for pediatric anterior cruciate ligament reconstruction results in promising postoperative function and rates of return to sports: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 3659–3672. [Google Scholar] [CrossRef] [PubMed]
- Gifstad, T.; Foss, O.A.; Engebretsen, L.; Lind, M.; Forssblad, M.; Albrektsen, G.; Drogset, J.O. Lower risk of revision with patellar tendon autografts compared with hamstring autografts: A registry study based on 45,998 primary ACL reconstructions in Scandinavia. Am. J. Sports Med. 2014, 42, 2319–2328. [Google Scholar] [CrossRef]
- Xie, X.; Liu, X.; Chen, Z.; Yu, Y.; Peng, S.; Li, Q. A meta-analysis of bone-patellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee 2015, 22, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Leng, X.; Wang, J.; Cheng, J.; Hu, X.; Ao, Y. Quadriceps Tendon Autograft Versus Bone-Patellar Tendon-Bone and Hamstring Tendon Autografts for Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2022, 50, 3425–3439. [Google Scholar] [CrossRef] [PubMed]
- Björnsson, H.; Samuelsson, K.; Sundemo, D.; Desai, N.; Sernert, N.; Rostgård-Christensen, L.; Karlsson, J.; Kartus, J. A Randomized Controlled Trial With Mean 16-Year Follow-up Comparing Hamstring and Patellar Tendon Autografts in Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2016, 44, 2304–2313. [Google Scholar] [CrossRef] [PubMed]
- Lund, B.; Nielsen, T.; Faunø, P.; Christiansen, S.E.; Lind, M. Is quadriceps tendon a better graft choice than patellar tendon? a prospective randomized study. Arthroscopy 2014, 30, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, H.; Ogura, T.; Asai, S.; Omodani, T.; Takahashi, T.; Yamaura, I.; Sakai, H.; Saito, C.; Tsuchiya, A.; Takahashi, K. Bone-patellar tendon-bone autograft maturation is superior to double-bundle hamstring tendon autograft maturation following anatomical anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 1661–1671. [Google Scholar] [CrossRef] [PubMed]
- Lautamies, R.; Harilainen, A.; Kettunen, J.; Sandelin, J.; Kujala, U.M. Isokinetic quadriceps and hamstring muscle strength and knee function 5 years after anterior cruciate ligament reconstruction: Comparison between bone-patellar tendon-bone and hamstring tendon autografts. Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 1009–1016. [Google Scholar] [CrossRef]
- Mascarenhas, R.; Tranovich, M.J.; Kropf, E.J.; Fu, F.H.; Harner, C.D. Bone-patellar tendon-bone autograft versus hamstring autograft anterior cruciate ligament reconstruction in the young athlete: A retrospective matched analysis with 2-10 year follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 1520–1527. [Google Scholar] [CrossRef] [PubMed]
- Daruwalla, J.H.; Xerogeanes, J.W.; Greis, P.E.; Hancock, R.E.; Kaplan, L.D.; Hatch, G.F.; Spindler, K.P.; Johnson, D.L.; McCarty, E.C.; Moorman, C.T. Rates and Determinants of Return to Play after Anterior Cruciate Ligament. Orthop. J. Sports Med. 2014, 2 (Suppl. 1), 2325967114S00007. [Google Scholar] [CrossRef]
- Kunze, K.N.; Moran, J.; Polce, E.M.; Pareek, A.; Strickland, S.M.; Williams, R.J., 3rd. Lower donor site morbidity with hamstring and quadriceps tendon autograft compared with bone-patellar tendon-bone autograft after anterior cruciate ligament reconstruction: A systematic review and network meta-analysis of randomized controlled trials. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 3339–3352. [Google Scholar] [CrossRef] [PubMed]
