Implementation of Microcirculation Examination in Clinical Practice—Insights from the Nationwide POL-MKW Registry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coronary Angiography and Physiological Examination of Coronary Arteries
2.2. Statistical Analysis
3. Results
3.1. Catheterisation Laboratories and Years of Study
3.2. General Characteristics and Concomitant Diseases
3.3. Clinical State and Main Symptoms
3.4. Pharmacotherapy
3.5. Coronary Angiography
3.6. Coronary Microvascular Circulation Assessment
3.7. Treatment Adjustment after Coronary Microcirculation Assessment
3.8. Multivariable Analysis
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cannon, R.O.; Epstein, S.E. ‘Microvascular angina’ as a cause of chest pain with angio-graphically normal coronary arteries. Am. J. Cardiol. 1988, 61, 1338–1343. [Google Scholar] [CrossRef]
- Kelshiker, M.A.; Seligman, H.; Howard, J.P.; Rahman, H.; Foley, M.; Nowbar, A.N.; A Rajkumar, C.; Shun-Shin, M.J.; Ahmad, Y.; Sen, S.; et al. Coronary flow reserve and cardiovascular outcomes: A systematic review and meta-analysis. Eur. Heart J. 2021, 43, 1582–1593. [Google Scholar] [CrossRef] [PubMed]
- Godo, S.; Suda, A.; Takahashi, J.; Yasuda, S.; Shimokawa, H. Coronary Microvascular Dysfunction. Arter. Thromb. Vasc. Biol. 2021, 41, 1625–1637. [Google Scholar] [CrossRef] [PubMed]
- Ozyurek, B.A.; Bozbas, S.S.; Eroglu, S.; Eyuboglu, F.O. Coronary flow reserve is impaired in patients with obstructive sleep apnea. Ann. Thorac. Med. 2017, 12, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, A.; Pickup, L.C.; Price, A.M.; Law, J.P.; Edwards, N.C.; Steeds, R.P.; Ferro, C.J.; Townend, J.N. Coronary microvascular dysfunction: A key step in the development of uraemic cardiomyopathy? Heart 2019, 105, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, A.; Pickup, L.C.; Price, A.M.; Law, J.P.; McGee, K.C.; Fabritz, L.; Senior, R.; Steeds, R.P.; Ferro, C.J.; Townend, J.N. Coronary microvascular dysfunction is associated with degree of anaemia in end-stage renal disease. BMC Cardiovasc. Disord. 2021, 21, 211. [Google Scholar] [CrossRef]
- Lee, J.M.; Jung, J.-H.; Hwang, D.; Park, J.; Fan, Y.; Na, S.-H.; Doh, J.-H.; Nam, C.-W.; Shin, E.-S.; Koo, B.-K. Coronary Flow Reserve and Microcirculatory Resistance in Patients with Intermediate Coronary Stenosis. J. Am. Coll. Cardiol. 2016, 67, 1158–1169. [Google Scholar] [CrossRef] [PubMed]
- De Bruyne, B.; Hersbach, F.; Pijls, N.H.; Bartunek, J.; Bech, J.-W.; Heyndrickx, G.R.; Gould, K.L.; Wijns, W. Abnormal Epicardial Coronary Resistance in Patients with Diffuse Atherosclerosis but “Normal” Coronary Angiography. Circulation 2001, 104, 2401–2406. [Google Scholar] [CrossRef] [PubMed]