- Beaufils, P.; Gaudot, F.; Drain, O.; Boisrenoult, P.; Pujol, N. Mini-invasive technique for bone patellar tendon bone harvesting: Its superiority in reducing anterior knee pain following ACL reconstruction. Curr. Rev. Musculoskelet. Med. 2011, 4, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Tomihara, T.; Hashimoto, Y.; Nishino, K.; Taniuchi, M.; Takigami, J.; Tsumoto, S.; Katsuda, H. Bone-patellar tendon-bone autograft and female sex are associated with the presence of cyclops lesions and syndrome after anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 2762–2771. [Google Scholar] [CrossRef]
- D’Ambrosi, R.; Kambhampati, S.B.; Meena, A.; Milinkovic, D.D.; Abermann, E.; Fink, C. The “Golden Age” of quadriceps tendon grafts for the anterior cruciate ligament: A bibliometric analysis. J. ISAKOS 2024, 9, 672–681. [Google Scholar] [CrossRef]
- Xie, X.; Xiao, Z.; Li, Q.; Zhu, B.; Chen, J.; Chen, H.; Yang, F.; Chen, Y.; Lai, Q.; Liu, X. Increased incidence of osteoarthritis of knee joint after ACL reconstruction with bone-patellar tendon-bone autografts than hamstring autografts: A meta-analysis of 1,443 patients at a minimum of 5 years. Eur. J. Orthop. Surg. Traumatol. 2015, 25, 149–159. [Google Scholar] [CrossRef]
- Bernard, M.; Pappas, E.; Georgoulis, A.; Haschemi, A.; Scheffler, S.; Becker, R. Risk of overconstraining femorotibial rotation after anatomical ACL reconstruction using bone patella tendon bone autograft. Arch. Orthop. Trauma Surg. 2020, 140, 2013–2020. [Google Scholar] [CrossRef]
- Almeida, G.P.L.; Albano, T.R.; Rodrigues, C.A.S.; Tavares, M.L.A.; de Paula Lima, P.O. Combining return to sport, psychological readiness, body mass, hamstring strength symmetry, and hamstring/quadriceps ratio increases the risk of a second anterior cruciate ligament injury. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 5087–5095. [Google Scholar] [CrossRef] [PubMed]
- Sengoku, T.; Nakase, J.; Mizuno, Y.; Kanayama, T.; Ishida, Y.; Yanatori, Y.; Arima, Y. Limited preoperative knee extension in anterior cruciate ligament reconstruction using a hamstring tendon affects improvement of postoperative knee extensor strength. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 5621–5628. [Google Scholar] [CrossRef] [PubMed]
- Rahardja, R.; Zhu, M.; Love, H.; Clatworthy, M.G.; Monk, A.P.; Young, S.W. Factors associated with revision following anterior cruciate ligament reconstruction: A systematic review of registry data. Knee 2020, 27, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Elmholt, S.B.; Nielsen, T.G.; Lind, M. Fixed-loop vs. adjustable-loop cortical button devices for femoral fixation in ACL reconstruction—A systematic review and meta-analysis. J. Exp. Orthop. 2022, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Niederer, D.; Keller, M.; Jakob, S.; Petersen, W.; Mengis, N.; Vogt, L.; Guenther, D.; Brandl, G.; Drews, B.H.; Behringer, M.; et al. Quadriceps and hamstring anterior cruciate ligament reconstruction differ only marginally in function after the rehabilitation: A propensity score-matched case-control study. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 3441–3453. [Google Scholar] [CrossRef] [PubMed]
- Ogunleye, P.; Jäger, H.; Zimmermann, F.; Balcarek, P.; Sobau, C.; Ellermann, A.; Zimmerer, A. Patients older than 55 years regain sporting and recreational activities after arthroscopic anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Jung, M.; Chung, K.; Moon, H.S.; Jung, S.H.; Moon, S.; Kim, S.H. Patellofemoral joint cartilage lesions frequently develop shortly after anterior cruciate ligament reconstruction using hamstring tendon autograft: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2024. [Google Scholar] [CrossRef] [PubMed]
- Bloch, H.; Reinsberger, C.; Klein, C.; Luig, P.; Krutsch, W. High revision arthroscopy rate after ACL reconstruction in men’s professional team sports. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 142–151. [Google Scholar] [CrossRef] [PubMed]
- San Jose, A.T.; Maniar, N.; Timmins, R.G.; Beerworth, K.; Hampel, C.; Tyson, N.; Williams, M.D.; Opar, D.A. Explosive hamstrings strength asymmetry persists despite maximal hamstring strength recovery following anterior cruciate ligament reconstruction using hamstring tendon autografts. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 299–307. [Google Scholar] [CrossRef]
- Costa, G.G.; Perelli, S.; Grassi, A.; Russo, A.; Zaffagnini, S.; Monllau, J.C. Minimizing the risk of graft failure after anterior cruciate ligament reconstruction in athletes. A narrative review of the current evidence. J. Exp. Orthop. 2022, 9, 26. [Google Scholar] [CrossRef]
- Malahias, M.A.; Capece, F.M.; Ballarati, C.; Viganò, M.; Marano, M.; Hofbauer, M.; Togninalli, D.; de Girolamo, L.; Denti, M. Sufficient MRI graft structural integrity at 9 months after anterior cruciate ligament reconstruction with hamstring tendon autograft. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 1893–1900. [Google Scholar] [CrossRef]
- Itoh, M.; Itou, J.; Okazaki, K.; Iwasaki, K. Estimation Failure Risk by 0.5-mm Differences in Autologous Hamstring Graft Diameter in Anterior Cruciate Ligament Reconstruction: A Meta-analysis. Am. J. Sports Med. 2024, 52, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Vivekanantha, P.; Nedaie, S.; Grzela, P.; Cohen, D.; Hoshino, Y.; Nagai, K.; Kay, J.; de Sa, D. Though five-strand hamstring autografts demonstrate greater graft diameter, postoperative outcomes are equivocal to four-strand hamstring autograft preparations: A systematic review and meta-analysis of level I and II studies. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4437–4447. [Google Scholar] [CrossRef]
- Mirzayan, R.; Chang, R.N.; Royse, K.E.; Prentice, H.A.; Maletis, G.B. No difference in revision risk between autologous hamstring graft less than 8 mm versus hybrid graft 8 mm or larger in anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 3465–3473. [Google Scholar] [CrossRef] [PubMed]
- Movahedinia, M.; Movahedinia, S.; Hosseini, S.; Motevallizadeh, A.; Salehi, B.; Shekarchi, B.; Shahrezaee, M. Prediction of hamstring tendon autograft diameter using preoperative measurements with different cut-offs between genders. J. Exp. Orthop. 2023, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Offerhaus, C.; Jaecker, V.; Shafizadeh, S.; Müller, L.; Hahne, H.; Wisplinghoff, H.; Jazmati, N. Semitendinosus tendons are commonly contaminated with skin flora during graft harvest for anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4824–4832. [Google Scholar] [CrossRef] [PubMed]
- Lind, D.R.G.; Patil, R.S.; Amunategui, M.A.; DePhillipo, N.N. Evolution of anterior cruciate ligament reconstruction & graft choice: A review. Ann. Jt. 2023, 8, 19. [Google Scholar] [CrossRef]
- Vittone, G.; Valcarenghi, J.; Mouton, C.; Seil, R. Mini-Invasive Harvesting of Quadriceps Tendon Graft With Patellar Bone Block for ACL Reconstruction Using a Dedicated Harvester. Video J. Sports Med. 2023, 3, 26350254231207405. [Google Scholar] [CrossRef]