- McGeoch, R.; Watkins, S.; Berry, C.; Steedman, T.; Davie, A.; Byrne, J.; Hillis, S.; Lindsay, M.; Robb, S.; Dargie, H.; et al. The Index of Microcirculatory Resistance Measured Acutely Predicts the Extent and Severity of Myocardial Infarction in Patients with ST-Segment Elevation Myocardial Infarction. JACC Cardiovasc. Interv. 2010, 3, 715–722. [Google Scholar] [CrossRef]
- Patel, M.R.; Peterson, E.D.; Dai, D.; Brennan, J.M.; Redberg, R.F.; Anderson, H.V.; Brindis, R.G.; Douglas, P.S. Low Diagnostic Yield of Elective Coronary Angiography. N. Engl. J. Med. 2010, 362, 886–895. [Google Scholar] [CrossRef]
- Wei, J.; Cheng, S.; Merz, C.N.B. Coronary Microvascular Dysfunction Causing Cardiac Ischemia in Women. JAMA 2019, 322, 2334–2335. [Google Scholar] [CrossRef]
- Bairey Merz, C.N.; Pepine, C.J.; Walsh, M.N.; Fleg, J.L. Ischemia and No Obstructive Coronary Artery Disease (INOCA): Developing Evidence-Based Therapies and Research Agenda for the Next Decade. Circulation 2017, 135, 1075–1092. [Google Scholar] [CrossRef] [PubMed]
- Kenkre, T.S.; Malhotra, P.; Johnson, B.D.; Handberg, E.M.; Thompson, D.V.; Marroquin, O.C.; Rogers, W.J.; Pepine, C.J.; Merz, C.N.B.; Kelsey, S.F.; et al. Ten-Year Mortality in the WISE Study (Women’s Ischemia Syndrome Evaluation). Circ. Cardiovasc. Qual. Outcomes 2017, 10, e003863. [Google Scholar] [CrossRef] [PubMed]
- Khuddus, M.A.; Pepine, C.J.; Handberg, E.M.; Merz, C.N.B.; Sopko, G.; Bavry, A.A.; Denardo, S.J.; McGORRAY, S.P.; Smith, K.M.; Sharaf, B.L.; et al. An Intravascular Ultrasound Analysis in Women Experiencing Chest Pain in the Absence of Obstructive Coronary Artery Disease: A Substudy from the National Heart, Lung and Blood Institute–Sponsored Women’s Ischemia Syndrome Evaluation (WISE). J. Interv. Cardiol. 2010, 23, 511–519. [Google Scholar] [CrossRef]
- Lee, B.-K.; Lim, H.-S.; Fearon, W.F.; Yong, A.S.; Yamada, R.; Tanaka, S.; Lee, D.P.; Yeung, A.C.; Tremmel, J.A. Invasive Evaluation of Patients with Angina in the Absence of Obstructive Coronary Artery Disease. Circulation 2015, 131, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Camici, P.G.; Crea, F. Coronary microvascular dysfunction. N. Engl. J. Med. 2007, 356, 830–840. [Google Scholar] [CrossRef]
- Fearon, W.F.; Kobayashi, Y. Invasive Assessment of the Coronary Microvasculature. Circ. Cardiovasc. Interv. 2017, 10, e005361. [Google Scholar] [CrossRef] [PubMed]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [PubMed]
- Fearon, W.F.; Balsam, L.B.; Farouque, H.M.O.; Robbins, R.C.; Fitzgerald, P.J.; Yock, P.G.; Yeung, A.C. Novel Index for Invasively Assessing the Coronary Microcirculation. Circulation 2003, 107, 3129–3132. [Google Scholar] [CrossRef]