- Ollivier, M.; Cognault, J.; Pailhé, R.; Bayle-Iniguez, X.; Cavaignac, E.; Murgier, J. Minimally invasive harvesting of the quadriceps tendon: Technical note. Orthop. Traumatol. Surg. Res. 2021, 107, 102819. [Google Scholar] [CrossRef] [PubMed]
- Moatshe, G.; Floyd, E.; Martin, K.R.; Engebretsen, L.; LaPrade, R. Emerging Topics in ACL Graft Selection: Best Evidence for the Use of Quadriceps Tendon Graft. Oper. Tech. Sports Med. 2021, 29, 150835. [Google Scholar] [CrossRef]
- Banovetz, M.T.; Kennedy, N.I.; LaPrade, R.F.; Engebretsen, L.; Moatshe, G. Biomechanical considerations for graft choice in anterior cruciate ligament reconstruction. Ann. Jt. 2023, 8, 17. [Google Scholar] [CrossRef]
- Ma, Y.; Murawski, C.D.; Rahnemai-Azar, A.A.; Maldjian, C.; Lynch, A.D.; Fu, F.H. Graft maturity of the reconstructed anterior cruciate ligament 6 months postoperatively: A magnetic resonance imaging evaluation of quadriceps tendon with bone block and hamstring tendon autografts. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Meena, A.; D’Ambrosi, R.; Runer, A.; Raj, A.; Attri, M.; Abermann, E.; Hoser, C.; Fink, C. Quadriceps tendon autograft with or without bone block have comparable clinical outcomes, complications and revision rate for ACL reconstruction: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 2274–2288. [Google Scholar] [CrossRef]
- Dave, U.; Ofa, S.A.; Ierulli, V.K.; Perez-Chaumont, A.; Mulcahey, M.K. Both Quadriceps and Bone-Patellar Tendon-Bone Autografts Improve Postoperative Stability and Functional Outcomes After Anterior Cruciate Ligament Reconstruction: A Systematic Review. Arthrosc. Sports Med. Rehabil. 2024, 6, 100919. [Google Scholar] [CrossRef] [PubMed]
- Meena, A.; Di Paolo, S.; Grassi, A.; Raj, A.; Farinelli, L.; Hoser, C.; Tapasvi, S.; Zaffagnini, S.; Fink, C. No difference in patient reported outcomes, laxity, and failure rate after revision ACL reconstruction with quadriceps tendon compared to hamstring tendon graft: A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 1795. [Google Scholar] [CrossRef] [PubMed]
- Johnston, P.T.; McClelland, J.A.; Feller, J.A.; Webster, K.E. Knee muscle strength after quadriceps tendon autograft anterior cruciate ligament reconstruction: Systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 2918–2933. [Google Scholar] [CrossRef]
- Galan, H.; Escalante, M.; Della Vedova, F.; Slullitel, D. All inside full thickness quadriceps tendon ACL reconstruction: Long term follow up results. J. Exp. Orthop. 2020, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Horstmann, H.; Petri, M.; Tegtbur, U.; Felmet, G.; Krettek, C.; Jagodzinski, M. Quadriceps and hamstring tendon autografts in ACL reconstruction yield comparably good results in a prospective, randomized controlled trial. Arch. Orthop. Trauma Surg. 2022, 142, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Glassman, I.; Sheean, A.; Hoshino, Y.; Nagai, K.; de Sa, D. Less than 1% risk of donor-site quadriceps tendon rupture post-ACL reconstruction with quadriceps tendon autograft: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 572–585. [Google Scholar] [CrossRef]
- Butt, U.M.; Khan, Z.A.; Amin, A.; Shah, I.A.; Iqbal, J.; Khan, Z. Peroneus Longus Tendon Harvesting for Anterior Cruciate Ligament Reconstruction. JBJS Essent. Surg. Tech. 2022, 12, e20.00053. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.D.; Hess, D.E.; Zuo, J.Z.; Liu, S.J.; Wang, X.C.; Zhang, Y.; Meng, X.G.; Cui, Z.J.; Zhao, S.P.; Li, C.J.; et al. Peroneus Longus Tendon Autograft is a Safe and Effective Alternative for Anterior Cruciate Ligament Reconstruction. J. Knee Surg. 2019, 32, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Hoang, Q.; Nguyen Manh, K. Anatomical and Biomechanical Characteristics of Peroneus Longus Tendon: Applications in Knee Cruciate Ligament Reconstruction Surgery. Adv. Orthop. 2023, 2023, 2018363. [Google Scholar] [CrossRef]
- Khan, M.J.; Asif, N.; Firoz, D.; Khan, A.Q.; Sabir, A.B.; Siddiqui, Y.S. Prediction of peroneus longus graft diameter for anterior cruciate ligament reconstruction by inframalleolar harvest and from anthropometric data. Int. J. Burn. Trauma 2021, 11, 377–384. [Google Scholar]
- He, J.; Tang, Q.; Ernst, S.; Linde, M.A.; Smolinski, P.; Wu, S.; Fu, F. Peroneus longus tendon autograft has functional outcomes comparable to hamstring tendon autograft for anterior cruciate ligament reconstruction: A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 2869–2879. [Google Scholar] [CrossRef]
- Rhatomy, S.; Hartoko, L.; Setyawan, R.; Soekarno, N.R.; Zainal Asikin, A.I.; Pridianto, D.; Mustamsir, E. Single bundle ACL reconstruction with peroneus longus tendon graft: 2-years follow-up. J. Clin. Orthop. Trauma 2020, 11 (Suppl 3), S332–S336. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Shetty, U.C.; Salim, M.D.; Meena, N.; Kumar, R.S.; Rao, V.K.V. Peroneus Longus Tendon Autograft for Anterior Cruciate Ligament Reconstruction: A Safe and Effective Alternative in Nonathletic Patients. Niger. J. Surg. 2021, 27, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Rudy; Mustamsir, E.; Phatama, K.Y. Tensile strength comparison between peroneus longus and hamstring tendons: A biomechanical study. Int. J. Surg. Open 2017, 9, 41–44. [Google Scholar] [CrossRef]
- Gök, B.; Kanar, M.; Tutak, Y. Peroneus Longus vs Hamstring Tendon Autografts in ACL Reconstruction: A Comparative Study of 106 Patients’ Outcomes. Med. Sci. Monit. 2024, 30, e945626. [Google Scholar] [CrossRef]
- Liu, C.T.; Lu, Y.C.; Huang, C.H. Half-peroneus-longus-tendon graft augmentation for unqualified hamstring tendon graft of anterior cruciate ligament reconstruction. J. Orthop. Sci. 2015, 20, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Nazem, K.; Barzegar, M.; Hosseini, A.; Karimi, M. Can we use peroneus longus in addition to hamstring tendons for anterior cruciate ligament reconstruction? Adv. Biomed. Res. 2014, 3, 115. [Google Scholar] [CrossRef]
- Zhao, J.; Huangfu, X. The biomechanical and clinical application of using the anterior half of the peroneus longus tendon as an autograft source. Am. J. Sports Med. 2012, 40, 662–671. [Google Scholar] [CrossRef]
- Angthong, C.; Chernchujit, B.; Apivatgaroon, A.; Chaijenkit, K.; Nualon, P.; Suchao-in, K. The Anterior Cruciate Ligament Reconstruction with the Peroneus Longus Tendon: A Biomechanical and Clinical Evaluation of the Donor Ankle Morbidity. J. Med. Assoc. Thai. 2015, 98, 555–560. [Google Scholar]
- Zhang, S.; Cai, G.; Ge, Z. The Efficacy of Anterior Cruciate Ligament Reconstruction with Peroneus Longus Tendon and its Impact on Ankle Joint Function. Orthop. Surg. 2024, 16, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Rhatomy, S.; Wicaksono, F.H.; Soekarno, N.R.; Setyawan, R.; Primasara, S.; Budhiparama, N.C. Eversion and First Ray Plantarflexion Muscle Strength in Anterior Cruciate Ligament Reconstruction Using a Peroneus Longus Tendon Graft. Orthop. J. Sports Med. 2019, 7, 2325967119872462. [Google Scholar] [CrossRef] [PubMed]