- Díez-Delhoyo, F.; Gutiérrez-Ibañes, E.; Loughlin, G.; Sanz-Ruiz, R.; Vázquez-Álvarez, M.E.; Sarnago-Cebada, F.; Angulo-Llanos, R.; Casado-Plasencia, A.; Elízaga, J.; Diáz, F.F.A. Coronary physiology assessment in the catheterization laboratory. World J. Cardiol. 2015, 7, 525–538. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Fearon, W.F. Invasive Coronary Microcirculation Assessment. Circ. J. 2014, 78, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Wu, X.; Liu, H.; Zheng, D.; Xia, L. Index of microcirculatory resistance: State-of-the-art and potential applications in computational simulation of coronary artery disease. J. Zhejiang Univ. B 2022, 23, 123–140. [Google Scholar] [CrossRef]
- Yong, A.S.; Ho, M.; Shah, M.G.; Ng, M.K.; Fearon, W.F. Coronary Microcirculatory Resistance Is Independent of Epicardial Stenosis. Circ. Cardiovasc. Interv. 2012, 5, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Lanza, G.A.; Crea, F.; Kaski, J.C. Clinical outcomes in patients with primary stable microvascular angina: Is the jury still out? Eur. Heart J. Qual. Care Clin. Outcomes 2019, 5, 283–291. [Google Scholar] [CrossRef]
- Radico, F.; Zimarino, M.; Fulgenzi, F.; Ricci, F.; Di Nicola, M.; Jespersen, L.; Chang, S.M.; Humphries, K.H.; Marzilli, M.; De Caterina, R. Determinants of long-term clinical outcomes in patients with angina but without obstructive coronary artery disease: A systematic review and meta-analysis. Eur. Heart J. 2018, 39, 2135–2146. [Google Scholar] [CrossRef] [PubMed]
- Marinescu, M.A.; Löffler, A.I.; Ouellette, M.; Smith, L.; Kramer, C.M.; Bourque, J.M. Coronary Microvascular Dysfunction, Microvascular Angina, and Treatment Strategies. JACC Cardiovasc. Imaging 2015, 8, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Niewiara, Ł.; Kleczyński, P.; Szolc, P.; Guzik, B.; Diachyshyn, M.; Jelonek, M.; Handzlik, J.; Żmudka, K.; Legutko, J. The change of angina levels in patients with chronic coronary syndromes and coronary microcirculatory dysfunc-tion—A prospective study with 24 months follow-up. Postep. Kardiol Interwencyjnej 2023, 19, 318–325. [Google Scholar] [CrossRef]
- Ahn, J.-M.; Zimmermann, F.M.; Johnson, N.P.; Shin, E.-S.; Koo, B.-K.; Lee, P.H.; Park, D.-W.; Kang, S.-J.; Lee, S.-W.; Kim, Y.-H.; et al. Fractional flow reserve and pressure-bounded coronary flow reserve to predict outcomes in coronary artery disease. Eur. Hearth J. 2017, 38, 1980–1989. [Google Scholar] [CrossRef]
- Ford, T.J.; Stanley, B.; Sidik, N.; Good, R.; Rocchiccioli, P.; McEntegart, M.; Watkins, S.; Eteiba, H.; Shaukat, A.; Lindsay, M.; et al. 1-Year Outcomes of Angina Management Guided by Invasive Coronary Function Testing (CorMicA). JACC Cardiovasc. Interv. 2020, 13, 33–45. [Google Scholar] [CrossRef]
- Legutko, J.; Niewiara, L.; Guzik, B.; Szolc, P.; Podolec, J.; Nosal, M.; Diachyshyn, M.; Zmudka, K.; Kleczynski, P. The impact of coronary microvascular dysfunction on the discordance between fractional flow reserve and resting full-cycle ratio in patients with chronic coronary syndromes. Front. Cardiovasc. Med. 2022, 9, 1003067. [Google Scholar] [CrossRef]