- Strickland, S.M.; MacGillivray, J.D.; Warren, R.F. Anterior cruciate ligament reconstruction with allograft tendons. Orthop. Clin. N. Am. 2003, 34, 41–47. [Google Scholar] [CrossRef]
- Indelli, P.F.; Dillingham, M.F.; Fanton, G.S.; Schurman, D.J. Anterior cruciate ligament reconstruction using cryopreserved allografts. Clin. Orthop. Relat. Res. 2004, 420, 268–275. [Google Scholar] [CrossRef]
- Hulet, C.; Sonnery-Cottet, B.; Stevenson, C.; Samuelsson, K.; Laver, L.; Zdanowicz, U.; Stufkens, S.; Curado, J.; Verdonk, P.; Spalding, T. The use of allograft tendons in primary ACL reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 1754–1770. [Google Scholar] [CrossRef]
- Maletis, G.B.; Inacio, M.C.S.; Funahashi, T.T. Analysis of 16,192 Anterior Cruciate Ligament Reconstructions From a Community-Based Registry. Am. J. Sports Med. 2013, 41, 2090–2098. [Google Scholar] [CrossRef] [PubMed]
- Indelli, P.F.; Dillingham, M.; Fanton, G.; Schurman, D.J. Septic arthritis in postoperative anterior cruciate ligament reconstruction. Clin. Orthop. Relat. Res. 2002, 398, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Brophy, R.H.; Wright, R.W.; Huston, L.J.; Nwosu, S.K.; Spindler, K.P. Factors associated with infection following anterior cruciate ligament reconstruction. J. Bone Jt. Surg. Am. 2015, 97, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Lansdown, D.A.; Riff, A.J.; Meadows, M.; Yanke, A.B.; Bach, B.R., Jr. What Factors Influence the Biomechanical Properties of Allograft Tissue for ACL Reconstruction? A Systematic Review. Clin. Orthop. Relat. Res. 2017, 475, 2412–2426. [Google Scholar] [CrossRef] [PubMed]
- Grassi, A.; Agostinone, P.; Di Paolo, S.; Altovino, E.; Gallese, A.; Akbaba, D.; Bonanzinga, T.; Marcacci, M.; Zaffagnini, S. Donor age has no relevant role in biomechanical properties of allografts used in anterior cruciate ligament (ACL) reconstruction: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 1123–1142. [Google Scholar] [CrossRef]
- Barrett, G.R.; Luber, K.; Replogle, W.H.; Manley, J.L. Allograft anterior cruciate ligament reconstruction in the young, active patient: Tegner activity level and failure rate. Arthroscopy 2010, 26, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.I., Jr.; Beck, J.J.; Ellington, M.D.; Mayer, S.W.; Pennock, A.T.; Stinson, Z.S.; VandenBerg, C.D.; Barrow, B.; Gao, B.; Ellis, H.B., Jr. Failure Rates of Autograft and Allograft ACL Reconstruction in Patients 19 Years of Age and Younger: A Systematic Review and Meta-Analysis. JBJS Open Access 2020, 5, e20.00106. [Google Scholar] [CrossRef] [PubMed]
- Lording, T.; Steiner, J.; Hewison, C.; Neyret, P.; Lustig, S. Autograft superior to both irradiated and non-irradiated allograft for primary ACL reconstruction: A systematic review. J. ISAKOS 2017, 2, 247–259. [Google Scholar] [CrossRef]
- Zaffagnini, S.; Grassi, A.; Marcheggiani Muccioli, G.M.; Roberti Di Sarsina, T.; Raggi, F.; Benzi, A.; Marcacci, M. Anterior cruciate ligament reconstruction with a novel porcine xenograft: The initial Italian experience. Joints 2015, 3, 85–90. [Google Scholar] [CrossRef]
- Van Der Merwe, W.; Lind, M.; Faunø, P.; Van Egmond, K.; Zaffagnini, S.; Marcacci, M.; Cugat, R.; Verdonk, R.; Ibañez, E.; Guillen, P.; et al. Xenograft for anterior cruciate ligament reconstruction was associated with high graft processing infection. J. Exp. Orthop. 2020, 7, 79. [Google Scholar] [CrossRef] [PubMed]