- Murai, T.; Lee, T.; Yonetsu, T.; Isobe, M.; Kakuta, T. Influence of microvascular resistance on fractional flow reserve after successful percutaneous coronary intervention. Catheter. Cardiovasc. Interv. 2015, 85, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Legutko, J.; Kleczyński, P.; Dziewierz, A.; Rzeszutko, L.; Dudek, D. Adenosine intracoronary bolus dose escalation versus intravenous infusion to induce maximum coronary hypere-mia for fractional flow reserve assessment. Kardiol Pol. 2019, 77, 610–617. [Google Scholar] [CrossRef]
- Meuwissen, M.; Chamuleau, S.A.; Siebes, M.; de Winter, R.J.; Koch, K.T.; Dijksman, L.M.; Berg, A.J.v.D.; Tijssen, J.G.; Spaan, J.A.; Piek, J.J. The prognostic value of combined intracoronary pressure and blood flow velocity measurements after deferral of percutaneous coronary intervention. Catheter. Cardiovasc. Interv. 2008, 71, 291–297. [Google Scholar] [CrossRef]
- Murthy, V.L.; Naya, M.; Taqueti, V.R.; Foster, C.R.; Gaber, M.; Hainer, J.; Dorbala, S.; Blankstein, R.; Rimoldi, O.; Camici, P.G.; et al. Effects of Sex on Coronary Microvascular Dysfunction and Cardiac Outcomes. Circulation 2014, 129, 2518–2527. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, S.S.; Corban, M.T.; Nanjundappa, R.A.; Eshtehardi, P.; McDaniel, M.C.; Kwarteng, C.A.; Samady, H. Coronary microvascular dysfunction is associated with higher frequency of thin-cap fibroatheroma. Atherosclerosis 2012, 223, 384–388. [Google Scholar] [CrossRef]
- Taqueti, V.R.; Hachamovitch, R.; Murthy, V.L.; Naya, M.; Foster, C.R.; Hainer, J.; Dorbala, S.; Blankstein, R.; Di Carli, M.F. Global Coronary Flow Reserve Is Associated with Adverse Cardiovascular Events Independently of Luminal Angiographic Severity and Modifies the Effect of Early Revascularization. Circulation 2015, 131, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Mayala, H.A.; Yan, W.; Jing, H.; Shuang-Ye, L.; Gui-Wen, Y.; Chun-Xia, Q.; Xiao-Li, L.; Zhao-Hui, W. Clinical characteristics and biomarkers of coronary microvascular dysfunction and obstructive coronary artery disease. J. Int. Med. Res. 2019, 47, 6149–6159. [Google Scholar] [CrossRef]
- Pauly, D.F.; Johnson, B.D.; Anderson, R.D.; Handberg, E.M.; Smith, K.M.; Cooper-DeHoff, R.M.; Sopko, G.; Sharaf, B.M.; Kelsey, S.F.; Merz, C.N.B.; et al. In women with symptoms of cardiac ischemia, nonobstructive coronary arteries, and microvascular dysfunction, angiotensin-converting enzyme inhibition is associated with improved microvascular function: A double-blind randomized study from the National Heart, Lung and Blood Institute Women’s Ischemia Syndrome Evaluation (WISE). Am. Hearth J. 2011, 162, 678–680. [Google Scholar] [CrossRef]
- Motz, W.; Strauer, B.E.; Kozàkovà, M.; Palombo, C.; Pratali, L.; Pittella, G.; Galetta, F.; L’Abbate, A.; Nunez, E.; Hosoya, K.; et al. Improvement of Coronary Flow Reserve After Long-term Therapy with Enalapril. Hypertension 1996, 27, 1031–1038. [Google Scholar] [CrossRef]
- Cannon, R.O.; Watson, R.M.; Rosing, D.R.; Epstein, S.E. Efficacy of calcium channel blocker therapy for angina pectoris resulting from small-vessel coronary artery disease and abnormal vasodilator reserve. Am. J. Cardiol. 1985, 56, 242–246. [Google Scholar] [CrossRef]
- Taqueti, V.R.; Di Carli, M.F. Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options. J. Am. Coll. Cardiol. 2018, 72, 2625–2641. [Google Scholar] [CrossRef] [PubMed]
- Ilic, I.; Timcic, S.; Milosevic, M.; Boskovic, S.; Odanovic, N.; Furtula, M.; Dobric, M.; Aleksandric, S.; Otasevic, P. The imPAct of Trimetazidine on MicrOcirculation after Stenting for stable coronary artery disease (PATMOS study). Front. Cardiovasc. Med. 2023, 10, 1112198. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Lee, M.J.; Ko, K.Y.; Park, J.H.; Baek, Y.S.; Sung-Woo, K.; Shin, S.-H.; Woo, S.-I.; Kim, D.-H.; Suh, Y.-J.; et al. Mechanical and Pharmacological Revascularization Strategies for Prevention of Microvascular Dysfunction in ST-Segment Elevation Myocardial Infarction: Analysis from Index of Microcirculatory Resistance Registry Data. J. Interv. Cardiol. 2020, 2020, 5036396. [Google Scholar] [CrossRef] [PubMed]
- Niewiara, L.; Kleczyński, P.; Guzik, B.; Szolc, P.; Baran, J.; Podolec, J.; Diachyshyn, M.; Żmudka, K.; Legutko, J. Impaired coronary flow reserve in patients with poor type 2 diabetes control: Preliminary results from prospective microvascular dysfunction registry. Cardiol J. 2022. [Google Scholar] [CrossRef]
Variable | Total N = 223 | CFR ≤ 2 N = 91 | CFR > 2 N = 117 | p-Value | IMR ≥ 25 N = 84 | IMR < 25 N = 121 | p-Value |
---|---|---|---|---|---|---|---|
NYHA class | |||||||
None | 105 (47.1) | 41 (45.1) | 51 (43.6) | 0.79 | 36 (42.9) | 54 (44.6) | 0.19 |
I | 29 (13.0) | 10 (11.0) | 19 (16.2) | 7 (8.3) | 22 (18.2) | ||
II | 63 (28.3) | 27 (29.7) | 34 (29.1) | 27 (32.1) | 33 (27.3) | ||
III | 21 (9.4) | 11 (12.1) | 10 (8.5) | 12 (14.3) | 9 (7.4) | ||
IV | 5 (2.2) | 2 (2.2) | 3 (2.6) | 2 (2.4) | 3 (2.5) | ||
Shortness of breath | 81 (37.5) | 44 (48.4) | 35 (29.9) | 0.01 | 37 (44.0) | 41 (33.9) | 0.14 |
Chest pain | 148 (68.5) | 70 (76.9) | 71 (61.7) | 0.02 | 64 (77.1) | 75 (62.5) | 0.03 |
Palpitation/arrhythmia | 34 (15.7) | 16 (17.6) | 17 (14.5) | 0.55 | 19 (22.6) | 13 (10.7) | 0.02 |
Syncope | 6 (2.8) | 2 (2.2) | 4 (3.4) | 0.47 | 2 (2.4) | 4 (3.3) | 0.52 |
Prior cardiac arrest | 5 (2.4) | 1 (1.1) | 4 (3.5) | 0.27 | 2 (2.4) | 3 (2.5) | 0.67 |
CCS class | |||||||
None | 61 (27.4) | 24 (26.4) | 30 (25.6) | 0.20 | 15 (17.9) | 38 (31.4) | 0.03 |