- Kantrowitz, D.E.; Darden, C.N.; Haunschild, E.D.; Gladstone, J.N.; Anthony, S.G. Modified Bridge-Enhanced Anterior Cruciate Ligament Repair. Arthrosc. Tech. 2024, 13, 103034. [Google Scholar] [CrossRef]
- Lombardi, J.A.; Hoonjan, A.; Rodriguez, N.; Delossantos, A.; Monteiro, G.; Sandor, M.; Xu, H. Porcine bone-patellar tendon-bone xenograft in a caprine model of anterior cruciate ligament repair. J. Orthop. Surg. 2020, 28, 2309499020939737. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Cai, J.; Li, D.; Chen, Y.; Wang, C.; Hou, G.; Steinberg, T.; Rolauffs, B.; El-Newehy, M.; El-Hamshary, H.; et al. Multiphasic bone-ligament-bone integrated scaffold enhances ligamentization and graft-bone integration after anterior cruciate ligament reconstruction. Bioact Mater 2024, 31, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Tiefenboeck, T.M.; Thurmaier, E.; Tiefenboeck, M.M.; Ostermann, R.C.; Joestl, J.; Winnisch, M.; Schurz, M.; Hajdu, S.; Hofbauer, M. Clinical and functional outcome after anterior cruciate ligament reconstruction using the LARS™ system at a minimum follow-up of 10 years. Knee 2015, 22, 565–568. [Google Scholar] [CrossRef]
- Barnaś, M.; Kentel, M.; Morasiewicz, P.; Witkowski, J.; Reichert, P. Clinical assessment and comparison of ACL reconstruction using synthetic graft (Neoligaments versus FiberTape). Adv. Clin. Exp. Med. 2021, 30, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Stone, K.R.; Walgenbach, A.W.; Turek, T.J.; Somers, D.L.; Wicomb, W.; Galili, U. Anterior cruciate ligament reconstruction with a porcine xenograft: A serologic, histologic, and biomechanical study in primates. Arthroscopy 2007, 23, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Stone, K.R.; Walgenbach, A.W.; Turek, T.J.; Crues, J.V.; Galili, U. Xenograft bone-patellar tendon-bone ACL reconstruction: A case series at 20-year follow-up as proof of principle. J. Exp. Orthop. 2023, 10, 91. [Google Scholar] [CrossRef]
- Marks Benson, E.; Pyrz, K.; Wood, A.; Momaya, A.; Brabston, E.; Evely, T.; Casp, A. Anterior Cruciate Ligament Reconstruction using Bone-Tendon-Bone Allograft: Surgical Technique Using Augmentation with Bio-Composite Scaffold. Arthrosc. Tech. 2024, 13, 102877. [Google Scholar] [CrossRef]
- Murray, M.M.; Fleming, B.C. Use of a bioactive scaffold to stimulate anterior cruciate ligament healing also minimizes posttraumatic osteoarthritis after surgery. Am. J. Sports Med. 2013, 41, 1762–1770. [Google Scholar] [CrossRef] [PubMed]
- Erickson, B.J.; Harris, J.D.; Fillingham, Y.A.; Cvetanovich, G.L.; Bush-Joseph, C.; Cole, B.J.; Bach, B.R., Jr.; Verma, N.N. Orthopedic Practice Patterns Relating to Anterior Cruciate Ligament Reconstruction in Elite Athletes. Am. J. Orthop. 2015, 44, E480–E485. [Google Scholar] [PubMed]
- Hadjicostas, P.T.; Soucacos, P.N.; Koleganova, N.; Krohmer, G.; Berger, I. Comparative and morphological analysis of commonly used autografts for anterior cruciate ligament reconstruction with the native ACL: An electron, microscopic and morphologic study. Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Malige, A.; Baghdadi, S.; Hast, M.W.; Schmidt, E.C.; Shea, K.G.; Ganley, T.J. Biomechanical properties of common graft choices for anterior cruciate ligament reconstruction: A systematic review. Clin. Biomech. 2022, 95, 105636. [Google Scholar] [CrossRef]