I | 30 (13.5) | 8 (8.8) | 21 (17.9) | 8 (9.5) | 21 (17.4) | ||
II | 94 (42.2) | 39 (42.9) | 50 (42.7) | 44 (52.4) | 43 (35.5) | ||
III | 37 (16.6) | 19 (20.9) | 16 (13.7) | 17 (20.2) | 18 (14.9) | ||
IV | 1 (0.5) | 1 (1.1) | 0 (0.0) | 0 (0.0) | 1 (0.8) | ||
Stable angina symptomatic | 100 (44.8) | 43 (47.3) | 52 (44.4) | 0.69 | 44 (52.4) | 50 (41.3) | 0.12 |
Unstable angina symptomatic | 36 (16.1) | 20 (22.0) | 14 (12.0) | 0.052 | 17 (20.2) | 67 (79.8) | 0.24 |
Variable | Total N = 223 | CFR ≤ 2 N = 91 | CFR > 2 N = 117 | p-Value | IMR ≥ 25 N = 84 | IMR < 25 N = 121 | p-Value |
---|---|---|---|---|---|---|---|
Angiographic image | |||||||
- no changes | 32 (15.5) | 11 (12.4) | 20 (17.7) | 0.30 | 12 (14.6) | 19 (16.1) | 0.78 |
- mild stenosis | 166 (79.8) | 74 (84.1) | 88 (76.5) | 0.18 | 71 (85.4) | 89 (75.4) | 0.08 |
- intermediate stenosis | 127 (61.1) | 53 (59.6) | 70 (61.4) | 0.79 | 34 (41.0) | 87 (73.7) | <0.001 |
- significant stenosis | 30 (13.5) | 17 (18.7) | 12 (10.3) | 0.08 | 9 (10.7) | 20 (16.5) | 0.24 |
- CTO | 12 (5.4) | 5 (5.5) | 7 (6.0) | 0.88 | 1 (1.2) | 11 (9.1) | 0.02 |
Intermediate stenosis location | |||||||
- LMCA | 7 (3.1) | 4 (4.4) | 3 (2.6) | 0.70 | 25 (29.8) | 7 (5.8) | 0.04 |
- LAD | 96 (43.0) | 39 (42.9) | 56 (47.9) | 0.47 | 8 (9.5) | 68 (56.2) | <0.001 |
- Cx | 26 (11.7) | 15 (16.5) | 9 (7.7) | 0.049 | 8 (9.5) | 16 (13.2) | 0.42 |
- RCA | 16 (7.2) | 8 (8.8) | 8 (6.8) | 0.60 | 6 (7.1) | 8 (6.6) | 0.45 |
- Mg | 2 (0.9) | 7 (7.7) | 2 (1.7) | 0.50 | 3 (3.6) | 2 (1.7) | 0.51 |
- LVB | 0 (0.0) | 0 (0.0) | 0 (0.0) | - | 0 (0.0) | 0 (0.0) | - |
- RPD | 0 (0.0) | 0 (0.0) | 0 (0.0) | - | 0 (0.0) | 0 (0.0) | - |
Significant stenosis location | |||||||
- LMCA | 0 (0.0) | 0 (0.0) | 0 (0.0) | - | 0 (0.0) | 0 (0.0) | - |
- LAD | 12 (5.4) | 3 (3.3) | 4 (3.4) | 0.17 | 1 (1.2) | 5 (4.1) | 0.35 |
- Cx | 9 (4.0) | 9 (9.9) | 6 (5.1) | 0.52 | 1 (1.2) | 6 (5.0) | 0.63 |
- RCA | 12 (5.4) | 1 (1.1) | 3 (2.6) | 0.03 | 0 (0.0) | 11 (9.1) | 0.02 |
- Mg | 0 (0.0) | 0 (0.0) | 0 (0.0) | - | 0 (0.0) | 0 (0.0) | - |
- LVB | 0 (0.0) | 0 (0.0) | 0 (0.0) | - | 0 (0.0) | 0 (0.0) | - |
- RPD | 1 (0.4) | 0 (0.0) | 0 (0.0) | 0.26 | 0 (0.0) | 1 (0.8) | 0.40 |
CTO location | |||||||
- LAD | 4 (1.8) | 1 (1.1) | 3 (2.7) | 0.63 | 0 (0.0) | 4 (3.3) | 0.15 |
- Cx | 1 (0.4) | 4 (4.4) | 1 (0.9) | 1.0 | 0 (0.0) | 1 (0.8) | 1.0 |
- RCA | 8 (3.6) | 0 (0.0) | 4 (3.4) | 0.73 | 0 (0.0) | 7 (5.8) | 0.15 |
Variable | Total N = 223 | CFR ≤ 2 N = 91 | CFR > 2 N = 117 | p-Value | IMR ≥ 25 N = 84 | IMR < 25 N = 121 | p-Value |
---|---|---|---|---|---|---|---|
PCI | 47 (21.1) | 21 (23.1) | 26 (22.2) | 0.88 | 10 (11.9) | 36 (29.8) | 0.003 |
PCI within: | |||||||
LAD | 36 (16.1) | 16 (17.6) | 20 (17.1) | 0.93 | 8 (9.5) | 27 (22.3) | 0.02 |
LMCA | 1 (0.5) | 1 (1.1) | 0 (0.0) | 0.44 | 0 (0.0) | 1 (0.8) | 0.59 |
Cx | 9 (4.0) | 3 (3.3) | 6 (5.1) | 0.52 | 2 (2.4) | 7 (5.8) | 0.31 |
RCA | 6 (2.7) | 4 (4.4) | 2 (1.7) | 0.25 | 0 (0.0) | 6 (5.0) | 0.04 |
CABG | 5 (2.2) | 3 (3.3) | 2 (1.7) | 0.66 | 1 (1.2) | 4 (3.3) | 0.40 |
Percutaneous valve intervention | 1 (0.5) | 1 (1.1) | 0 (0.0) | 0.45 | 1 (1.2) | 0 (0.0) | 0.43 |
Surgical valve intervention | 1 (0.5) | 1 (1.1) | 0 (0.0) | 0.44 | 0 (0.0) | 1 (0.8) | 1.0 |
Conservative treatment | 197 (88.3) | 78 (85.7) | 104 (88.9) | 0.49 | 78 (92.6) | 101 (83.5) | 0.047 |
Conservative treatment adjustment | 39 (17.5) | 12 (13.2) | 26 (22.2) | 0.385 | 11 (13.1) | 26 (21.5) | 0.62 |
Added pharmacotherapy | |||||||
ACEI | 18 (8.1) | 12 (13.2) | 6 (5.1) | 0.04 | 10 (11.9) | 8 (6.6) | 0.19 |
BB | 12 (5.4) | 5 (5.5) | 7 (6.0) | 0.88 | 6 (7.1) | 6 (5.0) | 0.51 |
Nitrate | 12 (5.4) | 3 (3.3) | 9 (7.7) | 0.18 | 4 (4.8) | 8 (6.6) | 0.58 |
Ranolazine | 0 (0.0) | 0 (0.0) | 0 (0.0) | - | 0 (0.0) | 0 (0.0) | - |
Ivabradine | 1 (0.4) | 1 (1.1) | 0 (0.0) | 0.26 | 1 (1.2) | 0 (0.0) | 0.23 |
Trimetazidine | 35 (15.7) | 19 (20.9) | 16 (13.7) | 0.17 | 19 (22.6) | 15 (12.4) | 0.053 |
CCB DHP | 38 (17.0) | 20 (22.0) | 17 (14.5) | 0.16 | 29 (34.5) | 8 (6.6) | <0.001 |
CCB NDHP | 4 (1.8) | 3 (3.3) | 1 (0.9) | 0.20 | 3 (3.6) | 0 (0.0) | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Januszek, R.; Kołtowski, Ł.; Tomaniak, M.; Wańha, W.; Wojakowski, W.; Grygier, M.; Siłka, W.; Jan Horszczaruk, G.; Czarniak, B.; Kręcki, R.; et al. Implementation of Microcirculation Examination in Clinical Practice—Insights from the Nationwide POL-MKW Registry. Medicina 2024, 60, 277. https://doi.org/10.3390/medicina60020277
Januszek R, Kołtowski Ł, Tomaniak M, Wańha W, Wojakowski W, Grygier M, Siłka W, Jan Horszczaruk G, Czarniak B, Kręcki R, et al. Implementation of Microcirculation Examination in Clinical Practice—Insights from the Nationwide POL-MKW Registry. Medicina. 2024; 60(2):277. https://doi.org/10.3390/medicina60020277
Chicago/Turabian StyleJanuszek, Rafał, Łukasz Kołtowski, Mariusz Tomaniak, Wojciech Wańha, Wojciech Wojakowski, Marek Grygier, Wojciech Siłka, Grzegorz Jan Horszczaruk, Bartosz Czarniak, Radosław Kręcki, and et al. 2024. "Implementation of Microcirculation Examination in Clinical Practice—Insights from the Nationwide POL-MKW Registry" Medicina 60, no. 2: 277. https://doi.org/10.3390/medicina60020277
APA StyleJanuszek, R., Kołtowski, Ł., Tomaniak, M., Wańha, W., Wojakowski, W., Grygier, M., Siłka, W., Jan Horszczaruk, G., Czarniak, B., Kręcki, R., Guzik, B., Legutko, J., Pawłowski, T., Wnęk, P., Roik, M., Sławek-Szmyt, S., Jaguszewski, M., Roleder, T., Dziarmaga, M., & Bartuś, S. (2024). Implementation of Microcirculation Examination in Clinical Practice—Insights from the Nationwide POL-MKW Registry. Medicina, 60(2), 277. https://doi.org/10.3390/medicina60020277