- Hart, D.; Gurney-Dunlop, T.; Leiter, J.; Longstaffe, R.; Eid, A.S.; McRae, S.; MacDonald, P. Biomechanics of hamstring tendon, quadriceps tendon, and bone-patellar tendon-bone grafts for anterior cruciate ligament reconstruction: A cadaveric study. Eur. J. Orthop. Surg. Traumatol. 2023, 33, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Grassi, A.; Nitri, M.; Moulton, S.G.; Marcheggiani Muccioli, G.M.; Bondi, A.; Romagnoli, M.; Zaffagnini, S. Does the type of graft affect the outcome of revision anterior cruciate ligament reconstruction? a meta-analysis of 32 studies. Bone Jt. J. 2017, 99-B, 714–723. [Google Scholar] [CrossRef]
- Meena, A.; Farinelli, L.; Hoser, C.; Abermann, E.; Raj, A.; Hepperger, C.; Herbort, M.; Fink, C. Revision ACL reconstruction using quadriceps, hamstring and patellar tendon autografts leads to similar functional outcomes but hamstring graft has a higher tendency of graft failure. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 1795. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Vivekanantha, P.; Khalik, H.A.; Slawaska-Eng, D.; Kay, J.; Johnson, J.; de Sa, D. Approximately half of pediatric or adolescent patients undergoing revision anterior cruciate ligament reconstruction return to the same level of sport or higher: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 181–195. [Google Scholar] [CrossRef]
- Maletis, G.B.; Inacio, M.C.; Reynolds, S.; Desmond, J.L.; Maletis, M.M.; Funahashi, T.T. Incidence of postoperative anterior cruciate ligament reconstruction infections: Graft choice makes a difference. Am. J. Sports Med. 2013, 41, 1780–1785. [Google Scholar] [CrossRef] [PubMed]
- Marom, N.; Kapadia, M.; Nguyen, J.T.; Ammerman, B.; Boyle, C.; Wolfe, I.; Halvorsen, K.C.; Miller, A.O.; Henry, M.W.; Brause, B.D.; et al. Factors Associated With an Intra-articular Infection After Anterior Cruciate Ligament Reconstruction: A Large Single-Institution Cohort Study. Am. J. Sports Med. 2022, 50, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Karam, K.M.; Moussa, M.K.; Valentin, E.; Meyer, A.; Bohu, Y.; Gerometta, A.; Grimaud, O.; Lefevre, N.; Hardy, A. Sustainability studies in orthopaedic surgery: The carbon footprint of anterior cruciate ligament reconstruction depends on graft choice. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 124–134. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostojic, M.; Indelli, P.F.; Lovrekovic, B.; Volcarenghi, J.; Juric, D.; Hakam, H.T.; Salzmann, M.; Ramadanov, N.; Królikowska, A.; Becker, R.; et al. Graft Selection in Anterior Cruciate Ligament Reconstruction: A Comprehensive Review of Current Trends. Medicina 2024, 60, 2090. https://doi.org/10.3390/medicina60122090
Ostojic M, Indelli PF, Lovrekovic B, Volcarenghi J, Juric D, Hakam HT, Salzmann M, Ramadanov N, Królikowska A, Becker R, et al. Graft Selection in Anterior Cruciate Ligament Reconstruction: A Comprehensive Review of Current Trends. Medicina. 2024; 60(12):2090. https://doi.org/10.3390/medicina60122090
Chicago/Turabian StyleOstojic, Marko, Pier Francesco Indelli, Bruno Lovrekovic, Jerome Volcarenghi, Doria Juric, Hassan Tarek Hakam, Mikhail Salzmann, Nikolai Ramadanov, Aleksandra Królikowska, Roland Becker, and et al. 2024. "Graft Selection in Anterior Cruciate Ligament Reconstruction: A Comprehensive Review of Current Trends" Medicina 60, no. 12: 2090. https://doi.org/10.3390/medicina60122090
APA StyleOstojic, M., Indelli, P. F., Lovrekovic, B., Volcarenghi, J., Juric, D., Hakam, H. T., Salzmann, M., Ramadanov, N., Królikowska, A., Becker, R., & Prill, R. (2024). Graft Selection in Anterior Cruciate Ligament Reconstruction: A Comprehensive Review of Current Trends. Medicina, 60(12), 2090. https://doi.org/10.3390/medicina60122090